JPH08279364A - Solid electrolyte fuel cell - Google Patents

Solid electrolyte fuel cell

Info

Publication number
JPH08279364A
JPH08279364A JP7242697A JP24269795A JPH08279364A JP H08279364 A JPH08279364 A JP H08279364A JP 7242697 A JP7242697 A JP 7242697A JP 24269795 A JP24269795 A JP 24269795A JP H08279364 A JPH08279364 A JP H08279364A
Authority
JP
Japan
Prior art keywords
reaction
cell
separator
gas
unit cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7242697A
Other languages
Japanese (ja)
Inventor
Komei Kadokawa
角川  功明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7242697A priority Critical patent/JPH08279364A/en
Publication of JPH08279364A publication Critical patent/JPH08279364A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE: To prevent damage of a unit cell and cross leakage of reaction gas, and facilitate manufacture of the unit cell by forming the unit cell of a nonporous plate, and constituting so as to flow the reaction gas toward a peripheral part from the center of fuel cell reaction parts. CONSTITUTION: A separator 68 of a metallic plate-like body is layered through a spacer 65 of an electric insulating plate sealed by a sealing groove 61 so that manifold parts coincide with each other, and a unit cell 66 is sandwiched between fuel cell reaction parts of the separator 68. Fuel gas is supplied to the unit cell 66 through a fuel gas introducing hole 51 and a fuel gas distributing passage 56 or the like, and reaches a fuel gas discharge port 53 of a peripheral part through a fuel gas discharge passage 58 after being diffused to a conductive porous body 67. Air is supplied to the unit cell 66 through an air introducing hole 52 and an air distributing passage 57 or the like, and flows in a groove passage of a rib 64, and is discharged outside of a fuel cell. In this constitution, since both reaction gases are separated from each other through the unit cell 66, cross leakage is not caused. Since the unit cell 66 is formed of a nonporous plate, boring work is unnecessary, and mechanical strength is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は固体電解質型燃料電池
のセル構成に係り、特に単セルの信頼性に優れるセパレ
ータの構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cell structure of a solid oxide fuel cell, and more particularly to a structure of a separator having excellent single cell reliability.

【0002】[0002]

【従来の技術】ジルコニア等の酸化物固体電解質を用い
る燃料電池は、その作動温度が800〜1100℃と高
温であるため、発電効率が高い上に触媒が不要であり、
また電解質が固体であるため取扱い容易であるなどの特
徴を有し、第三世代の燃料電池として期待されている。
2. Description of the Related Art A fuel cell using an oxide solid electrolyte such as zirconia has a high operating temperature of 800 to 1100 ° C., and therefore has high power generation efficiency and does not require a catalyst.
In addition, since the electrolyte is solid, it is easy to handle and is expected as a third generation fuel cell.

【0003】しかしながら、固体電解質型燃料電池は、
セラミックスが主要な構成材料であるために熱的に破損
しやすく、さらに高温でのガスシールの困難性から反応
ガスのクロスリークの問題があり実用化が困難であっ
た。そのため燃料電池として特殊な形状である円筒型の
ものが考え出され、上記二つの問題を解決し、電池の運
転試験に成功しているが、電池単位体積あたりの発電密
度が低く経済的に有利なものが得られる見通しはまだな
い。発電密度を高めるためには平板型にすることが必要
である。
However, the solid oxide fuel cell is
Since ceramics is the main constituent material, it is easily damaged by heat, and due to the difficulty of gas sealing at high temperatures, there was the problem of cross leak of reaction gas, making practical application difficult. As a result, a cylindrical fuel cell with a special shape has been devised, and the above two problems have been solved and the operation test of the cell has succeeded, but the power generation density per unit volume of the cell is low and it is economically advantageous. There is no prospect of getting such a thing. A flat plate type is necessary to increase the power generation density.

【0004】図6は従来の平板型固体電解質型燃料電池
を示す分解斜視図である。図7は従来の平板型固体電解
質型燃料電池を示す図8のY−Y切断面図である。図8
は従来の平板型固体電解質型燃料電池を示す図7のX−
X切断面図である。
FIG. 6 is an exploded perspective view showing a conventional flat plate solid oxide fuel cell. FIG. 7 is a sectional view taken along line YY of FIG. 8 showing a conventional flat plate solid oxide fuel cell. FIG.
Shows a conventional flat plate solid oxide fuel cell, X- in FIG.
It is an X sectional view.

【0005】セパレータの中央部は燃料ガスと酸化剤ガ
ス用にガス導入孔4,ガス導入孔5が貫通するマニホル
ド部である。セパレータのマニホルド部は凸部を形成す
る。前記凸部にはガスシール部6A用にシール溝が形成
される。セパレータのマニホルド部を囲む反応部にはそ
の両主面にそれぞれ案内羽19A,19Bが形成され
る。セパレータのマニホルド部にはまたガス導入孔4,
5に繋がるガス通流孔10A,10Bが穿設され、燃料
ガスと酸化剤ガスをそれぞれ案内羽19Bと案内羽19
Aに導く。
The central portion of the separator is a manifold portion through which the gas introduction hole 4 and the gas introduction hole 5 penetrate for the fuel gas and the oxidant gas. The manifold portion of the separator forms a convex portion. A seal groove is formed on the convex portion for the gas seal portion 6A. Guide wings 19A and 19B are formed on both main surfaces of the reaction portion surrounding the manifold portion of the separator, respectively. In the manifold part of the separator, there are also gas introduction holes 4,
5, gas passage holes 10A and 10B are formed to connect the fuel gas and the oxidant gas to the guide vanes 19B and 19 respectively.
Lead to A.

【0006】電気絶縁板21はアルミナ等のセラミック
ス製緻密質円板でセパレータのマニホルド部に形成され
たガス導入孔4,5に符合する貫通孔を持っている。単
セル12は内孔を有する環状平板で、アノード1と固体
電解質体3とカソード2からなり、同一形状の多孔質基
体7上に積層されて単セル集合体33となる。
The electric insulating plate 21 is a dense disc made of ceramics such as alumina and has through holes corresponding to the gas introduction holes 4 and 5 formed in the manifold portion of the separator. The unit cell 12 is an annular flat plate having an inner hole and is composed of an anode 1, a solid electrolyte body 3 and a cathode 2, and is laminated on a porous substrate 7 having the same shape to form a unit cell assembly 33.

【0007】セパレータ11はマニホルド部において電
気絶縁板21を介して交互に積層される。セパレータ1
1は反応部において単セル集合体33を挟持する。ガス
シール部6Aはガス導入孔4,5からの反応ガスのリー
クを防ぐ。ガスシール部6Bはセパレータ反応部と単セ
ル12の内周縁部間に形成されて隣接するセパレータ反
応部相互間におけるガスリークを防ぐ。
The separators 11 are alternately laminated in the manifold portion with the electric insulating plates 21 interposed therebetween. Separator 1
No. 1 holds the single cell assembly 33 in the reaction part. The gas seal portion 6A prevents the reaction gas from leaking from the gas introduction holes 4 and 5. The gas seal portion 6B is formed between the separator reaction portion and the inner peripheral edge portion of the unit cell 12 to prevent gas leakage between adjacent separator reaction portions.

【0008】このような電池は次のようにして調製され
る。厚さ3 mmの多孔質基体7がニッケル−ジルコニアNi
-ZrO2 サーメットを用いて形成される。アノード1の上
にイットリア安定化ジルコニアをプラズマ溶射し、厚さ
100 μm の緻密質な固体電解質体3が形成される。続い
てランタンストロンチウムマンガンオキサイド La(Sr)M
nO3 をプラズマ溶射し、厚さ50μm の多孔質なカソード
2が形成される。次いで中央部を孔開け加工して円環状
の単セル12が形成される。多孔質基体7の内外周側面
にガラスを含浸させてガス不透過層20が形成される。
Such a battery is prepared as follows. 3 mm thick porous substrate 7 is nickel-zirconia Ni
-Formed using ZrO 2 cermet. Plasma-sprayed yttria-stabilized zirconia on the anode 1,
A dense solid electrolyte body 3 of 100 μm is formed. Then lanthanum strontium manganese oxide La (Sr) M
Plasma spraying of nO 3 forms a porous cathode 2 having a thickness of 50 μm. Then, the central portion is perforated to form an annular single cell 12. The gas impermeable layer 20 is formed by impregnating the inner and outer peripheral surfaces of the porous substrate 7 with glass.

【0009】一方、厚さ7mmのセパレータ11が耐熱金
属板の両面に案内羽を加工して形成される。ガス導入孔
4,5と案内羽19A,19Bを連絡するガス通流孔1
0A,10Bが放電加工により形成される。ガスシール
部6A,6Bはガラスとセラミックスの混合体である。
ガスシール部6A,6Bは固体電解質型燃料電池の作動
温度である1000℃でガラス成分が溶融して液状とな
り、液シールが行われる。
On the other hand, a separator 11 having a thickness of 7 mm is formed by processing guide vanes on both sides of a heat resistant metal plate. Gas flow hole 1 that connects the gas introduction holes 4 and 5 with the guide vanes 19A and 19B
0A and 10B are formed by electric discharge machining. The gas seal portions 6A and 6B are a mixture of glass and ceramics.
The gas seal portions 6A and 6B perform liquid sealing by melting the glass component into a liquid state at 1000 ° C. which is the operating temperature of the solid oxide fuel cell.

【0010】酸化剤ガスである酸素ガスが酸化剤ガス導
入孔5によりガス通流孔10Bを経由してセパレータ1
1の反応部の酸化剤ガス室9に導かれる。燃料ガスであ
る水素ガスが燃料ガス導入孔4によりガス通流孔10A
を経由してセパレータ11の反応部の燃料ガス室8に導
かれる。酸化剤ガスは同心円状に90度づつずらして設
けたガス排出口16により排出される。燃料ガスはガス
流量が少ないため案内羽19Bを90度づつずらしてガ
ス出口が設けられる。
Oxygen gas, which is an oxidant gas, is introduced into the separator 1 through the oxidant gas introduction hole 5 and the gas flow hole 10B.
1 is introduced into the oxidant gas chamber 9 of the reaction section. Hydrogen gas, which is the fuel gas, is passed through the fuel gas introduction hole 4 to the gas passage hole 10A.
Is introduced into the fuel gas chamber 8 in the reaction part of the separator 11. The oxidant gas is discharged through a gas discharge port 16 which is concentrically shifted by 90 degrees. Since the fuel gas has a small gas flow rate, the guide vane 19B is shifted by 90 degrees to provide a gas outlet.

【0011】反応部より排出された酸化剤ガスと燃料ガ
スは燃焼し、燃料電池の温度を所定の温度に維持する。
また反応ガスの予熱用熱源としても利用される。カソー
ド2に到達した酸素ガスは還元され酸素イオンとなって
固体電解質体3の中を拡散して行く。アノード1の表面
で酸素イオンは酸化されると共に水素ガスと反応して水
蒸気となる。このとき水素ガスと酸素ガスから水蒸気を
生成する反応の自由エネルギ変化が電気エネルギに変換
され、アノード1に負電圧、カソード2に正電圧が発生
する。単セルの1つあたりの電圧は 0.5〜0.9 Vで、積
み重ねることにより、所定の電圧を得ることができる。
The oxidant gas and the fuel gas discharged from the reaction section burn and maintain the temperature of the fuel cell at a predetermined temperature.
It is also used as a heat source for preheating the reaction gas. The oxygen gas that has reached the cathode 2 is reduced to oxygen ions and diffuses in the solid electrolyte body 3. Oxygen ions are oxidized on the surface of the anode 1 and react with hydrogen gas to form water vapor. At this time, a change in free energy of the reaction of producing water vapor from hydrogen gas and oxygen gas is converted into electric energy, and a negative voltage is generated at the anode 1 and a positive voltage is generated at the cathode 2. The voltage per unit cell is 0.5 to 0.9 V, and a predetermined voltage can be obtained by stacking the cells.

【0012】このような構成の燃料電池においては,ア
ノード1と固体電解質体3とカソード2の形成された多
孔質基体7とセパレータ11とは、単に交互に積み重ね
るだけでよい。その結果熱膨張の過程で多孔質基体7と
セパレータ11とは相互に自由に動き得るので熱応力の
発生がなくなる。燃料ガス導入孔4と酸化剤ガス導入孔
5の周辺に配設されるガスシール部6Aおよび単セル1
2の内周縁部とセパレータ11との間に配設されるガス
シール部6Bは運転終了後は固化する。このガスシール
部による熱応力は小さいから全体としての熱応力は小さ
い。ガスシール部6A,6Bは金属であるセパレータ1
1のシール溝に嵌め込まれたガラス−セラミックス混合
体であるからシール性能の安定性が高い。
In the fuel cell having such a structure, the anode 1, the solid electrolyte body 3, the porous substrate 7 on which the cathode 2 is formed, and the separator 11 may be simply stacked alternately. As a result, since the porous substrate 7 and the separator 11 can freely move in the process of thermal expansion, generation of thermal stress is eliminated. Gas seal portion 6A and unit cell 1 disposed around fuel gas introduction hole 4 and oxidant gas introduction hole 5
The gas seal portion 6B disposed between the inner peripheral edge portion of 2 and the separator 11 is solidified after the operation is completed. Since the thermal stress due to the gas seal portion is small, the thermal stress as a whole is small. Gas seal portions 6A and 6B are metal separators 1
Since the glass-ceramic mixture is fitted in the seal groove of No. 1, the stability of the sealing performance is high.

【0013】単セルの外形は円環状平板であるが、これ
に限定されるものではなく角型,楕円型,多角形のもの
でもよい。又セパレータの案内羽も電池特性が最良にな
るようにガス等配を考慮した設計を自由になし得る。
The outer shape of the unit cell is an annular flat plate, but it is not limited to this and may be a square type, an elliptic type or a polygonal type. In addition, the guide vanes of the separator can be freely designed in consideration of gas distribution so that the battery characteristics are optimized.

【0014】[0014]

【発明が解決しようとする課題】しかしながら上述のよ
うな従来の平板型の固体電解質型燃料電池においては多
孔質基体は環状体であり中央に貫通孔を有するために機
械的強度が弱く固体電解質型燃料電池の運転に際して熱
破損し易いという問題があった。またこの多孔質基体の
調製に際して基体が破損し易く製造歩留りが悪いという
問題もあった。さらにセパレータの凸部に単セル集合体
33が嵌合されるがこの嵌合部において反応ガスのクロ
スリークが起こり易くそのために電池起電力が低下する
という問題があった。
However, in the conventional flat plate type solid oxide fuel cell as described above, since the porous substrate is an annular body and has a through hole in the center, the mechanical strength is weak and the solid electrolyte type is used. There is a problem that heat damage is likely to occur during operation of the fuel cell. Further, there is a problem that the base is easily damaged during the preparation of the porous base and the manufacturing yield is low. Further, the single cell aggregate 33 is fitted into the convex portion of the separator, but there is a problem that cross leakage of the reaction gas easily occurs in this fitting portion, which lowers the battery electromotive force.

【0015】この発明は上述の点に鑑みてなされ、その
目的はセパレータの構造を改良して単セルの破損と反応
ガスのクロスリークを防止することにより特性と信頼性
に優れる固体電解質型燃料電池を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to improve the structure of a separator to prevent breakage of a single cell and cross leakage of a reaction gas, and thereby a solid oxide fuel cell having excellent characteristics and reliability. To provide.

【0016】[0016]

【課題を解決するための手段】上述の目的はこの発明に
よれば、平板型の燃料電池であって、(1)セパレータ
と、(2)単セルと、(3)電気絶縁板とを有し、セパ
レータは金属板状体であり、厚さ方向に酸化剤ガスと燃
料ガスの反応ガスが通流するマニホルド部と、単セルが
配置され単セルとの間に前記反応ガスが通流する電池反
応部を備えるとともに前記電池反応部はその中心に前記
マニホルド部と連通する反応ガス供給口を備え、単セル
は無孔平板で固体電解質体に配されたアノードとカソー
ドの両電極を備え、電気絶縁板は前記セパレータのマニ
ホルド部に符合する厚さ方向の貫通孔を有し、セパレー
タと電気絶縁板はセパレータの前記マニホルド部を介し
て交互に積層され、単セルは積層されたセパレータの電
池反応部に挟持されるものであるとすることにより達成
される。
According to the present invention, there is provided a flat plate type fuel cell, which has (1) a separator, (2) a single cell, and (3) an electric insulating plate. The separator is a metal plate, and the reaction gas flows between the manifold portion where the reaction gas of the oxidant gas and the fuel gas flows in the thickness direction and the single cell is arranged. The battery reaction section with a battery reaction section is provided with a reaction gas supply port that communicates with the manifold section at the center thereof, and the single cell is provided with both anode and cathode electrodes arranged on a solid electrolyte body with a non-perforated flat plate, The electric insulating plate has through holes in the thickness direction corresponding to the manifold portion of the separator, the separator and the electric insulating plate are alternately laminated through the manifold portion of the separator, the single cell is a battery of the laminated separator Sandwiched between reaction parts It is accomplished by that the shall.

【0017】上述の発明においてセパレータの電池反応
部と単セルの電極の間は導電性多孔質体が介挿されると
すること、または電池反応部の周辺部には反応ガス排出
口を備えるとすることが有効である。マニホルド部とし
ては燃料ガス導入孔,空気導入孔,燃料ガス排出孔,空
気排出孔が含まれる。反応ガス供給口としては燃料ガス
供給口と空気供給口が含まれる。反応ガス排出口として
は燃料ガス排出口と空気排出口が含まれる。燃料ガス導
入孔は燃料ガス供給口と燃料ガス分配流路を介して連通
する。空気導入孔は空気供給口と空気分配流路を介して
連通する。燃料ガス排出孔は燃料ガス排出口と燃料ガス
排出流路を介して連通する。空気排出孔は空気排出口と
空気排出流路を介して連通する。
In the above-mentioned invention, a conductive porous body is inserted between the battery reaction part of the separator and the electrode of the single cell, or a reaction gas exhaust port is provided in the peripheral part of the battery reaction part. Is effective. The manifold portion includes a fuel gas introduction hole, an air introduction hole, a fuel gas discharge hole, and an air discharge hole. The reaction gas supply port includes a fuel gas supply port and an air supply port. The reaction gas outlet includes a fuel gas outlet and an air outlet. The fuel gas introduction hole communicates with the fuel gas supply port through the fuel gas distribution passage. The air introduction hole communicates with the air supply port through the air distribution flow path. The fuel gas discharge hole communicates with the fuel gas discharge port via the fuel gas discharge passage. The air discharge hole communicates with the air discharge port through the air discharge flow path.

【0018】単セルは固体電解質体に電極が配されたも
のと、基体上に固体電解質体と電極が積層されたものを
含む。基体材料としてはアノード材料やカソード材料を
用いることができる。導電性多孔質体としてはアノード
にはニッケルフェルト等が用いられる。カソードには耐
熱性特殊合金繊維,多孔性のランタンマンガナイト板等
が用いられる。
The single cell includes one in which an electrode is arranged on a solid electrolyte body and one in which a solid electrolyte body and an electrode are laminated on a substrate. An anode material or a cathode material can be used as the base material. As the conductive porous body, nickel felt or the like is used for the anode. Heat-resistant special alloy fiber, porous lanthanum manganite plate, etc. are used for the cathode.

【0019】[0019]

【作用】単セルは無孔平板であるからその機械的な強度
は増大する。反応ガスは電池反応部の中心に設けられた
反応ガス供給口より電池反応部の周辺部に向かって流れ
る。反応部に配置された単セルは無孔平板であるから電
池反応部の中心から周辺部に至る間は二つの反応ガスは
相互に分離された状態にある。
Since the unit cell is a flat plate having no holes, its mechanical strength is increased. The reaction gas flows from the reaction gas supply port provided at the center of the battery reaction part toward the peripheral part of the battery reaction part. Since the single cell arranged in the reaction section is a non-perforated flat plate, the two reaction gases are in a state of being separated from each other from the center to the periphery of the cell reaction section.

【0020】導電性多孔質体は均質性とスプリング作用
を有している。電池反応部の周辺部には反応ガス排出口
を備えると、反応ガスはこの反応ガス排出孔から固体電
解質型燃料電池の外に導かれる。
The conductive porous body has homogeneity and a spring action. When the reaction gas exhaust port is provided in the peripheral portion of the cell reaction part, the reaction gas is guided to the outside of the solid oxide fuel cell through the reaction gas exhaust hole.

【0021】[0021]

【実施例】次にこの発明の実施例を図面に基いて説明す
る。 実施例1 図1はこの発明の実施例に係る固体電解質型燃料電池に
つき単セルのアノードよりみたセパレータの平面図であ
る。
Embodiments of the present invention will now be described with reference to the drawings. Example 1 FIG. 1 is a plan view of a separator of a solid oxide fuel cell according to an example of the present invention viewed from the anode of a single cell.

【0022】図2はこの発明の実施例に係る固体電解質
型燃料電池につき単セルのカソードよりみたセパレータ
の平面図である。図3はこの発明の実施例に係る固体電
解質型燃料電池を示す断面図である。セパレータ68は
マニホルド部を一致させて電気絶縁板であるスペーサ6
5を介して積層される。電気絶縁板65はシール溝61
に設けられたシール部61Aによりシールされる。単セ
ル66はセパレータ68の電池反応部の間に挟持され
る。電池反応部は単セル66に反応ガスを供給する。燃
料ガスの流れる電池反応部はシール溝60を有して燃料
ガスのリークを防ぐ。
FIG. 2 is a plan view of the separator of the solid oxide fuel cell according to the embodiment of the present invention viewed from the cathode of a single cell. FIG. 3 is a sectional view showing a solid oxide fuel cell according to an embodiment of the present invention. The separator 68 is a spacer 6 which is an electric insulating plate with the manifold portions aligned with each other.
5 are stacked. The electric insulating plate 65 has a seal groove 61.
It is sealed by a seal portion 61A provided on the. The unit cell 66 is sandwiched between the battery reaction parts of the separator 68. The battery reaction section supplies the reaction gas to the single cell 66. The cell reaction portion through which the fuel gas flows has a seal groove 60 to prevent the fuel gas from leaking.

【0023】燃料ガスは燃料ガス導入孔51と燃料ガス
分配流路56を経由して燃料ガス供給口54より単セル
66に供給される。燃料ガスはニッケルフェルト67を
拡散して放射状に流れ、燃料ガス排出流路58を経由し
て燃料ガス排出孔53に至る。ニッケルフェルト67は
ニッケルフェルト固定部59の内側に固定配置される。
ニッケルフェルト67のような導電性多孔質体を用いて
反応ガスの拡散通流と電気的な導通を図る場合にはセパ
レータの溝加工が不要になる。そのためにセパレータ材
料にセラミックスや耐熱合金を使用しても加工上の問題
を生ずることがなく、また耐熱合金を使用した際の耐酸
化性付与のための導電性セラミックスコーティングがセ
パレータから剥離するという問題を生じない。
The fuel gas is supplied to the unit cell 66 from the fuel gas supply port 54 via the fuel gas introduction hole 51 and the fuel gas distribution flow path 56. The fuel gas diffuses through the nickel felt 67 and flows radially, and reaches the fuel gas discharge hole 53 via the fuel gas discharge passage 58. The nickel felt 67 is fixedly arranged inside the nickel felt fixing portion 59.
When a conductive porous body such as nickel felt 67 is used to achieve diffusion flow and electrical continuity of the reaction gas, the groove processing of the separator becomes unnecessary. Therefore, even if ceramics or heat-resistant alloy is used as the separator material, there is no problem in processing, and the conductive ceramic coating for imparting oxidation resistance when using the heat-resistant alloy peels off from the separator. Does not occur.

【0024】空気は空気導入孔52と空気分配流路57
を経由して空気供給口63より単セル66に供給され
る。空気はリブ64の溝流路を流れて放射方向にジグザ
グに流れそのまま電池の外に排出される。燃料ガスと空
気は単セル66の二つの主面を電池反応部の中心にある
反応ガス供給口よりそれぞれ個別に放射状に流れて電池
反応部の周辺部に達する。この間は単セルを介して両反
応ガスは相互に分離されておりクロスリークは起こらな
い。本実施例では燃料ガスは燃料ガス排出孔53により
回収されるが回収しない場合は燃料ガスは電池反応部の
周辺部において始めて反応ガスの空気と接触することに
なる。
As for the air, the air introduction hole 52 and the air distribution flow path 57 are provided.
Is supplied to the unit cell 66 from the air supply port 63 via. The air flows through the groove channels of the ribs 64 in a zigzag pattern in the radial direction and is discharged as it is outside the battery. The fuel gas and the air individually and radially flow through the two main surfaces of the unit cell 66 from the reaction gas supply ports at the center of the cell reaction section and reach the peripheral section of the cell reaction section. During this time, both reaction gases are separated from each other through the single cell, and cross leak does not occur. In this embodiment, the fuel gas is collected by the fuel gas discharge hole 53, but if not collected, the fuel gas comes into contact with the reaction gas air for the first time in the peripheral portion of the cell reaction section.

【0025】単セル66は貫通孔のない無孔平板であ
り、機械的な強度が増大して熱応力に対して安定化す
る。穴あけ加工が不要となり製造も容易になる。ニッケ
ルフェルト67内部における燃料ガスフローの圧損が、
燃料ガス分配流路56や燃料ガス排出流路58における
圧損に比し充分大きいときはニッケルフェルト内部にお
けるガス等配が確保される。またリブ64内部における
空気フローの圧損が空気分配流路57の圧損に比し充分
大きいときはリブ内部におけるガス等配が確保される。
The unit cell 66 is a non-perforated flat plate having no through hole, and has increased mechanical strength and is stabilized against thermal stress. No drilling is required and manufacturing is easy. The pressure loss of the fuel gas flow inside the nickel felt 67 is
When the pressure loss in the fuel gas distribution passage 56 and the fuel gas discharge passage 58 is sufficiently large, the equal distribution of gas inside the nickel felt is secured. Further, when the pressure loss of the air flow inside the rib 64 is sufficiently larger than the pressure loss of the air distribution flow path 57, the equal distribution of the gas inside the rib is secured.

【0026】空気供給口63に対向する単セルの部分は
酸素の分圧が高いので単セル温度が上昇するのでこの対
向する部分のみカソードを設けないで温度の上昇を抑止
することができる。 実施例2 図4はこの発明の異なる実施例に係る固体電解質型燃料
電池につき単セルのアノードよりみたセパレータの平面
図である。この電池はニッケルフェルト固定部を有しな
い点が図1の固体電解質型燃料電池と異なる。実施例3
図5はこの発明のさらに異なる実施例に係る固体電解質
型燃料電池を示すセパレータの平面図である。
Since the partial pressure of oxygen is high in the portion of the single cell facing the air supply port 63, the temperature of the single cell rises. Therefore, it is possible to suppress the temperature rise without providing the cathode only in the facing portion. Example 2 FIG. 4 is a plan view of a separator of a solid oxide fuel cell according to another example of the present invention viewed from the anode of a single cell. This cell differs from the solid oxide fuel cell of FIG. 1 in that it has no nickel felt fixing portion. Example 3
FIG. 5 is a plan view of a separator showing a solid oxide fuel cell according to still another embodiment of the present invention.

【0027】この固体電解質型燃料電池においては電池
反応部62の複数個がセパレータに配置される。反応ガ
スの流れ方は実施例1の場合と同様である。この構成を
用いると単一の電池反応部に対するシール部の有効長さ
と数を減少させることができる。さらに単セルの全数が
増大するために固体電解質型燃料電池の出力を増大させ
ることもできる。
In this solid oxide fuel cell, a plurality of cell reaction parts 62 are arranged in a separator. The flow of the reaction gas is the same as in the first embodiment. With this configuration, it is possible to reduce the effective length and the number of seal portions for a single battery reaction portion. Furthermore, since the total number of single cells increases, the output of the solid oxide fuel cell can be increased.

【0028】[0028]

【発明の効果】この発明によれば、マニホルド部と、電
池反応部を備えるとともに前記電池反応部はその中心に
前記マニホルド部と連通する反応ガス供給口を備え且つ
単セルは無孔平板で固体電解質体に配されたアノードと
カソードの両電極を備えるので、単セルの機械的な強度
が増大して割れが防止されるとともに反応ガスは電池反
応部の中心に設けられた反応ガス供給口より反応部の周
辺部に向かって流れ反応ガスのクロスリークが防止され
る。
According to the present invention, a manifold portion and a battery reaction portion are provided, and at the center of the battery reaction portion is provided a reaction gas supply port communicating with the manifold portion. Since it has both anode and cathode electrodes arranged in the electrolyte body, the mechanical strength of the single cell is increased to prevent cracking and the reaction gas is supplied from the reaction gas supply port provided in the center of the battery reaction part. Cross leak of the reaction gas is prevented from flowing toward the peripheral portion of the reaction section.

【0029】セパレータの電池反応部と単セルの電極の
間に導電性多孔質体が介挿されると、導電性多孔質体の
均質性とスプリング作用によりガス等配性が良くなりセ
パレータと単セル間の導通性が高まる。またセパレータ
の溝加工が不要になるために経済性と信頼性に優れる固
体電解質型燃料電池が得られる。電池反応部の周辺部に
反応ガス排出口を備えると、反応ガスはこの反応ガス排
出孔から固体電解質型燃料電池の外に導かれ、反応ガス
の回収が可能になる。
When the conductive porous body is inserted between the battery reaction portion of the separator and the electrode of the single cell, the homogeneity of the conductive porous body and the spring action improve the gas isotropy, thereby improving the separator and the single cell. The continuity between them increases. Further, since the groove processing of the separator is unnecessary, a solid oxide fuel cell excellent in economy and reliability can be obtained. When the reaction gas discharge port is provided in the peripheral portion of the cell reaction section, the reaction gas is guided to the outside of the solid oxide fuel cell through the reaction gas discharge hole, and the reaction gas can be recovered.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る固体電解質型燃料電池
につき単セルのアノードよりみたセパレータの平面図
FIG. 1 is a plan view of a separator of a solid oxide fuel cell according to an embodiment of the present invention viewed from the anode of a single cell.

【図2】この発明の実施例に係る固体電解質型燃料電池
につき単セルのカソードよりみたセパレータの平面図
FIG. 2 is a plan view of a separator of a solid oxide fuel cell according to an embodiment of the present invention viewed from the cathode of a single cell.

【図3】この発明の実施例に係る固体電解質型燃料電池
を示す断面図
FIG. 3 is a sectional view showing a solid oxide fuel cell according to an embodiment of the present invention.

【図4】この発明の異なる実施例に係る固体電解質型燃
料電池につき単セルのアノードよりみたセパレータの平
面図
FIG. 4 is a plan view of a separator of a solid oxide fuel cell according to another embodiment of the present invention viewed from the anode of a single cell.

【図5】この発明のさらに異なる実施例に係る固体電解
質型燃料電池を示すセパレータの平面図
FIG. 5 is a plan view of a separator showing a solid oxide fuel cell according to still another embodiment of the present invention.

【図6】従来の平板型固体電解質型燃料電池を示す分解
斜視図
FIG. 6 is an exploded perspective view showing a conventional flat plate solid oxide fuel cell.

【図7】従来の平板型固体電解質型燃料電池を示す図8
のY−Y切断面図
FIG. 7 is a view showing a conventional flat plate solid oxide fuel cell.
YY section view

【図8】従来の平板型固体電解質型燃料電池を示す図7
のX−X切断面図
FIG. 8 is a view showing a conventional flat plate solid oxide fuel cell.
XX section view of

【符号の説明】[Explanation of symbols]

1 アノード 2 カソード 3 固体電解質体 4 燃料ガス導入孔 5 酸化剤ガス導入孔 6A ガスシール部 6B ガスシール部 7 多孔質基体 8 燃料ガス室 9 酸化剤ガス室 10A ガス通流孔 10B ガス通流孔 11 セパレータ 12 単セル 19A 案内羽 19B 案内羽 20 ガス不透過層 21 電気絶縁板 33 単セル集合体 51 燃料ガス導入孔 52 空気導入孔 53 燃料ガス排出孔 54 燃料ガス供給口 56 燃料ガス分配流路 57 空気分配流路 58 燃料ガス排出流路 59 ニッケルフェルト固定部 60 シール溝 61 シール溝 61A シール部 62 電池反応部 63 空気供給口 64 リブ 65 スペーサ(電気絶縁板) 66 単セル 67 ニッケルフェルト 68 セパレータ DESCRIPTION OF SYMBOLS 1 Anode 2 Cathode 3 Solid electrolyte body 4 Fuel gas introduction hole 5 Oxidant gas introduction hole 6A Gas seal part 6B Gas seal part 7 Porous substrate 8 Fuel gas chamber 9 Oxidant gas chamber 10A Gas through hole 10B Gas through hole 11 Separator 12 Single Cell 19A Guide Wing 19B Guide Wing 20 Gas Impermeable Layer 21 Electric Insulation Plate 33 Single Cell Assembly 51 Fuel Gas Inlet 52 Air Inlet 53 Fuel Gas Exhaust 54 54 Fuel Gas Supply 56 56 Fuel Gas Distribution Channel 57 Air distribution flow path 58 Fuel gas discharge flow path 59 Nickel felt fixing part 60 Seal groove 61 Seal groove 61A Seal part 62 Battery reaction part 63 Air supply port 64 Rib 65 Spacer (electric insulating plate) 66 Single cell 67 Nickel felt 68 Separator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平板型の燃料電池であって、 (1)セパレータと、 (2)単セルと、 (3)電気絶縁板とを有し、 セパレータは金属板状体であり、厚さ方向に酸化剤ガス
と燃料ガスの反応ガスが通流するマニホルド部と、単セ
ルが配置され単セルとの間に前記反応ガスが通流する電
池反応部を備えるとともに前記電池反応部はその中心に
前記マニホルド部と連通する反応ガス供給口を備え、 単セルは無孔平板で固体電解質体に配されたアノードと
カソードの両電極を備え、 電気絶縁板は前記セパレータのマニホルド部に符合する
厚さ方向の貫通孔を有し、 セパレータと電気絶縁板はセパレータの前記マニホルド
部を介して交互に積層され、 単セルは積層されたセパレータの電池反応部に挟持され
るものであることを特徴とする固体電解質型燃料電池。
1. A flat plate type fuel cell, comprising: (1) a separator, (2) a single cell, and (3) an electrical insulating plate, wherein the separator is a metal plate-shaped body and has a thickness direction. A manifold part through which a reaction gas of an oxidant gas and a fuel gas flows, and a battery reaction part through which the reaction gas flows between the single cell and the single cell, and the battery reaction part is at the center thereof. The unit cell is provided with a reaction gas supply port communicating with the manifold section, the single cell is a non-hole plate having both anode and cathode electrodes arranged on the solid electrolyte body, and the electric insulating plate has a thickness corresponding to the manifold section of the separator. Characterized in that the separator and the electric insulating plate are alternately laminated through the manifold portion of the separator, and the single cell is sandwiched between the battery reaction portions of the laminated separators. Solid electrolyte Fuel cell.
【請求項2】請求項1記載の燃料電池において、セパレ
ータの電池反応部と単セルの電極との間は導電性多孔質
体が介挿されてなることを特徴とする固体電解質型燃料
電池。
2. The solid oxide fuel cell according to claim 1, wherein a conductive porous body is interposed between the cell reaction portion of the separator and the electrode of the single cell.
【請求項3】請求項1記載の燃料電池において、電池反
応部の周辺部には反応ガス排出口を備えることを特徴と
する固体電解質型燃料電池。
3. The solid oxide fuel cell according to claim 1, wherein a reaction gas exhaust port is provided in the periphery of the cell reaction section.
JP7242697A 1995-02-09 1995-09-21 Solid electrolyte fuel cell Pending JPH08279364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7242697A JPH08279364A (en) 1995-02-09 1995-09-21 Solid electrolyte fuel cell

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2152095 1995-02-09
JP7-21520 1995-02-09
JP7242697A JPH08279364A (en) 1995-02-09 1995-09-21 Solid electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JPH08279364A true JPH08279364A (en) 1996-10-22

Family

ID=26358599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7242697A Pending JPH08279364A (en) 1995-02-09 1995-09-21 Solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPH08279364A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001017048A1 (en) * 1999-09-01 2001-03-08 Nok Corporation Fuel cell
JP2001325980A (en) * 2000-05-18 2001-11-22 Chubu Electric Power Co Inc Solid electrolyte fuel cell
JP2005294153A (en) * 2004-04-02 2005-10-20 Mitsubishi Materials Corp Manifold mechanism of fuel cell
US7049019B2 (en) 2002-08-28 2006-05-23 Honda Giken Kogyo Kabushiki Kaisha Fuel cell
US7122267B2 (en) 2002-08-28 2006-10-17 Honda Giken Kogyo Kabushiki Kaisha Fuel cell configured with discharge passages that preheat fuel gas and prevent cross leakage
WO2007023980A2 (en) * 2005-08-23 2007-03-01 Honda Motor Co., Ltd. Fuel cell
EP1791202A2 (en) * 2003-12-26 2007-05-30 HONDA MOTOR CO., Ltd. Fuel cell and fuel cell stack
JP2007179911A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell
JP2008010255A (en) * 2006-06-28 2008-01-17 Ngk Insulators Ltd Electrochemical device
JP2008251379A (en) * 2007-03-30 2008-10-16 Ngk Insulators Ltd Electrochemical device
US7544432B2 (en) 2003-12-26 2009-06-09 Honda Motor Co., Ltd. Fuel cell and fuel cell stack

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4147773B2 (en) * 1999-09-01 2008-09-10 Nok株式会社 Fuel cell
US6720103B1 (en) 1999-09-01 2004-04-13 Nok Corporation Fuel cell
WO2001017048A1 (en) * 1999-09-01 2001-03-08 Nok Corporation Fuel cell
JP2001325980A (en) * 2000-05-18 2001-11-22 Chubu Electric Power Co Inc Solid electrolyte fuel cell
US7049019B2 (en) 2002-08-28 2006-05-23 Honda Giken Kogyo Kabushiki Kaisha Fuel cell
US7122267B2 (en) 2002-08-28 2006-10-17 Honda Giken Kogyo Kabushiki Kaisha Fuel cell configured with discharge passages that preheat fuel gas and prevent cross leakage
US7491460B2 (en) 2003-12-26 2009-02-17 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
US7482087B2 (en) 2003-12-26 2009-01-27 Honda Motor Co., Ltd. Fuel cell
EP1791202A3 (en) * 2003-12-26 2007-08-08 HONDA MOTOR CO., Ltd. Fuel cell and fuel cell stack
EP1791202A2 (en) * 2003-12-26 2007-05-30 HONDA MOTOR CO., Ltd. Fuel cell and fuel cell stack
US7544432B2 (en) 2003-12-26 2009-06-09 Honda Motor Co., Ltd. Fuel cell and fuel cell stack
JP4512845B2 (en) * 2004-04-02 2010-07-28 三菱マテリアル株式会社 Fuel cell manifold mechanism
JP2005294153A (en) * 2004-04-02 2005-10-20 Mitsubishi Materials Corp Manifold mechanism of fuel cell
WO2007023980A3 (en) * 2005-08-23 2007-08-09 Honda Motor Co Ltd Fuel cell
WO2007023980A2 (en) * 2005-08-23 2007-03-01 Honda Motor Co., Ltd. Fuel cell
US8062807B2 (en) 2005-08-23 2011-11-22 Honda Motor Co., Ltd. Fuel cell
JP2007179911A (en) * 2005-12-28 2007-07-12 Honda Motor Co Ltd Fuel cell
JP4611195B2 (en) * 2005-12-28 2011-01-12 本田技研工業株式会社 Fuel cell
JP2008010255A (en) * 2006-06-28 2008-01-17 Ngk Insulators Ltd Electrochemical device
JP2008251379A (en) * 2007-03-30 2008-10-16 Ngk Insulators Ltd Electrochemical device

Similar Documents

Publication Publication Date Title
US5399442A (en) Solid electrolyte fuel cell
US5549983A (en) Coflow planar fuel cell stack construction for solid electrolytes
US7329471B2 (en) Methods and apparatus for assembling solid oxide fuel cells
KR101092274B1 (en) Fuel cell
JP4574956B2 (en) Fuel cell
EP2586088B1 (en) Fuel cell
WO2005099011A2 (en) Fuel cell and fuel cell stack
KR20030041973A (en) Sealless radial solid oxide fuel cell stack design
JPH0536417A (en) Hollow thin plate type solid electrolytic fuel cell
WO2005069415A1 (en) Separator for fuel cell, method of producing separator, and solid oxide fuel cell
JPH08279364A (en) Solid electrolyte fuel cell
JP5345380B2 (en) Bipolar plate for fuel cell using deformed metal distribution sheet
JPH0737595A (en) Solid electrolyte type fuel cell
JP4123479B2 (en) Single cell for fuel cell, method for producing the same, and solid oxide fuel cell
JP2002329511A (en) Stack for solid electrolyte fuel cell and solid electrolyte fuel cell
JP2009041044A (en) Reaction cell, its production method, and reaction system
JP2007329063A (en) Separator and flat plate type solid oxide fuel cell
JP2007026925A (en) Stack structure of flat solid oxide fuel cell
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JP2004281353A (en) Separator for fuel cell
JPH0355764A (en) Solid electrolytic type fuel cell
JPH07211333A (en) Solid electrolyte fuel cell
JPH1145727A (en) Solid electrolytic fuel cell
JPH08185884A (en) Solid electrolytic fuel cell
JPH10312818A (en) Solid electrolyte type fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees