JPH08283803A - Production of magnetically anisotropic rare element magnet alloy powder - Google Patents

Production of magnetically anisotropic rare element magnet alloy powder

Info

Publication number
JPH08283803A
JPH08283803A JP7111317A JP11131795A JPH08283803A JP H08283803 A JPH08283803 A JP H08283803A JP 7111317 A JP7111317 A JP 7111317A JP 11131795 A JP11131795 A JP 11131795A JP H08283803 A JPH08283803 A JP H08283803A
Authority
JP
Japan
Prior art keywords
rare earth
hydrogen
alloy powder
temperature
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7111317A
Other languages
Japanese (ja)
Inventor
Chisato Mishima
千里 三嶋
Yoshinobu Motokura
義信 本蔵
Masami Eguchi
雅美 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP7111317A priority Critical patent/JPH08283803A/en
Publication of JPH08283803A publication Critical patent/JPH08283803A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: To obtain magnet alloy powder excellent in magnetic characteristics and to obtain a bonded magnet having high attracting power and superior flexibility with a relatively small amt. of the magnet alloy powder. CONSTITUTION: A rare earth element-contg. alloy consisting of 12.3% Nd, 10.0% Co, 1.0% Ga, 0.1% Zr, 6.0% B and the balance Fe is homogenized by holding at 1,100 deg.C for 40hr and hydrogen is occluded in the alloy by holding at 800 deg.C for 3hr in an atmosphere of hydrogen under 1.0atm pressure. The alloy is then dehydrogenated at 800 deg.C for 30min in an atmosphere under <=10<-5> atm pressure of hydrogen and it is cooled and pulverized to obtain the objective magnetically anisotropic rare earth element magnet alloy powder having 35.0MGOe max. energy product and 13.0KG residual magnetic flux density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、HDDR法において、
合金に水素を吸蔵させる工程の圧力を、合金の組成との
相関においてある範囲内に特定し、またその圧力を可能
な限り一定に保つことにより、特定の優れた磁気特性を
有する磁気異方性希土類磁石合金粉末を製造する方法に
関する。本発明の製造方法により得られる磁石合金粉末
は、樹脂結合型或いはゴム結合型等のボンド磁石などに
使用することができる。
The present invention relates to the HDDR method,
By specifying the pressure of the process of occluding hydrogen in the alloy within a certain range in correlation with the composition of the alloy, and keeping the pressure as constant as possible, the magnetic anisotropy with excellent magnetic properties can be obtained. The present invention relates to a method for producing a rare earth magnet alloy powder. The magnet alloy powder obtained by the manufacturing method of the present invention can be used for resin-bonded or rubber-bonded bonded magnets.

【0002】[0002]

【従来の技術】ボンド磁石は、含有される磁石粉末から
なる焼結磁石に比べ磁気特性は劣るが、機械的強度が大
きく、且つ柔軟性に優れ、形状の自由度が高いため、近
年、その利用分野が広がりつつある。このボンド磁石
は、磁石合金粉末を樹脂、ゴム等の有機バインダー又は
金属バインダーによって結合したものであり、その磁気
特性は使用する磁石合金粉末の磁気特性に大きく左右さ
れる。
2. Description of the Related Art Bonded magnets are inferior in magnetic characteristics to sintered magnets containing magnet powder, but in recent years, bonded magnets have large mechanical strength, excellent flexibility, and a high degree of freedom in shape. The field of use is expanding. This bonded magnet is obtained by binding magnet alloy powder with an organic binder such as resin or rubber or a metal binder, and its magnetic characteristics are greatly influenced by the magnetic characteristics of the magnet alloy powder used.

【0003】そのため、従来より、フェライト系磁石合
金粉末、希土類合金系磁石合金粉末等、各種磁石粉末、
更に、特に優れた磁気特性を有する磁石粉末として、磁
気異方性の希土類磁石合金粉末等、磁石粉末の改良、開
発が進められている。例えば、特開平2−4901号公
報には、希土類元素、Fe及びBを主成分とする合金の
粉末等を、水素ガス雰囲気中、500〜1000℃の温
度に保持して水素を吸蔵させ、その後、同温度範囲で実
質的に水素ガスが存在しない状態になるまで脱水素処理
を行い、次いで、冷却することを特徴とする希土類−F
e−B系磁石合金粉末の製造法が開示されている。
Therefore, conventionally, various magnet powders such as ferrite magnet alloy powder, rare earth alloy magnet alloy powder,
Further, as magnet powders having particularly excellent magnetic properties, improvement and development of magnet powders such as rare earth magnet alloy powders having magnetic anisotropy are being promoted. For example, in Japanese Patent Laid-Open No. 2-4901, powders of an alloy containing a rare earth element, Fe and B as main components are kept at a temperature of 500 to 1000 ° C. in a hydrogen gas atmosphere to occlude hydrogen, and then, , Rare earth-F characterized by performing dehydrogenation treatment in the same temperature range until substantially no hydrogen gas is present, and then cooling
A method for producing an e-B magnet alloy powder is disclosed.

【0004】また、特開平3−146608号公報に
は、上記と同様HDDR法によって希土類磁石合金粉末
を製造する場合に、合金組成、或いは水素吸蔵時及び脱
水素時の温度変化などの処理条件の変動により、得られ
る合金粉末の磁気異方性が著しく低下したり、また磁気
異方性にバラツキを生じたりする。それを防止するた
め、粉末の加熱時にアルミナ、マグネシア等の蓄熱材料
を併存させ、HDDR処理雰囲気の温度をできるだけ一
定に保ち、上記のような磁気特性の低下等を抑える技術
が開示されている。
Further, in Japanese Unexamined Patent Publication No. 3-146608, when the rare earth magnet alloy powder is produced by the HDDR method as described above, the alloy composition or the processing conditions such as temperature change during hydrogen storage and dehydrogenation are described. Due to the fluctuation, the magnetic anisotropy of the obtained alloy powder is remarkably lowered, or the magnetic anisotropy varies. In order to prevent this, a heat storage material such as alumina or magnesia is coexisted at the time of heating the powder to keep the temperature of the HDDR processing atmosphere as constant as possible to prevent the above-mentioned deterioration of magnetic properties and the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
製造方法では、数百g程度の実験室では成功の報告はあ
るが、数kg〜数tの量産炉では磁気特性が大幅に劣化
し95年3月現在工業生産が行われていないのが現状で
ある。これは、量が増大すると水素吸蔵時における発熱
及び脱水素による吸熱、更に水素吸蔵時の水素圧変動が
起こるためである。特に、水素圧の変動については何ら
解明されておらず、これが磁気特性の異常低下の原因と
なっている。
However, although the above manufacturing method has been reported to be successful in a laboratory with a weight of several hundreds of grams, the magnetic characteristics of a mass production furnace with a weight of several kilograms to several tons have been significantly deteriorated for 95 years. As of March, no industrial production is currently under way. This is because when the amount increases, heat generation during hydrogen storage, heat absorption due to dehydrogenation, and fluctuations in hydrogen pressure during hydrogen storage occur. In particular, the fluctuation of hydrogen pressure has not been clarified at all, and this causes abnormal deterioration of magnetic properties.

【0006】本発明は、上記従来の磁気異方性磁石合金
粉末の製造法における問題点を解決し、原料粉末中の特
定の元素の特定量と、水素吸蔵処理時の水素ガス圧の範
囲とを最適化し、最適反応中に最適温度に保つと同時
に、水素ガス圧を可能な限り一定に保つことにより優れ
た磁気特性を有する磁石粉末を得ることができる、磁気
異方性希土類磁石合金粉末の製造方法を提供することを
目的とする。
The present invention solves the problems in the above-mentioned conventional method for producing magnetic anisotropic magnet alloy powder, and provides a specific amount of a specific element in the raw material powder and a range of hydrogen gas pressure during hydrogen storage treatment. Of the magnetic anisotropy rare earth magnet alloy powder, by which the magnetic powder having excellent magnetic properties can be obtained by keeping the hydrogen gas pressure as constant as possible while keeping the optimum temperature during the optimum reaction. It is intended to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】本発明の磁気異方性希土
類磁石合金粉末の製造方法は、希土類元素、Fe及びB
を主成分とする合金に、水素雰囲気下、水素を吸蔵さ
せ、その後、実質的に水素を含まない雰囲気において、
脱水素させ、次いで、冷却し、粉砕することにより磁気
異方性希土類磁石合金粉末を製造する方法において、上
記希土類元素は12〜15%(アトミック%の意味であ
る。以下も同じ。)、上記Bは5.8〜8.0%であ
り、上記合金は、更に40%以下のCo、5.0%以下
のGa及び1.0%以下のZrのうちの少なくとも一種
を含み、且つ上記水素雰囲気の圧力(P;気圧)を下記
範囲とした場合に、 −0.68+0.056X≦P≦0.056X (但し、Xは、Coの含有量、Gaの含有量の6
倍、Zrの含有量の10倍及びGaの含有量の10
0倍にZrの含有量を乗じた値の総和の絶対値であり、
16≦X≦50、0.5≦P≦2.6である。) 上記磁気異方性希土類磁石合金粉末の最大エネルギー積
は20MGOe以上及び/又は残留磁束密度は12KG
以上であることを特徴とする。
The method for producing a magnetic anisotropic rare earth magnet alloy powder of the present invention comprises a rare earth element, Fe and B.
The alloy containing as a main component is allowed to store hydrogen in a hydrogen atmosphere, and thereafter, in an atmosphere substantially not containing hydrogen,
In the method for producing a magnetic anisotropic rare earth magnet alloy powder by dehydrogenating, then cooling and pulverizing, the rare earth element is contained in an amount of 12 to 15% (meaning atomic%, the same applies below), and the above. B is 5.8 to 8.0%, the alloy further contains at least one of 40% or less Co, 5.0% or less Ga, and 1.0% or less Zr, and the above hydrogen. When the pressure (P; atmospheric pressure) of the atmosphere is within the following range, -0.68 + 0.056X ≦ P ≦ 0.056X (where X is 6 of Co content and Ga content).
Double, 10 times the Zr content and 10 times the Ga content
It is the absolute value of the sum of the values obtained by multiplying 0 times the Zr content,
16 ≦ X ≦ 50 and 0.5 ≦ P ≦ 2.6. ) The maximum energy product of the magnetic anisotropic rare earth magnet alloy powder is 20 MGOe or more and / or the residual magnetic flux density is 12 KG.
It is characterized by the above.

【0008】上記水素雰囲気下とは、水素ガス雰囲気
中、又は水素ガスと不活性ガスとの混合ガス雰囲気中で
あって、水素ガス圧力又は水素ガス分圧が0.5気圧以
上となるような条件であることをいう。この水素雰囲気
が、例えば真空中、又は水素を含まない不活性ガス中で
ある場合は合金結晶中の歪みの除去、希土類元素、Fe
及びBを主成分とする合金(以下、希土類−Fe−B系
合金又は単に合金という。)の酸化防止或いは水素化崩
壊物の製造等を効率的に行うことができず、更に合金に
組織変化をもたらし、優れた磁気特性を有する再結晶集
合組織からなる磁石合金粉末を得ることができない。
The above-mentioned hydrogen atmosphere means a hydrogen gas atmosphere or a mixed gas atmosphere of hydrogen gas and an inert gas such that the hydrogen gas pressure or the hydrogen gas partial pressure becomes 0.5 atm or more. It means that it is a condition. When the hydrogen atmosphere is, for example, a vacuum or an inert gas containing no hydrogen, the strain in the alloy crystal is removed, the rare earth element, Fe
Further, it is not possible to efficiently prevent oxidation of an alloy containing B and B as a main component (hereinafter referred to as a rare earth-Fe-B alloy or simply an alloy) or to produce a hydrogenated disintegrant, and further change the structure of the alloy. And a magnet alloy powder having a recrystallized texture having excellent magnetic properties cannot be obtained.

【0009】また、上記水素ガス圧力又は水素ガス分圧
が0.5気圧未満の場合は、合金が十分に組織変化する
に要する量の水素が吸蔵され難く、一方、水素ガス圧力
又は水素ガス分圧が2.6気圧より高い、すなわち大気
圧の倍以上の加圧状態である場合は、次工程の脱水素に
長時間を要し、生産性が低いため、工業的には採用でき
ない。更に、水素吸蔵時の水素ガス圧力又は水素ガス分
圧の変動幅は、第2発明のように、水素吸蔵の工程を通
じて0.3気圧以下であることが好ましく、この圧力又
は分圧が、吸蔵工程中0.3気圧を越えて大きく変動し
た場合は、磁気特性が低下する。このように圧力又は分
圧の変動を小さくしてほぼ一定とするためには、例えば
アキュムレータ(ガス溜)を備えた密封型の炉を使用す
る等の方法が有効である。
When the hydrogen gas pressure or the hydrogen gas partial pressure is less than 0.5 atm, it is difficult to store hydrogen in an amount required for the alloy to undergo a sufficient microstructural change. When the pressure is higher than 2.6 atm, that is, the pressure is more than twice the atmospheric pressure, dehydrogenation in the next step requires a long time and the productivity is low, so that it cannot be industrially adopted. Further, the fluctuation range of the hydrogen gas pressure or the hydrogen gas partial pressure at the time of hydrogen storage is preferably 0.3 atm or less through the hydrogen storage step as in the second invention, and this pressure or the partial pressure is the storage pressure. If it fluctuates greatly over 0.3 atm during the process, the magnetic properties will deteriorate. In order to reduce the fluctuation of the pressure or the partial pressure to be almost constant, it is effective to use, for example, a sealed furnace equipped with an accumulator (gas reservoir).

【0010】水素雰囲気下、合金に水素を吸蔵させる温
度は、600〜1000℃、特に好ましくは700〜9
00℃、時間は1〜24時間、特に好ましくは1〜5時
間の範囲が適当である。この温度は、必ずしも上記温度
範囲内で一定とする必要はなく、上記範囲内で適宜昇温
させたり降温させたりしてもよい。この昇温又は降温は
直線的でもよいし、段階的でもよく、更に昇温、降温及
び一定温度保持等任意に組み合わせて変化させることも
できる。また、室温から上記温度範囲まで昇温させる
際、昇温途中の雰囲気は必ずしも水素ガス雰囲気或いは
水素ガスを含む雰囲気でなくてもよく、アルゴン等の不
活性ガス雰囲気でもよいし、真空であってもよいが、水
素ガスを含む雰囲気であれば、より効率的に水素の吸蔵
がなされるため好ましい。
In a hydrogen atmosphere, the temperature at which hydrogen is absorbed by the alloy is 600 to 1000 ° C., particularly preferably 700 to 9
The range of 00 ° C. and time is 1 to 24 hours, particularly preferably 1 to 5 hours. This temperature does not necessarily have to be constant within the above temperature range, and may be appropriately raised or lowered within the above range. This temperature increase or temperature decrease may be linear or stepwise, and may be changed in any combination such as temperature increase, temperature decrease and constant temperature retention. When the temperature is raised from room temperature to the above temperature range, the atmosphere in the middle of the temperature increase does not necessarily have to be a hydrogen gas atmosphere or an atmosphere containing hydrogen gas, an inert gas atmosphere such as argon, or a vacuum. However, an atmosphere containing hydrogen gas is preferable because hydrogen can be absorbed more efficiently.

【0011】上記の水素を吸蔵させるための温度が60
0℃未満では、合金の組織変化が十分に起こらず、10
00℃を越える場合は、水素化崩壊物が互いに融着して
しまうことがあり、組織変化が進みすぎて再結晶粒が過
度に成長し、保磁力が低下するため好ましくない。ま
た、処理時間が1時間未満では、十分な組織変化が起こ
らず、保磁力が低下し、24時間を越える場合は、組織
の粗大化が起こり、保磁力を低下させるため好ましくな
い。尚、水素吸蔵の温度及び処理時間が上記特に好まし
い範囲であれば、保磁力の高い優れた性能の磁石合金粉
末を得ることができる。
The temperature for absorbing the above hydrogen is 60.
If the temperature is less than 0 ° C, the change in the alloy structure does not sufficiently occur, and
When the temperature exceeds 00 ° C, the hydrogenated disintegration products may be fused with each other, the structure change proceeds too much, recrystallized grains grow excessively, and the coercive force decreases, which is not preferable. Further, if the treatment time is less than 1 hour, sufficient coercive force does not change and the coercive force decreases, and if it exceeds 24 hours, the structure becomes coarse and the coercive force decreases, which is not preferable. If the hydrogen storage temperature and the treatment time are within the above particularly preferable ranges, a magnet alloy powder having a high coercive force and excellent performance can be obtained.

【0012】上記の水素吸蔵工程に続いて実質的に水素
を含まない雰囲気において、合金の脱水素を行うが、こ
の実質的に水素を含まない雰囲気とは、水素ガス圧力が
10-1Torr以下の真空雰囲気、又は水素ガス分圧が
10-1Torr以下の不活性ガス雰囲気を意味する。ま
た、上記脱水素時の温度は600〜1000℃、特に好
ましくは700〜900℃、時間は5分〜10時間、特
に好ましくは10分〜1時間が適当である。この脱水素
時の温度も、水素吸蔵時と同様、必ずしも上記温度範囲
内で一定とする必要はなく、適宜昇温又は降温させても
よいし、この昇温又は降温は直線的でもよいし、段階的
でもよい。また、昇温、降温及び一定温度保持等を任意
に組み合わせてもよい。
Subsequent to the above hydrogen storage step, the alloy is dehydrogenated in an atmosphere substantially containing no hydrogen. The atmosphere containing substantially no hydrogen means that the hydrogen gas pressure is 10 -1 Torr or less. Or a hydrogen gas partial pressure of 10 −1 Torr or less or an inert gas atmosphere. The temperature during the dehydrogenation is 600 to 1000 ° C., particularly preferably 700 to 900 ° C., and the time is 5 minutes to 10 hours, particularly preferably 10 minutes to 1 hour. The temperature at the time of dehydrogenation also does not necessarily have to be constant within the above temperature range, similarly to the time of hydrogen storage, and may be appropriately raised or lowered, or this raising or lowering may be linear, It may be stepwise. Further, the temperature rising, the temperature lowering, the constant temperature keeping, etc. may be arbitrarily combined.

【0013】上記脱水素処理時の温度が600℃未満で
は、水素ガス圧力又はその分圧を10-5Torr以下に
まで減圧しても、得られる磁石粉末に水素が残留し、高
保磁力が実現できず、1000℃を越える場合は、水素
化崩壊物が互いに融着してしまうことがあり、組織変化
が進みすぎて再結晶粒が過度に成長し、保磁力が低下す
る。更に、温度が上記範囲内であっても、水素ガス圧力
又はその分圧が10-1Torrを越えて高い場合は、上
記と同様脱水素化が不十分となり、高保磁力が得られな
いことがある。また、この処理時間が5分未満では、完
全に脱水素することができず、保磁力が低下し、10時
間を越える場合は、結晶粒の粗大化が起こり、保磁力が
低下するため好ましくない。尚、脱水素の温度及び処理
時間が上記特に好ましい範囲であれば、高保磁力を有す
る優れた性能の磁石合金粉末を得ることができる。
When the temperature during the dehydrogenation treatment is less than 600 ° C., hydrogen remains in the obtained magnet powder and a high coercive force is realized even if the hydrogen gas pressure or its partial pressure is reduced to 10 −5 Torr or less. If the temperature exceeds 1000 ° C., the hydrogenated decay products may be fused to each other, and the restructuring grains may grow excessively due to the excessive change in the structure, resulting in a decrease in the coercive force. Further, even if the temperature is within the above range, if the hydrogen gas pressure or the partial pressure thereof is higher than 10 -1 Torr, dehydrogenation becomes insufficient as in the above case, and high coercive force cannot be obtained. is there. If the treatment time is less than 5 minutes, complete dehydrogenation cannot be performed and the coercive force decreases, and if it exceeds 10 hours, coarsening of crystal grains occurs and the coercive force decreases, which is not preferable. . Incidentally, if the dehydrogenation temperature and the treatment time are within the above particularly preferable ranges, a magnet alloy powder having a high coercive force and excellent performance can be obtained.

【0014】上記水素吸蔵工程と脱水素工程との処理温
度範囲は重なっているが、両処理工程を必ずしも同一或
いは近似の温度で実施する必要はなく、水素吸蔵工程終
了後、昇温又は降温して脱水素工程に移ってもよい。し
かし、両工程を同一或いは差が200℃以下、特に50
℃以下となる温度条件で実施した場合は、得られる合金
粉末中の再結晶粒の粒成長が抑制され、高い保磁力を有
する再結晶集合組織を有し、優れた磁気特性を有する磁
石合金粉末を得ることができるため好ましい。尚、上記
水素吸蔵及び脱水素の両工程は略同一の温度で実施する
ことがより好ましく、また、両工程を繰り返し実施する
こともできる。
Although the processing temperature ranges of the hydrogen storage step and the dehydrogenation step overlap, it is not always necessary to perform both processing steps at the same or similar temperatures. After the hydrogen storage step is finished, the temperature is raised or lowered. You may move to a dehydrogenation process. However, both steps are the same or the difference is less than 200 ℃, especially 50
When carried out at a temperature condition of ℃ or less, the grain growth of recrystallized grains in the obtained alloy powder is suppressed, the recrystallized texture has a high coercive force, magnet alloy powder having excellent magnetic properties Is preferred, which is preferable. In addition, it is more preferable that both the steps of hydrogen storage and dehydrogenation are performed at substantially the same temperature, and both steps can be repeated.

【0015】上記のようにしてほぼ完全に脱水素した合
金はその後冷却される。この冷却は、例えばアルゴン等
の不活性ガスを用いて実施してもよいし、脱水素後、そ
のまま放置して真空雰囲気下冷却してもよい。また、こ
の冷却工程の途中で真空又は不活性ガス雰囲気下、温度
を一定に保って熱処理してもよい。この熱処理温度は3
00℃以上であればよく、熱処理は脱水素処理後の降温
途中で実施してもよいし、合金を一旦室温にまで完全に
冷却した後、再び所要温度まで昇温して実施してもよ
く、1回のみではなく、複数回行ってもよい。尚、脱水
素処理後、及び熱処理後の冷却はできるだけ速やかに行
うことが好ましい。
The alloy, which is almost completely dehydrogenated as described above, is then cooled. This cooling may be carried out using an inert gas such as argon, or may be left as it is after dehydrogenation and cooled in a vacuum atmosphere. Further, in the course of this cooling step, the heat treatment may be performed while keeping the temperature constant under vacuum or an inert gas atmosphere. This heat treatment temperature is 3
The temperature may be higher than or equal to 00 ° C., and the heat treatment may be performed in the middle of lowering the temperature after the dehydrogenation treatment, or may be performed by once completely cooling the alloy to room temperature and then raising the temperature to the required temperature again. It may be performed not only once but a plurality of times. The cooling after the dehydrogenation treatment and after the heat treatment is preferably performed as quickly as possible.

【0016】また、上記合金は、水素吸蔵処理前に、予
め均質化処理しておくことが好ましい。均質化処理の温
度は900〜1200℃、より好ましくは1000〜1
200℃であり、処理時間は10〜50時間、より好ま
しくは30〜50時間である。この処理温度が900℃
未満では、均質化処理に長時間を要し、生産性が低く、
一方、1200℃を越える場合は、合金粉末が溶融する
ことがある。更に、処理時間が10時間未満では、完全
に均質化せず、α−Fe等の不純物が残り、50時間を
越える場合は、結晶粒の粗大化及び酸化が起こり易く好
ましくない。
Further, it is preferable that the above alloy is subjected to a homogenizing treatment in advance before the hydrogen storage treatment. The temperature of the homogenization treatment is 900 to 1200 ° C, more preferably 1000 to 1
The temperature is 200 ° C., and the treatment time is 10 to 50 hours, more preferably 30 to 50 hours. This processing temperature is 900 ℃
If it is less than 1, the homogenization process requires a long time, the productivity is low,
On the other hand, if the temperature exceeds 1200 ° C, the alloy powder may melt. Further, if the treatment time is less than 10 hours, it is not completely homogenized and impurities such as α-Fe remain, and if it exceeds 50 hours, coarsening of the crystal grains and oxidation are likely to occur, which is not preferable.

【0017】上記磁気異方性希土類磁石合金粉末を得る
ための合金としては、希土類−Fe−B系合金が使用さ
れる。そのような合金としては、例えばNd−Fe−B
系合金、Ndの一部をDy、Pr、Y等、他の希土類元
素の単体又は合金の1種或いは2種以上で置換したNd
−Fe−B系合金、及びFeの一部をCoで置換したN
d−Fe−B−Co系合金、この系に更にGa、Zr、
Hf、Al、Cu、Mn、Ti、Si等の単体又は合金
の1種或いは2種以上を添加した合金などを例示でき
る。
A rare earth-Fe-B type alloy is used as an alloy for obtaining the above magnetic anisotropic rare earth magnet alloy powder. As such an alloy, for example, Nd-Fe-B
-Based alloy, Nd in which a part of Nd is replaced with one or more kinds of other rare earth elements such as Dy, Pr, and Y, or alloys
-Fe-B based alloy, and N in which a part of Fe is replaced by Co
d-Fe-B-Co type alloy, and Ga, Zr,
Examples include simple substances such as Hf, Al, Cu, Mn, Ti, and Si, or alloys containing one or more alloys added.

【0018】上記Feの一部と置換されるCoは得られ
る磁石合金粉末の耐食性、磁気特性、磁気温度特性等を
向上させる作用を有し、また、Nd−Fe−B−Co系
合金に更に併用されるGa、Zr、Hf等は、磁気異方
性及び保磁力を高める作用を有するため、本発明におい
ても、Co、Ga及びZrのうちの少なくとも1種が配
合されていることが好ましい。尚、上記合金の形態は、
粉砕インゴット、バルク、フレーク又は粉末等いずれで
あってもよい。
Co, which is substituted for a part of Fe, has the function of improving the corrosion resistance, magnetic characteristics, magnetic temperature characteristics, etc. of the obtained magnet alloy powder, and further improves the Nd-Fe-B-Co alloy. Since Ga, Zr, Hf and the like used together have an action of enhancing magnetic anisotropy and coercive force, it is preferable that at least one of Co, Ga and Zr is blended also in the present invention. The form of the above alloy is
It may be a crushed ingot, bulk, flakes, powder or the like.

【0019】本発明においては、上記希土類−Fe−B
系合金中、希土類元素の含有量は12〜15%、特に好
ましくは12〜14%である。この含有量が12%未満
では、インゴットにα−Feが析出して保磁力の低下を
招き、15%を越える場合は、残留磁束密度の低下を招
く。また、Bの含有量は5.8〜8.0%、好ましくは
6.0〜8.0%であり、この含有量が5.8%未満で
は、インゴットにNd2 Fe17相が析出して保磁力の低
下を招き、8.0%を越える場合は、残留磁束密度の低
下を招く。
In the present invention, the above-mentioned rare earth-Fe-B.
The content of the rare earth element in the system alloy is 12 to 15%, particularly preferably 12 to 14%. When this content is less than 12%, α-Fe is precipitated in the ingot to cause a decrease in coercive force, and when it exceeds 15%, the residual magnetic flux density is decreased. Further, the content of B is 5.8 to 8.0%, preferably 6.0 to 8.0%. If the content is less than 5.8%, the Nd 2 Fe 17 phase is precipitated in the ingot. Cause a decrease in coercive force, and when it exceeds 8.0%, a decrease in residual magnetic flux density is caused.

【0020】更に、上記合金中、Coの含有量は0〜4
0%、好ましくは0〜30%、より好ましくは10〜3
0%であり、Coが40%を越える場合は、保磁力が低
下する傾向にある。また、Gaの含有量は0〜5.0
%、好ましくは0〜3.0%、より好ましくは0.1〜
3.0%であり、Zrの含有量は0〜1.0%であり、
特に0〜0.7%の範囲が好ましい。Ga及びZrの含
有量がそれぞれ上記上限を越える場合も、Coの場合と
同様保磁力が低下することがある。尚、上記各成分の含
有量がそれぞれ好ましい範囲内であれば、高い保磁力及
び残留磁束密度を有する磁石合金粉末が得られる。
Further, in the above alloy, the Co content is 0 to 4
0%, preferably 0 to 30%, more preferably 10 to 3
It is 0%, and when Co exceeds 40%, the coercive force tends to decrease. The Ga content is 0 to 5.0.
%, Preferably 0 to 3.0%, more preferably 0.1 to
3.0%, the Zr content is 0 to 1.0%,
The range of 0 to 0.7% is particularly preferable. Even when the Ga and Zr contents exceed the upper limits, respectively, the coercive force may be lowered as in the case of Co. If the content of each of the above components is within the preferable range, a magnet alloy powder having high coercive force and residual magnetic flux density can be obtained.

【0021】本発明では、希土類−Fe−B系合金に水
素を吸蔵させる際に、その水素圧を、上記Co、Ga及
びZrの含有量との相関において、請求項1記載の二つ
の式等によって特定される範囲において設定することに
より、特定の優れた磁気特性を有する磁石合金粉末が得
られることを最も大きな特徴としており、また、後記の
図1、図2及び図5にみられるように、上記二つの式の
ほぼ中間に位置する下記により表される式、 P=−0.42+0.056X が成り立つ点及びその近傍の水素圧で水素吸蔵処理をし
た場合には、各実験例にもみられるように、より一層優
れた磁気特性を有する磁気異方性希土類磁石合金粉末を
得ることができる。
In the present invention, when hydrogen is absorbed in a rare earth-Fe-B alloy, the hydrogen pressure is correlated with the contents of Co, Ga and Zr, and the two formulas according to claim 1 The most significant feature is that a magnet alloy powder having specific excellent magnetic properties can be obtained by setting in the range specified by the above. Further, as shown in FIG. 1, FIG. 2 and FIG. , An equation represented by the following, which is located approximately in the middle of the above two equations, P = -0.42 + 0.056X, and hydrogen storage treatment at the hydrogen pressure in the vicinity thereof As described above, the magnetic anisotropic rare earth magnet alloy powder having more excellent magnetic properties can be obtained.

【0022】尚、本発明では、水素圧は請求項1記載の
二つの式或いは好ましくは上記式によって特定され、且
つ該式中、Xは16〜50、好ましくは25〜50であ
り、Xが16未満では、優れた異方性を有する磁石合金
粉末を得ることができず、50を越える場合は、保磁力
が低下する。更に、水素圧Pは0.5〜2.6気圧、好
ましくは0.7〜2.0気圧であるが、圧力が0.5気
圧未満では、十分な異方性を有する磁石合金粉末を得る
ことができず、2.6気圧を越える場合は、残留磁束密
度が低下する。X及びPが上記好ましい範囲内であれ
ば、より優れた異方性を有する磁石合金粉末を得ること
ができる。
In the present invention, the hydrogen pressure is specified by the two formulas described in claim 1 or preferably by the above formula, and in the formula, X is 16 to 50, preferably 25 to 50, and X is If it is less than 16, a magnet alloy powder having excellent anisotropy cannot be obtained, and if it exceeds 50, the coercive force decreases. Further, the hydrogen pressure P is 0.5 to 2.6 atm, preferably 0.7 to 2.0 atm, but when the pressure is less than 0.5 atm, a magnet alloy powder having sufficient anisotropy is obtained. If the pressure exceeds 2.6 atm, the residual magnetic flux density will decrease. When X and P are within the above-mentioned preferable ranges, a magnet alloy powder having more excellent anisotropy can be obtained.

【0023】[0023]

【作用】磁気異方性を有する希土類磁石合金粉末は、磁
気特性に優れ、少量の配合によって柔軟性と大きな吸着
力とを併せ有するボンド磁石が得られるため、この分野
において多用されている。しかし、合金の組成が変化し
た場合等に、水素吸蔵処理時の水素圧が変動し、最適水
素圧で処理できなくなるため、磁気特性にバラツキを生
じたり、或いは特性の低い粉末しか得られないことがあ
る。
The rare earth magnet alloy powder having magnetic anisotropy is widely used in this field because it has excellent magnetic properties and a bond magnet having both flexibility and a large attractive force can be obtained by mixing in a small amount. However, if the composition of the alloy changes, the hydrogen pressure during hydrogen storage will change, and it will not be possible to process at the optimum hydrogen pressure, so there will be variations in the magnetic properties, or only powders with low properties will be obtained. There is.

【0024】本発明では、HDDR法により磁石合金粉
末を製造する際に、処理温度だけではなく、水素圧が、
得られる磁石粉末の性能に大きく影響する点に着目し、
合金組成、特にCo、Ga及びZrの含有量と水素圧と
の間に密接な相関が存在し、この相関を最適化すること
により、バラツキの少ない、優れた磁気特性を有する磁
気異方性希土類磁石合金粉末が得られることを見出した
ものである。
In the present invention, when the magnet alloy powder is manufactured by the HDDR method, not only the processing temperature but also the hydrogen pressure is
Focusing on the fact that the performance of the obtained magnet powder is greatly affected,
There is a close correlation between the alloy composition, especially the contents of Co, Ga and Zr, and the hydrogen pressure, and by optimizing this correlation, magnetic anisotropy rare earths having excellent magnetic properties with little variation. It has been found that a magnet alloy powder can be obtained.

【0025】また、上記のように合金組成によって最適
な水素圧を設定しても、従来の焼成炉のように、一定圧
力、例えば1気圧の水素ガスを炉中に流通させるだけで
は、合金が水素を吸蔵するにつれ、供給される水素の圧
は一定であっても、合金近傍の水素圧は変動し、得られ
る磁石粉末の磁気特性が相当に低下する。そこで、例え
ばアキュムレータ(ガス溜)を備える密封型の炉を使用
する等の方法により、この水素圧の変動の幅を0.3気
圧以下と低いレベルに抑えることにより、優れた磁気特
性を有する粉末を安定して得ることができる。
Further, even if the optimum hydrogen pressure is set according to the alloy composition as described above, the alloy can be formed by simply flowing hydrogen gas at a constant pressure, for example, 1 atm in the furnace as in the conventional firing furnace. As hydrogen is occluded, the hydrogen pressure in the vicinity of the alloy fluctuates even if the pressure of the supplied hydrogen is constant, and the magnetic properties of the obtained magnet powder are considerably reduced. Therefore, for example, by using a method such as using a sealed furnace equipped with an accumulator (gas reservoir), the width of fluctuation of the hydrogen pressure is suppressed to a low level of 0.3 atm or less, so that the powder having excellent magnetic properties is obtained. Can be stably obtained.

【0026】[0026]

【実施例】以下、実施例及び比較例によって本発明を具
体的に説明する。表1及び表2に示す組成の合金をボタ
ンアークによって融解し、1100℃の温度で40時間
均質化処理し、その後、両表に示す各水素圧(P=−
0.42+0.056X)で800℃まで昇温後、3時
間保持して水素を吸蔵させ、次いで、雰囲気を水素圧1
-5気圧以下の実質的に水素を含まない雰囲気とし、同
温度で30分間脱水素処理を行った後、アルゴンガスを
導入して室温にまで冷却し、得られた処理合金を平均粒
径105〜74μmに粉砕して磁気異方性希土類磁石合
金粉末を得た。この磁石粉末について、VSM振動型磁
束計によって最大エネルギー積〔(BH)max〕及び
残留磁束密度(Br)を測定した。その結果を合金組成
及びX、Pとともに両表に示す。尚、表中の合金組成の
欄の「Febal 」は、他の成分を除いた残部がFeである
ことを意味する。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. The alloys having the compositions shown in Tables 1 and 2 were melted by a button arc, homogenized at a temperature of 1100 ° C. for 40 hours, and thereafter, each hydrogen pressure (P = −) shown in both tables.
(0.42 + 0.056X), the temperature was raised to 800 ° C., and the temperature was maintained for 3 hours to occlude hydrogen.
The atmosphere is made substantially free of hydrogen at 0 -5 atm or less, and dehydrogenation is carried out at the same temperature for 30 minutes, and then argon gas is introduced to cool it to room temperature. It was pulverized to 105 to 74 μm to obtain a magnetic anisotropic rare earth magnet alloy powder. The maximum energy product [(BH) max] and the residual magnetic flux density (Br) of this magnet powder were measured by a VSM vibration type magnetometer. The results are shown in both tables together with the alloy composition and X and P. In addition, "Febal" in the column of alloy composition in the table means that the balance excluding other components is Fe.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】表1及び表2の結果によれば、Xが16〜
50、水素圧が0.5〜2.6気圧の範囲において、水
素圧を請求項1に記載の二つの式により特定される範囲
内の圧力とした場合は、(BH)maxが20MGOe
を越え、Brが12KG以上の良好な磁性特性を有する
磁石合金粉末が得られていることが分かる。一方、X及
びPが上記範囲外或いは上記範囲内であっても、2本の
直線の外側である場合には、ほとんどの例で(BH)m
axが20MGOeを、またBrが12KGを下回って
おり、本発明において特定した水素圧によって水素吸蔵
処理を行うことにより、優れた磁気特性を有する磁気異
方性希土類磁石合金粉末が安定して得られることが裏付
けられている。
According to the results shown in Tables 1 and 2, X is 16 to
When the hydrogen pressure is 50 and the hydrogen pressure is in the range of 0.5 to 2.6 atm and the hydrogen pressure is within the range specified by the two formulas of claim 1, (BH) max is 20 MGOe.
It can be seen that a magnet alloy powder having good magnetic properties with a Br of 12 KG or more was obtained. On the other hand, if X and P are outside or within the above range, two
(BH) m in most cases when outside the straight line
Since ax is less than 20 MGOe and Br is less than 12 KG, and hydrogen storage treatment is performed by the hydrogen pressure specified in the present invention, a magnetic anisotropic rare earth magnet alloy powder having excellent magnetic properties can be stably obtained. That is supported.

【0030】また、図1及び図2は、表1及び表2に記
載の実験例について、それぞれ水素圧と(BH)max
又はBrとの相関を表したグラフである。各図中の上下
2本の直線が請求項1に記載の式で表される直線であ
り、これら両グラフにおいて、上記2本の直線並びにX
=16、X=50、P=0.5及びP=2.6の4本の
直線に囲まれた範囲内、特に中心に位置する直線の近傍
に高い値を表す点(◎印、●印、▲印及び■印)が比較
的多数集まっており、上記範囲外では、多くの点が低い
値(△印、□印及び×印)を示していることからも、本
発明の方法によって磁石合金粉末を製造した場合に、優
れた磁気特性を有する磁石粉末が得られることを読み取
ることができる。
1 and 2 show the hydrogen pressure and (BH) max for the experimental examples shown in Tables 1 and 2, respectively.
Alternatively, it is a graph showing the correlation with Br. The upper and lower two straight lines in each figure are the straight lines represented by the formula described in claim 1, and in these two graphs, the above two straight lines and X
= 16, X = 50, P = 0.5, and P = 2.6, a point that indicates a high value in the range surrounded by four straight lines, especially near the center straight line (marked with ◎, ●) , ▲ mark and ■ mark) are gathered in a relatively large number, and many points show low values (Δ mark, □ mark and X mark) outside the above range. It can be read that when an alloy powder is produced, a magnet powder having excellent magnetic properties is obtained.

【0031】更に、図3及び図4は、Xの広い範囲に渡
って同程度の優れた(BH)max或いはBrを有する
磁石合金粉末が得られていることを表しており、本発明
の範囲内であればXの如何にかかわらず優れた性能の磁
石粉末が得られることが表されている。尚、BrはXの
ほとんど全範囲に渡ってほぼ一定した高い値となってお
り、(BH)maxでは請求項7に特定したXの範囲
(25〜50)に比べて、それよりXの小さい範囲でや
や低い値となっているが、それでも30MGOeを越え
る結果となっており、本発明では、Xの広い範囲に渡っ
て非常に優れた性能の磁石粉末が得られることが分か
る。
Further, FIGS. 3 and 4 show that a magnet alloy powder having the same excellent (BH) max or Br over a wide range of X is obtained, which is within the scope of the present invention. It is shown that magnet powder of excellent performance can be obtained regardless of X within the range. It should be noted that Br has a high value that is substantially constant over almost the entire range of X, and that (BH) max is smaller than X in the range (25 to 50) specified in claim 7. Although the value is slightly low in the range, it is still a result exceeding 30 MGOe, and it can be seen that in the present invention, a magnet powder having extremely excellent performance can be obtained over a wide range of X.

【0032】尚、図1において、各符号の(BH)ma
xは、◎が(BH)max≧35MGOe、●が35>
(BH)max≧30MGOe、■が30>(BH)m
ax≧25MGOe、▲が25>(BH)max≧20
MGOe、□が20>(BH)max≧15MGOe及
び×が(BH)max<15MGOeであり、図3の◎
は上記と同じである。また、図2においては、各符号の
Brの値の範囲は、●がBr≧12KG、▲が12>B
r≧11KG、□が11>Br≧10KG、△が10>
Br≧9KG及び×がBr<9KGであり、図4の●は
上記と同じである。
In FIG. 1, (BH) ma of each code
x is ◎ (BH) max ≧ 35MGOe, ● is 35>
(BH) max ≧ 30 MGOe, ■ is 30> (BH) m
ax ≧ 25 MGOe, ▲ is 25> (BH) max ≧ 20
MGOe, □ is 20> (BH) max ≧ 15MGOe and x is (BH) max <15MGOe, and ◎ in FIG.
Is the same as above. Further, in FIG. 2 , the range of the Br value of each code is as follows: ●: Br ≧ 12KG, ▲: 12> B
r ≧ 11 KG, □ is 11> Br ≧ 10 KG, and Δ is 10>
Br ≧ 9 KG and x are Br <9 KG, and ● in FIG. 4 is the same as above.

【0033】次に、合金組成中にジルコニウムを含む場
合と含まない場合の、得られる磁石粉末の磁気特性を比
較した実験例について説明する。図5はその結果を示す
ものであり、○は少量のジルコニウムを含む原料組成で
あって、得られる磁石粉末の(BH)maxが20MG
Oe以上である試験例であり、●は同様の組成で(B
H)maxが20MGOe未満である試験例である。ま
た、△はジルコニウムを含まない以外は上記と同様の原
料組成であって、得られる磁石粉末の(BH)maxが
20MGOe以上である試験例であり、▲は同様の原料
組成であって、(BH)maxが20MGOe未満であ
る試験例である。この結果によって明らかなように、ジ
ルコニウムを含む場合は、多くの試験例で(BH)ma
xが20MGOeを越えており、一方、ジルコニウムを
含まない場合は、(BH)maxが20MGOe未満と
なる例が多く、少量のジルコニウムを配合することによ
って、より多くの場合に、優れた磁気特性を有する磁石
粉末が安定して得られることが分かる。
Next, experimental examples will be described in which the magnetic properties of the obtained magnet powders are compared when the alloy composition contains zirconium and when it does not contain zirconium. FIG. 5 shows the result, and ○ indicates the raw material composition containing a small amount of zirconium, and the (BH) max of the obtained magnet powder is 20 MG.
It is a test example of Oe or more, and ● has the same composition (B
H) is a test example in which max is less than 20 MGOe. Further, △ is a raw material composition similar to the above except that zirconium is not included, and (BH) max of the obtained magnet powder is a test example of 20 MGOe or more, and ▲ is the same raw material composition, This is a test example in which BH) max is less than 20 MGOe. As is clear from this result, in the case of containing zirconium, (BH) ma was found in many test examples.
When x exceeds 20 MGOe and zirconium is not contained, (BH) max is often less than 20 MGOe in many cases. By adding a small amount of zirconium, excellent magnetic properties can be obtained in many cases. It can be seen that the magnet powder possessed can be stably obtained.

【0034】更に、表3及び表4は、水素吸蔵反応中の
水素圧の変動が、(BH)max及びBrに及ぼす影響
を検討した結果を表すものであり、表3は、特定組成の
合金粉末において、アキュムレータの使用の有無によ
り、実質的に水素圧が変動しない場合と、吸蔵処理開始
時の設定圧力に対して0.6気圧変動する場合につい
て、比較して表したものである。また、表4は、特定組
成の合金粉末において、アキュムレータを備える密封型
炉と、供給圧1気圧で水素を流通(フロー)させる従来
炉における(BH)max及びBrを比較して表したも
のである。
Further, Tables 3 and 4 show the results of examining the influence of the fluctuation of the hydrogen pressure during the hydrogen storage reaction on (BH) max and Br, and Table 3 shows the alloys of the specific composition. In the powder, the case where the hydrogen pressure does not substantially fluctuate and the case where the hydrogen pressure fluctuates by 0.6 atm with respect to the set pressure at the start of the occlusion treatment depending on whether or not the accumulator is used are shown. Further, Table 4 shows a comparison of (BH) max and Br in a sealed furnace equipped with an accumulator and a conventional furnace in which hydrogen is circulated (flow) at a supply pressure of 1 atm in alloy powder having a specific composition. is there.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】表3の結果によれば、(BH)max及び
Brともに、水素圧の変動によって低下しており、特に
(BH)maxは実質的に圧が変動しない場合に比べて
大きく低下していることが分かる。また、表4の結果に
よれば、所定水素圧が1.3気圧と高めの場合は、密封
型炉と従来炉で大きな差があるが、所定圧が0.5気圧
と低い場合には比較的差は小さい。この結果から、密封
型炉では所定水素圧と合金組成とが最適化されていれ
ば、安定して優れた(BH)maxを得ることができ
る。
According to the results shown in Table 3, both (BH) max and Br are decreased by the fluctuation of hydrogen pressure, and in particular, (BH) max is greatly decreased as compared with the case where the pressure is substantially unchanged. I know that Also, according to the results of Table 4, when the predetermined hydrogen pressure is as high as 1.3 atm, there is a large difference between the sealed furnace and the conventional furnace, but when the predetermined pressure is as low as 0.5 atm, comparison is made. The difference is small. From this result, if the predetermined hydrogen pressure and the alloy composition are optimized in the sealed furnace, it is possible to stably obtain an excellent (BH) max.

【0038】[0038]

【発明の効果】本発明の磁気異方性希土類磁石合金粉末
の製造方法によれば、原料合金と水素吸蔵処理時の水素
圧とに、特定の相関を持たせることにより、優れた磁気
特性を有する磁石合金粉末を得ることができ、請求項2
に特定された水素圧の変動範囲内では(BH)max、
Brともに優れる磁石粉末が安定して得られる。また、
請求項3に特定した希土類元素等の含有量の場合に、特
に優れた性能の磁石合金粉末が得られ、請求項4に特定
した処理条件によって、水素の吸蔵及び脱水素処理をす
ることによって、本発明の方法をより効果的に実施する
ことができる。
EFFECTS OF THE INVENTION According to the method for producing magnetic anisotropic rare earth magnet alloy powder of the present invention, excellent magnetic properties can be obtained by making a specific correlation between the raw material alloy and the hydrogen pressure during hydrogen absorption treatment. A magnet alloy powder having the same can be obtained, and
Within the fluctuation range of the hydrogen pressure specified in (BH) max,
A magnet powder having excellent Br is stably obtained. Also,
In the case of the content of the rare earth element or the like specified in claim 3, a magnet alloy powder having particularly excellent performance is obtained, and by performing the hydrogen storage and dehydrogenation processing under the processing conditions specified in claim 4, The method of the present invention can be carried out more effectively.

【0039】更に、請求項5のように、合金を予め均質
化処理することにより、磁気性能のバラツキの少ない磁
石粉末を得ることができ、請求項6記載のように、水素
の吸蔵と脱水素とを、同一或いは近似の温度において行
うことにより、工程上も効率がよく、優れた性能の磁石
合金粉末を得ることができる。また、Xを請求項7に特
定された範囲とすれば、より一層優れた性能を有する磁
石合金粉末が得られる。
Further, as in claim 5, by preliminarily homogenizing the alloy, it is possible to obtain a magnet powder having less variation in magnetic performance. As described in claim 6, hydrogen absorption and dehydrogenation are performed. By performing and at the same or similar temperature, it is possible to obtain a magnet alloy powder having excellent efficiency in the process and excellent performance. Further, when X is set in the range specified in claim 7, a magnet alloy powder having further excellent performance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】X及びPの値と最大エネルギー積〔(BH)m
ax〕との相関を表すグラフである。
FIG. 1 shows the values of X and P and the maximum energy product [(BH) m
It is a graph showing the correlation with ax].

【図2】X及びPの値と残留磁束密度(Br)との相関
を表すグラフである。
FIG. 2 is a graph showing the correlation between the values of X and P and the residual magnetic flux density (Br).

【図3】Xが変動しても優れた(BH)maxを有する
磁石合金粉末が得られることを表すグラフである。
FIG. 3 is a graph showing that magnet alloy powder having excellent (BH) max can be obtained even when X changes.

【図4】Xが変動しても優れたBrを有する磁石合金粉
末が得られることを表すグラフである。
FIG. 4 is a graph showing that a magnet alloy powder having excellent Br can be obtained even when X changes.

【図5】合金組成に対する少量のジルコニウムの配合
が、(BH)maxに及ぼす影響を表すグラフである。
FIG. 5 is a graph showing the effect of a small amount of zirconium compounded on the alloy composition on (BH) max.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素、Fe及びBを主成分とする
合金に、水素雰囲気下、水素を吸蔵させ、その後、実質
的に水素を含まない雰囲気において、脱水素させ、次い
で、冷却し、粉砕することにより磁気異方性希土類磁石
合金粉末を製造する方法において、 上記希土類元素は12〜15%、上記Bは5.8〜8.
0%であり、上記合金は、更に40%以下のCo、5.
0%以下のGa及び1.0%以下のZrのうちの少なく
とも一種を含み、且つ上記水素雰囲気の圧力(P;気
圧)を下記範囲とした場合に、 −0.68+0.056X≦P≦0.056X (但し、Xは、Coの含有量、Gaの含有量の6
倍、Zrの含有量の10倍及びGaの含有量の10
0倍にZrの含有量を乗じた値の総和の絶対値であり、
16≦X≦50、0.5≦P≦2.6である。) 上記磁気異方性希土類磁石合金粉末の最大エネルギー積
は20MGOe以上及び/又は残留磁束密度は12KG
以上であることを特徴とする磁気異方性希土類磁石合金
粉末の製造方法。
1. An alloy containing a rare earth element, Fe and B as a main component is allowed to occlude hydrogen in a hydrogen atmosphere, and then dehydrogenated in an atmosphere substantially free of hydrogen, and then cooled and pulverized. In the method for producing a magnetically anisotropic rare earth magnet alloy powder, the rare earth element is 12 to 15%, and the B is 5.8 to 8.
0%, and the alloy further contains 40% or less Co, 5.
When at least one of Ga of 0% or less and Zr of 1.0% or less is contained and the pressure (P; atmospheric pressure) of the hydrogen atmosphere is in the following range, -0.68 + 0.056X≤P≤0 .056X (where X is the content of Co or 6 of Ga)
Double, 10 times the Zr content and 10 times the Ga content
It is the absolute value of the sum of the values obtained by multiplying 0 times the Zr content,
16 ≦ X ≦ 50 and 0.5 ≦ P ≦ 2.6. ) The maximum energy product of the magnetic anisotropic rare earth magnet alloy powder is 20 MGOe or more and / or the residual magnetic flux density is 12 KG.
The above is a method for producing a magnetic anisotropic rare earth magnet alloy powder.
【請求項2】 上記水素雰囲気の圧力(P;気圧)の変
動幅は、上記水素を吸蔵させる工程を通じて0.3気圧
以下である請求項1記載の磁気異方性希土類磁石合金粉
末の製造方法。
2. The method for producing a magnetic anisotropic rare earth magnet alloy powder according to claim 1, wherein the fluctuation range of the pressure (P; atmospheric pressure) of the hydrogen atmosphere is 0.3 atmospheric pressure or less during the step of occluding hydrogen. .
【請求項3】 上記希土類元素の含有量は12〜14
%、上記Bの含有量は6.0〜8.0%、上記Coの含
有量は30%以下、上記Gaの含有量は3.0%以下及
び上記Zrの含有量は0.7%以下である請求項1又は
2記載の磁気異方性希土類磁石合金粉末の製造方法。
3. The content of the rare earth element is 12 to 14
%, The content of B is 6.0 to 8.0%, the content of Co is 30% or less, the content of Ga is 3.0% or less, and the content of Zr is 0.7% or less. The method for producing a magnetic anisotropic rare earth magnet alloy powder according to claim 1 or 2.
【請求項4】 上記水素を吸蔵させる工程の温度は60
0〜1000℃、且つ時間は1〜24時間であり、上記
脱水素させる工程の温度は600〜1000℃、且つ時
間は5分〜10時間である請求項1乃至3のいずれか1
項に記載の磁気異方性希土類磁石合金粉末の製造方法。
4. The temperature of the step of storing hydrogen is 60.
The temperature is 0 to 1000 ° C., the time is 1 to 24 hours, the temperature of the dehydrogenation step is 600 to 1000 ° C., and the time is 5 minutes to 10 hours.
Item 4. A method for producing a magnetic anisotropic rare earth magnet alloy powder according to Item.
【請求項5】 希土類元素、Fe及びBを主成分とする
上記合金は、900〜1200℃の温度範囲において、
10〜50時間、均質化処理されたものである請求項1
乃至4記載のいずれか1項に記載の磁気異方性希土類磁
石合金粉末の製造方法。
5. The alloy containing a rare earth element, Fe and B as main components in a temperature range of 900 to 1200 ° C.
A homogenized product for 10 to 50 hours.
5. The method for producing the magnetic anisotropic rare earth magnet alloy powder according to any one of items 1 to 4.
【請求項6】 上記水素を吸蔵させる工程の温度と、上
記脱水素させる工程の温度との差は、200℃以下であ
る請求項1乃至5のいずれか1項に記載の磁気異方性希
土類磁石合金粉末の製造方法。
6. The magnetic anisotropic rare earth according to claim 1, wherein a difference between the temperature of the step of storing hydrogen and the temperature of the step of dehydrogenating is 200 ° C. or less. Manufacturing method of magnet alloy powder.
【請求項7】 上記Xは25〜50である請求項1乃至
6のいずれか1項に記載の磁気異方性希土類磁石合金粉
末の製造方法。
7. The method for producing a magnetic anisotropic rare earth magnet alloy powder according to claim 1, wherein X is 25 to 50.
JP7111317A 1995-04-11 1995-04-11 Production of magnetically anisotropic rare element magnet alloy powder Pending JPH08283803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7111317A JPH08283803A (en) 1995-04-11 1995-04-11 Production of magnetically anisotropic rare element magnet alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7111317A JPH08283803A (en) 1995-04-11 1995-04-11 Production of magnetically anisotropic rare element magnet alloy powder

Publications (1)

Publication Number Publication Date
JPH08283803A true JPH08283803A (en) 1996-10-29

Family

ID=14558163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7111317A Pending JPH08283803A (en) 1995-04-11 1995-04-11 Production of magnetically anisotropic rare element magnet alloy powder

Country Status (1)

Country Link
JP (1) JPH08283803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763122B2 (en) 2005-12-27 2010-07-27 Posco Co., Ltd. Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7763122B2 (en) 2005-12-27 2010-07-27 Posco Co., Ltd. Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7138018B2 (en) Process for producing anisotropic magnet powder
JP3317646B2 (en) Manufacturing method of magnet
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP3728316B2 (en) R-T-B rare earth permanent magnet
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
JP2009010305A (en) Method for manufacturing rare-earth magnet
JP3368295B2 (en) Method for producing anisotropic rare earth alloy powder for permanent magnet
JP2576672B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JPS59132105A (en) Permanent magnet
JPH0776708A (en) Production of anisotropic rare earth alloy powder for permanent magnet
JPH0146575B2 (en)
JP2586199B2 (en) Rare earth-Fe-Co-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2006093501A (en) Rare earth sintered magnet and manufacturing method thereof
JPH08283803A (en) Production of magnetically anisotropic rare element magnet alloy powder
KR0168495B1 (en) Ñß-FE BASE RE-FE-B NM CRYSTAL ALLOY AND ITS PRODUCING METHOD AND USE
JP3995677B2 (en) Method for producing RTB-based rare earth permanent magnet
JP3097387B2 (en) Manufacturing method of rare earth magnet material powder
JPH06151137A (en) Powder of rare earth magnet material with excellent anisotropy
JPS6077961A (en) Permanent magnet material and its manufacture
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JPH0579724B2 (en)
JPH04246803A (en) Rare earth-fe-b anisotropic magnet
JPS59204212A (en) Isotropic permanent magnet and manufacture thereof