JPH08276281A - Method and device for joining titanium material or titanium alloy material - Google Patents

Method and device for joining titanium material or titanium alloy material

Info

Publication number
JPH08276281A
JPH08276281A JP7255572A JP25557295A JPH08276281A JP H08276281 A JPH08276281 A JP H08276281A JP 7255572 A JP7255572 A JP 7255572A JP 25557295 A JP25557295 A JP 25557295A JP H08276281 A JPH08276281 A JP H08276281A
Authority
JP
Japan
Prior art keywords
joining
titanium
titanium alloy
bonding
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7255572A
Other languages
Japanese (ja)
Other versions
JP3509087B2 (en
Inventor
Takao Hiyamizu
孝夫 冷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP25557295A priority Critical patent/JP3509087B2/en
Priority claimed from US08/617,579 external-priority patent/US5831252A/en
Priority to DE1996618402 priority patent/DE69618402T2/en
Priority to EP96302989A priority patent/EP0761374B1/en
Publication of JPH08276281A publication Critical patent/JPH08276281A/en
Application granted granted Critical
Publication of JP3509087B2 publication Critical patent/JP3509087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE: To obtain the joining method by which high strength and excellence in mechanical and chemical characteristic are provided by preforming a joining layer on at least one of the surface of a titanium or titanium alloy materials to be joined. CONSTITUTION: A joining layer 10, which consists of titanium or titanium alloy having a melting point J lower than that M of a material 1, 3 to be joined, is preformed on one of the joining surfaces of the materials 1, 3 consisting of titanium or titanium alloy material by means of an ion plating, vapor deposition or sputtering method. These materials are heated to a joining temperature T for example with a pressurizing force of 4.9MPa in vacuum by a high frequency induction heating method. In this case, J<T<M is the condition. Then, a liquid phase diffused junction is performed by holding that temperature T for 300 seconds for example. The roughness Rmax is 50μm or less on the joining surface of the material to be joined or on both ends of the joining member on which the joining layer is formed, with the thickness of the joining layer to be not less than 1μm but not more than 50μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、化学工業や石油工
業等に使用されるチタン材又はチタン合金材、例えばチ
タン又はチタン合金製の丸棒やパイプの接合方法及び装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joining method and apparatus for a titanium material or a titanium alloy material used in the chemical industry, the petroleum industry, etc., for example, a rod or pipe made of titanium or a titanium alloy.

【0002】[0002]

【従来の技術】一般にチタン材又はチタン合金材は、ア
ーク溶接、電子ビーム溶接、摩擦圧接等による従来の接
合方法によっては必ずしも充分な接合強度が得られない
ため、それらが本来有する強度上の優位性が充分に発揮
されず、その利用が制限されている現状にある。
2. Description of the Related Art Generally, titanium materials or titanium alloy materials do not always have sufficient bonding strength by conventional welding methods such as arc welding, electron beam welding, friction welding, etc. Is not fully utilized and its use is limited.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は、上述
に鑑みてなされたものであって、溶接割れや材質劣化等
が生じることなく所期の接合強度が得られるチタン材又
はチタン合金材の接合方法及び装置を提供しようとする
ものである。
SUMMARY OF THE INVENTION Therefore, the present invention has been made in view of the above, and is directed to a titanium material or a titanium alloy material which can obtain a desired joining strength without causing weld cracks or deterioration of material. An object of the present invention is to provide a joining method and device.

【0004】[0004]

【課題を解決するための手段】そのため、本発明に係る
チタン材又はチタン合金材の接合方法は、チタン材又は
チタン合金材からなる被接合材の一方又は双方の接合面
に該被接合材の融点Mより低い融点Jを有するチタン又
はチタン合金からなる接合層を予め形成し、該被接合材
をJ<T<Mなる温度Tに加熱して一定時間その温度T
に保持することにより液相拡散接合することを特徴とす
る。また本発明に係るチタン材又はチタン合金材の接合
方法は、チタン材又はチタン合金材からなる接合部材の
両端面に該接合部材の融点Mより低い融点Jを有するチ
タン又はチタン合金からなる接合層を予め形成し、該接
合部材をチタン材又はチタン合金からなる被接合材の双
方の接合面の間に介在させ、該被接合材をJ<T<Mな
る温度Tに加熱して一定時間その温度Tに保持すること
により液相拡散接合することを特徴とする。そして本発
明に係るチタン材又はチタン合金材の接合装置は、接合
部の加熱手段と、接合部の温度を測定する手段と、接合
面に圧力を加える手段と、その圧力を計測する手段と、
これらの制御手段とからなることを特徴とする。
Therefore, according to the method for joining titanium material or titanium alloy material according to the present invention, one or both joining surfaces of the titanium material or titanium alloy material are joined to the joining surface of the joining material. A joining layer made of titanium or a titanium alloy having a melting point J lower than the melting point M is formed in advance, and the material to be joined is heated to a temperature T satisfying J <T <M and kept at the temperature T for a certain time.
It is characterized in that the liquid phase diffusion bonding is carried out by holding at. The joining method of the titanium material or the titanium alloy material according to the present invention is a joining layer made of titanium or a titanium alloy having a melting point J lower than the melting point M of the joining member on both end surfaces of the joining member made of the titanium material or the titanium alloy material. Is formed in advance, the joining member is interposed between both joining surfaces of the joining material made of a titanium material or a titanium alloy, and the joining material is heated to a temperature T satisfying J <T <M and kept for a certain period of time. It is characterized in that the liquid phase diffusion bonding is performed by maintaining the temperature T. And a titanium material or titanium alloy material joining device according to the present invention, heating means for the joint portion, means for measuring the temperature of the joint portion, means for applying pressure to the joint surface, means for measuring the pressure,
It is characterized by comprising these control means.

【0005】本発明の接合方法において、接合層を形成
する被接合材の接合面又は接合部材の両端面はその面粗
さRmaxを50μm以下とするのが好ましい。直接に双方
の被接合材を又は接合部材を介して双方の被接合材をよ
り強固に接合できるからである。同様の意味で、被接合
材の接合面は傾斜面とするのが好ましい。かかる被接合
材の接合面と合うように、接合部材を用いる場合には該
接合部材の両端面も傾斜面とする。
In the joining method of the present invention, it is preferable that the joining surface of the members to be joined forming the joining layer or both end faces of the joining member have a surface roughness Rmax of 50 μm or less. This is because both materials to be bonded can be bonded more directly or more strongly through the bonding member. In the same sense, it is preferable that the joining surface of the materials to be joined be an inclined surface. When a joining member is used, both end surfaces of the joining member are also inclined surfaces so as to match the joining surface of the material to be joined.

【0006】また本発明の接合方法において、接合層そ
れ自体は公知の各種の方法で形成できるが、イオンプレ
ーティング法、蒸着法又はスパッタリング法で形成する
のが好ましい。直接に双方の被接合材を又は接合部材を
介して双方の被接合材をより強固に接合できるからであ
る。同様の意味で、接合層はその厚さを1μm以上且つ
50μm以下とするのが好ましく、またTi、Zr、C
u及びNiからなり且つ20mass%≦Ti、20mass%
≦Zr、40mass%≦(Ti+Zr)≦90mass%、1
0mass%≦(Cu+Ni)≦60mass%の組成からなる
ものとするのが好ましい。
In the bonding method of the present invention, the bonding layer itself can be formed by various known methods, but it is preferably formed by an ion plating method, a vapor deposition method or a sputtering method. This is because both materials to be bonded can be bonded more directly or more strongly through the bonding member. In the same sense, the bonding layer preferably has a thickness of 1 μm or more and 50 μm or less, and Ti, Zr, C
It consists of u and Ni, and 20 mass% ≦ Ti, 20 mass%
≦ Zr, 40 mass% ≦ (Ti + Zr) ≦ 90 mass%, 1
It is preferable to have a composition of 0 mass% ≦ (Cu + Ni) ≦ 60 mass%.

【0007】更に本発明の接合方法において、液相拡散
接合それ自体は公知の各種の方法を用いることができる
が、周波数200KHz以下の高周波誘導加熱法を用い
るのが好ましい。直接に双方の被接合材を又は接合部材
を介して双方の被接合材をより強固に接合できるからで
ある。同様の意味で、液相拡散接合は酸素及び窒素の含
有量がそれぞれ0.01vol%以下の不活性ガス又は真
空中で行うのが好ましい。
Further, in the bonding method of the present invention, various known methods can be used for the liquid phase diffusion bonding itself, but it is preferable to use a high frequency induction heating method with a frequency of 200 KHz or less. This is because both materials to be bonded can be bonded more directly or more strongly through the bonding member. In the same sense, it is preferable that the liquid phase diffusion bonding is performed in an inert gas or vacuum containing 0.01 vol% or less of oxygen and nitrogen, respectively.

【0008】被接合材の一方の接合面若しくは双方の接
合面に形成した接合層を介して双方の被接合材を当接さ
せ、その当接部を前記した温度Tに加熱すると、又は接
合部材の両端面に形成した接合層を介して双方の被接合
材を該接合部材に当接させ、その当接部を前記した温度
Tに加熱すると、接合層に一時的に液相が生じる。その
まま一定時間、温度Tに保持すると、液相を生じた部分
の元素が拡散し、組成が変化して融点が上昇する結果、
一旦は液相を生じた部分が凝固する。かくして直接に双
方の被接合材を又は接合部材を介して双方の被接合材を
強固に接合できる。
When both materials to be bonded are brought into contact with each other via a bonding layer formed on one bonding surface of the materials to be bonded or both bonding surfaces, and the contact portion is heated to the above-mentioned temperature T, or the bonding member When both materials to be joined are brought into contact with the joining member through the joining layers formed on both end faces of the above and the abutting portions are heated to the temperature T, a liquid phase is temporarily generated in the joining layer. If the temperature T is maintained for a certain period of time, the elements in the liquid phase are diffused, the composition is changed, and the melting point is increased.
The part that once generated the liquid phase solidifies. Thus, both the materials to be joined can be firmly joined directly or through the joining member.

【0009】[0009]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1は本発明の接合装置を示す略視
図である。図1において、1,3はチタン材又はチタン
合金材からなる被接合材、2は被接合材1を把持する固
定チャック、4は被接合材3を把持する可動チャック、
5は被接合材1,3の接合部を加熱する高周波誘導コイ
ル、6は接合部の温度を検出する放射温度計、7は固定
チャック2に設けられた圧力ゲージであって被接合材3
から被接合材1に及ぼされている接合部の圧力を検出す
る圧力ゲージ(ロードセル)、8は高周波誘導コイル5
による加熱及び可動チャック4による加圧力をコントロ
ールする制御装置をそれぞれ示しており、制御装置8は
放射温度計6により検出された接合部の温度及び圧力ゲ
ージ7により検出された接合部の圧力がそれぞれフィー
ドバックされ、それらを設定値どおりにコントロールす
るようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a joining device of the present invention. In FIG. 1, reference numerals 1 and 3 denote materials to be welded made of a titanium material or a titanium alloy material, 2 denotes a fixed chuck that holds the material to be welded 1, 4 denotes a movable chuck that holds the material to be welded 3,
Reference numeral 5 is a high-frequency induction coil that heats the joints of the materials to be welded 1, 6 is a radiation thermometer that detects the temperature of the joints, 7 is a pressure gauge provided on the fixed chuck 2, and the material to be welded 3
A pressure gauge (load cell) for detecting the pressure of the joint portion applied to the material to be welded 1 from the high frequency induction coil 5
The control device 8 controls the heating by the movable chuck 4 and the pressure applied by the movable chuck 4, and the control device 8 controls the temperature of the joint detected by the radiation thermometer 6 and the pressure of the joint detected by the pressure gauge 7, respectively. It is fed back and controls them according to the set value.

【0010】図2〜図11は本発明において接合層の種
々の形成形態を示す側面図である。図2〜図11におい
て、1,3はチタン材又はチタン合金材からなる被接合
材、10は接合層、11はチタン材又はチタン合金材か
らなる接合部材をそれぞれ示しており、接合層10は被
接合材1,3及び接合部材11の融点Mより低い融点J
を有するチタン又はチタン合金からなっている。
2 to 11 are side views showing various forms of forming the bonding layer in the present invention. 2 to 11, 1 and 3 are materials to be joined made of a titanium material or a titanium alloy material, 10 is a joining layer, 11 is a joining member made of a titanium material or a titanium alloy material, and the joining layer 10 is Melting point J lower than melting point M of materials to be joined 1, 3 and joining member 11
It is made of titanium or titanium alloy.

【0011】図2〜図11のうちで、図2〜図6は被接
合材1,3の接合面が鉛直面となっている例であり、し
たがって接合部材11を用いる場合(図4〜図6)には
接合部材11の両端面も鉛直面となっている例である。
また図7〜図11は被接合材1,3の接合面が傾斜面と
なっている例であり、したがって接合部材11を用いる
場合(図9〜図11)には接合部材11の両端面も傾斜
面となっている例である。そして図2及び図7は一方の
被接合材1の接合面に接合層10が形成されている例、
図3及び図8は双方の被接合材1,3の接合面に接合層
10が形成されている例、図4及び図9は接合部材11
の両端面に接合層10が形成されている例、図5及び図
10は一方の被接合材1の接合面に接合層10が形成さ
れており且つ接合部材11の両端面に接合層10が形成
されている例、図6及び図11は双方の被接合材1,3
の接合面に接合層10が形成されており且つ接合部材1
1の両端面に接合層10が形成されている例である。
2 to 11 are examples in which the bonding surfaces of the materials to be bonded 1 and 3 are vertical surfaces, and therefore the case where the bonding member 11 is used (see FIGS. 6) is an example in which both end surfaces of the joining member 11 are also vertical surfaces.
7 to 11 are examples in which the joining surfaces of the materials to be joined 1 and 3 are inclined surfaces. Therefore, when the joining member 11 is used (FIGS. 9 to 11), both end surfaces of the joining member 11 are also This is an example of an inclined surface. 2 and 7 show an example in which the bonding layer 10 is formed on the bonding surface of one of the materials 1 to be bonded,
3 and 8 are examples in which the bonding layer 10 is formed on the bonding surfaces of the materials 1 and 3 to be bonded, and FIGS.
5 and 10 show that the bonding layer 10 is formed on both end surfaces of the bonding member 11, and the bonding layer 10 is formed on both end surfaces of the bonding member 11. 6 and FIG. 11 show an example in which the materials to be joined 1 and 3 are bonded to each other.
The bonding layer 10 is formed on the bonding surface of the
1 is an example in which the bonding layers 10 are formed on both end surfaces of 1.

【0012】図2〜図11に示した各例の被接合材1,
3を、更に用いる場合には接合部材11を、図1に示し
た接合装置に供して、それらの接合部をJ<T<Mなる
温度Tに加熱し、一定時間その温度Tに保持することに
より、直接に被接合材1と被接合材3とを、又は接合部
材11を介して被接合材1と被接合材3とを液相拡散接
合する。
The materials to be joined 1 of the respective examples shown in FIGS.
3 is used, the joining member 11 is subjected to the joining apparatus shown in FIG. 1 to heat those joining portions to a temperature T satisfying J <T <M, and to maintain the temperature T for a certain period of time. Thus, the material to be joined 1 and the material to be joined 3 are directly joined together or the material to be joined 1 and the material to be joined 3 are joined together by liquid phase diffusion joining via the joining member 11.

【0013】[0013]

【実施例】表1は直径20ミリのチタン材又はチタン合
金材からなる丸棒を試験片(被接合材1,3及び用いる
場合の接合部材11)とし、その接合面に接合層10を
前記図2〜図6の各位置に予めイオンプレーティング法
を用いて形成しておき、これらの試験片を加圧力4.9
MPaで、真空(10-3mmHg)中にて高周波誘導加熱法
(周波数50KHz)により接合温度T(ただしJ<T
<M)に加熱し、その温度Tを300秒保持することに
より液相拡散接合した接合継手の引張試験結果を示す。
尚、接合層を形成する前の試験片の接合面の面粗さRmax
は2.5μmとし、また表中の接合層10の組成はAが
Ti−40Zr−15Cu−10Niであり、BがTi
−35Zr−15Cu−15Niである。
EXAMPLES Table 1 shows a round bar made of a titanium material or titanium alloy material having a diameter of 20 mm as a test piece (materials 1 and 3 to be bonded and a bonding member 11 when used), and the bonding layer 10 on the bonding surface. The test pieces are formed in advance at the respective positions in FIGS. 2 to 6 by using an ion plating method, and the test pieces are pressed with a pressure of 4.9.
Junction temperature T (provided that J <T) by high frequency induction heating method (frequency 50 KHz) in vacuum (10 −3 mmHg) at MPa.
The tensile test results of the liquid phase diffusion bonded joint by heating to <M) and maintaining the temperature T for 300 seconds are shown.
The surface roughness Rmax of the joint surface of the test piece before forming the joint layer
Is 2.5 μm, and the composition of the bonding layer 10 in the table is that A is Ti-40Zr-15Cu-10Ni and B is Ti.
It is -35Zr-15Cu-15Ni.

【0014】[0014]

【表1】 [Table 1]

【0015】表1中の例1は接合層なしのものを比較例
として表示した。また例8は接合層の融点(830℃)
よりも接合温度(800℃)のほうを低く設定したもの
を比較例として示した。尚、例7は接合層の厚さが60
μmと厚いために試験片(母材)と充分に拡散しない接
合層が残った結果、引張強度が若干低下したものと思わ
れる。表1から、接合層の厚さは1μm以上で50μm
以下が望ましいといえる。
In Example 1 in Table 1, the case without a bonding layer is shown as a comparative example. In Example 8, the melting point of the bonding layer (830 ° C)
A comparative example in which the bonding temperature (800 ° C.) was set lower than that was shown as a comparative example. In Example 7, the thickness of the bonding layer was 60.
It is considered that the tensile strength was slightly lowered as a result of the bonding layer which was not sufficiently diffused with the test piece (base material) because it was as thick as μm. From Table 1, the thickness of the bonding layer is 1 μm or more and 50 μm
The following can be said to be desirable.

【0016】表2は表1と同様にチタン材又はチタン合
金材からなる直径20ミリの丸棒を試験片として液相拡
散接合した接合継手の引張試験結果を示す。表2では、
接合層を形成する前の試験片の接合面の面粗さRmaxを
5.0μmとし、接合層の組成を種々異ならしめること
によりその影響を調べた。その結果、接合層の組成は、
Ti、Zr、Cu及びNiからなり、20mass%≦T
i、20mass%≦Zr、40mass%≦(Ti+Zr)≦
90mass%、10mass%≦(Cu+Ni)≦60mass%
の各範囲内にあることが望ましいことが判明した。
Similar to Table 1, Table 2 shows the results of a tensile test of a bonded joint in which a round rod made of a titanium material or a titanium alloy material and having a diameter of 20 mm was used as a test piece for liquid phase diffusion bonding. In Table 2,
The influence was investigated by setting the surface roughness Rmax of the bonding surface of the test piece before forming the bonding layer to 5.0 μm and making the composition of the bonding layer different. As a result, the composition of the bonding layer is
Made of Ti, Zr, Cu and Ni, 20mass% ≦ T
i, 20 mass% ≦ Zr, 40 mass% ≦ (Ti + Zr) ≦
90 mass%, 10 mass% ≤ (Cu + Ni) ≤ 60 mass%
It was found that it is desirable to be within each range.

【0017】[0017]

【表2】 [Table 2]

【0018】表3は同様の試験片の両接合面にTi−4
0Zr−15Cu−10Niの接合層をイオンプレーテ
ィング法により形成し、接合層位置を図4のものとし、
接合温度を900℃とし、その保持時間を300秒と
し、高周波誘導加熱の周波数を400KHz〜3KHzに
種々変化させ、真空(10-3mmHg)中にて液相拡散接合
した接合継手の引張試験結果を示す。表3では接合層を
形成する前の試験片の接合面の面粗さRmaxを2.5μm
とした。表3から400KHzの例15では接合界面で
の破断が認められ、これにより、高周波誘導加熱時にお
ける周波数は200KHz以下が望ましいことが判明し
た。
Table 3 shows Ti-4 on both joint surfaces of the same test piece.
A bonding layer of 0Zr-15Cu-10Ni is formed by the ion plating method, and the bonding layer position is as shown in FIG.
Tensile test result of liquid phase diffusion bonding in a vacuum (10 -3 mmHg) with the bonding temperature set to 900 ° C, the holding time set to 300 seconds, and the frequency of high frequency induction heating varied from 400 KHz to 3 KHz. Indicates. In Table 3, the surface roughness Rmax of the joint surface of the test piece before forming the joint layer is 2.5 μm.
And From Table 3, in Example 15 of 400 KHz, breakage was observed at the joint interface, which revealed that the frequency during high frequency induction heating is preferably 200 KHz or less.

【0019】[0019]

【表3】 [Table 3]

【0020】表4の例20〜例25に示した接合継手の
引張試験結果は、Ti−35Zr−15Cu−15Ni
の接合層を厚さ20μmに形成し、接合位置を図6のも
のとして、高周波誘導加熱(25KHz)で接合温度9
00℃、保持時間300秒、加圧力4.9MPaによ
り、接合雰囲気の組成を種々変化させて液相拡散接合さ
せたものの試験結果を示す。表4では接合層を形成する
前の試験片の接合面の面粗さRmaxを12.5μmとし
た。表4中の例20、例25で示すように、雰囲気の酸
素や窒素の含有量が0.01vol%付近になると、接合
界面での破壊がおこり易くなるので、これらはそれぞれ
0.01vol%以下にするのが望ましい。
The tensile test results of the bonded joints shown in Examples 20 to 25 of Table 4 are Ti-35Zr-15Cu-15Ni.
The bonding layer of is formed to a thickness of 20 μm, and the bonding position is as shown in FIG.
The test results of liquid phase diffusion bonding with various compositions of the bonding atmosphere at 00 ° C., holding time of 300 seconds, and pressure of 4.9 MPa are shown. In Table 4, the surface roughness Rmax of the joint surface of the test piece before forming the joint layer was set to 12.5 μm. As shown in Examples 20 and 25 in Table 4, when the oxygen and nitrogen contents in the atmosphere are around 0.01 vol%, the fracture at the bonding interface is likely to occur. Is desirable.

【0021】[0021]

【表4】 [Table 4]

【0022】表5は同様の試験片を図2,図7,図8,
図10,図11に示した接合形態にて真空中で液相拡散
接合した接合継手の引張試験結果及び曲げ試験結果を示
す。図2は接合面が中心線と直交(90度)するもので
あり、図7,図8は接合面が中心線と60度の傾斜角度
のものであって、図10,図11は接合面が中心線と7
5度傾斜したものである。表5では接合層を形成する前
の試験片の接合面の面粗さRmaxを2.5μmとした。表
5から、接合面を傾斜させることにより一層接合強度が
向上し、特に曲げ試験(曲げ半径=2×D:40mm)に
おいて良い結果が得られることが判明した。
Table 5 shows similar test pieces in FIG. 2, FIG. 7, FIG.
10 shows tensile test results and bending test results of a bonded joint liquid-phase diffusion bonded in a vacuum in the bonding configuration shown in FIGS. 10 and 11. 2 shows the joint surface orthogonal to the center line (90 degrees), FIGS. 7 and 8 show the joint surface having an inclination angle of 60 degrees with the center line, and FIGS. 10 and 11 show the joint surface. Is the center line and 7
It is tilted 5 degrees. In Table 5, the surface roughness Rmax of the joint surface of the test piece before forming the joint layer was set to 2.5 μm. From Table 5, it was found that the joint strength was further improved by inclining the joint surface, and particularly good results were obtained in the bending test (bending radius = 2 × D: 40 mm).

【0023】[0023]

【表5】 [Table 5]

【0024】表6は組成を変えた同様の試験片に厚さ1
0μmの接合層をイオンプレーティング法により形成
し、高周波誘導加熱の周波数を8KHzとして、真空
(10-3mmHg)中にて液相拡散接合した接合継手の引張
試験結果を示す。表6では接合層を形成する前の試験片
の接合面の面粗さRmaxを2.5μmとした。表6から、
本発明の接合方法がチタン材だけではなく、各種のチタ
ン合金材に対しても有効であることが判る。
Table 6 shows a similar test piece having a different composition and a thickness of 1
The tensile test result of the bonded joint in which the bonding layer of 0 μm is formed by the ion plating method and the frequency of the high frequency induction heating is 8 kHz and the liquid phase diffusion bonding is performed in a vacuum (10 −3 mmHg) is shown. In Table 6, the surface roughness Rmax of the joint surface of the test piece before forming the joint layer was set to 2.5 μm. From Table 6,
It can be seen that the joining method of the present invention is effective not only for titanium materials but also for various titanium alloy materials.

【0025】[0025]

【表6】 [Table 6]

【0026】表7は同様の試験片を対象とし、接合層を
形成する前の試験片の接合面の面粗さRmaxを変え、また
接合層の形成方法を変えて、高周波誘導加熱の周波数を
10KHzとし、純Ar雰囲気中にて液相拡散接合した
接合継手の引張試験結果を示す。表7から、接合層を形
成する前の試験片の接合面の面粗さRmaxは50μm以下
とするのが望ましく、また接合層の形成方法としてイオ
ンプレーティング法、蒸着法、スパッタリング法が有効
であることが判る。
Table 7 targets similar test pieces, and changes the surface roughness Rmax of the joint surface of the test piece before forming the joint layer and the method of forming the joint layer to change the frequency of the high frequency induction heating. The tensile test result of the bonded joint which was liquid phase diffusion bonded in a pure Ar atmosphere at 10 KHz is shown. From Table 7, it is desirable that the surface roughness Rmax of the joint surface of the test piece before forming the joint layer is 50 μm or less, and the ion plating method, the vapor deposition method and the sputtering method are effective as the method for forming the joint layer. I know there is.

【0027】[0027]

【表7】 [Table 7]

【0028】表8は試験片として外径100mmで肉厚1
0mmのチタン材又はチタン合金材からなる丸パイプを用
い、高周波誘導加熱の周波数を10KHzとして、純A
r雰囲気中にて液相拡散接合した接合継手の引張試験結
果を示す。表8から、本発明の接合方法がパイプに対し
ても有効であることが判る。
Table 8 shows a test piece having an outer diameter of 100 mm and a wall thickness of 1
A round pipe made of 0 mm titanium material or titanium alloy material is used, and the frequency of high frequency induction heating is set to 10 kHz, and pure A
The tensile test result of the bonded joint liquid phase diffusion-bonded in r atmosphere is shown. It can be seen from Table 8 that the joining method of the present invention is also effective for pipes.

【0029】[0029]

【表8】 [Table 8]

【0030】表9は母材である試験片として外径150
mmで肉厚10mmのチタン合金材からなる丸パイプを用
い、また接合部材である試験片として外径150mmで肉
厚10mmのチタン材からなる丸パイプ片を用いて、接合
部材の両端面に形成した接合層の厚さを変え、高周波誘
導加熱の周波数を10KHzとし、純Ar雰囲気中にて
液相拡散接合した接合継手の引張試験結果を示す。表9
から、接合層の厚さは10μm以下が望ましいことが判
る。
Table 9 shows an outer diameter of 150 as a test piece which is a base material.
Formed on both end faces of the joining member by using a round pipe made of titanium alloy material with a thickness of 10 mm and a thickness of 10 mm, and using a round pipe piece made of titanium material with an outer diameter of 150 mm and a thickness of 10 mm as a joining member test piece. The results of tensile tests of liquid phase diffusion bonding in a pure Ar atmosphere with the frequency of the high frequency induction heating set to 10 kHz and varying the thickness of the bonded layer are shown. Table 9
From this, it is understood that the thickness of the bonding layer is preferably 10 μm or less.

【0031】[0031]

【表9】 [Table 9]

【0032】[0032]

【発明の効果】このように本発明によれば、チタン材又
はチタン合金材を液相拡散接合により非常に高強度に接
合できるので、機械的及び化学的性質に優れたチタン材
又はチタン合金材の加工、更にはその組立等を容易なら
しめ、その利用を促進させる有益な効果がある。
As described above, according to the present invention, since a titanium material or a titanium alloy material can be bonded with a very high strength by liquid phase diffusion bonding, a titanium material or a titanium alloy material having excellent mechanical and chemical properties can be obtained. Has the beneficial effect of facilitating its use, further facilitating its assembly and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の接合装置を示す略視図。FIG. 1 is a schematic view showing a joining device of the present invention.

【図2】本発明において接合層の形成例を示した正面
図。
FIG. 2 is a front view showing an example of forming a bonding layer in the present invention.

【図3】本発明において接合層の形成例を示した正面
図。
FIG. 3 is a front view showing an example of forming a bonding layer in the present invention.

【図4】本発明において接合層の形成例を示した正面
図。
FIG. 4 is a front view showing an example of forming a bonding layer in the present invention.

【図5】本発明において接合層の形成例を示した正面
図。
FIG. 5 is a front view showing an example of forming a bonding layer in the present invention.

【図6】本発明において接合層の形成例を示した正面
図。
FIG. 6 is a front view showing an example of forming a bonding layer in the present invention.

【図7】本発明において接合層の形成例を示した正面
図。
FIG. 7 is a front view showing an example of forming a bonding layer in the present invention.

【図8】本発明において接合層の形成例を示した正面
図。
FIG. 8 is a front view showing an example of forming a bonding layer in the present invention.

【図9】本発明において接合層の形成例を示した正面
図。
FIG. 9 is a front view showing an example of forming a bonding layer in the present invention.

【図10】本発明において接合層の形成例を示した正面
図。
FIG. 10 is a front view showing an example of forming a bonding layer in the present invention.

【図11】本発明において接合層の形成例を示した正面
図。
FIG. 11 is a front view showing an example of forming a bonding layer in the present invention.

【符号の説明】[Explanation of symbols]

1,3・・・被接合材、2・・・固定チャック、4・・
・可動チャック、5・・・誘導コイル、6・・・放射温
度計、7・・・圧力ゲージ、8・・・制御装置、10・
・・接合層、11・・・接合部材
1, 3 ... Joined material, 2 ... Fixed chuck, 4 ...
・ Movable chuck, 5 ... Induction coil, 6 ... Radiation thermometer, 7 ... Pressure gauge, 8 ... Control device, 10.
..Joining layer, 11 ... Joining member

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 チタン材又はチタン合金材からなる被接
合材の一方の接合面に該被接合材の融点Mより低い融点
Jを有するチタン又はチタン合金からなる接合層を予め
形成し、該被接合材をJ<T<Mなる温度Tに加熱して
一定時間その温度Tに保持することにより液相拡散接合
することを特徴とするチタン材又はチタン合金材の接合
方法。
1. A bonding layer made of titanium or a titanium alloy having a melting point J lower than the melting point M of the material to be bonded is previously formed on one bonding surface of the material to be bonded made of a titanium material or a titanium alloy material. A joining method for a titanium material or a titanium alloy material, which comprises performing liquid phase diffusion joining by heating the joining material to a temperature T of J <T <M and maintaining the temperature T for a certain period of time.
【請求項2】 チタン材又はチタン合金材からなる被接
合材の双方の接合面に該被接合材の融点Mより低い融点
Jを有するチタン又はチタン合金からなる接合層を予め
形成し、該被接合材をJ<T<Mなる温度Tに加熱して
一定時間その温度Tに保持することにより液相拡散接合
することを特徴とするチタン材又はチタン合金材の接合
方法。
2. A bonding layer made of titanium or a titanium alloy having a melting point J lower than the melting point M of the material to be bonded is previously formed on both bonding surfaces of the materials to be bonded made of a titanium material or a titanium alloy material, A joining method for a titanium material or a titanium alloy material, which comprises performing liquid phase diffusion joining by heating the joining material to a temperature T of J <T <M and maintaining the temperature T for a certain period of time.
【請求項3】 チタン材又はチタン合金材からなる接合
部材の両端面に該接合部材の融点Mより低い融点Jを有
するチタン又はチタン合金からなる接合層を予め形成
し、該接合部材をチタン材又はチタン合金材からなる被
接合部材の双方の接合面の間に介在させ、該被接合材を
J<T<Mなる温度Tに加熱して一定時間その温度Tに
保持することにより液相拡散接合することを特徴とする
チタン材又はチタン合金材の接合方法。
3. A joining layer made of titanium or a titanium alloy having a melting point J lower than the melting point M of the joining member is previously formed on both end faces of the joining member made of a titanium material or a titanium alloy material, and the joining member is made of a titanium material. Alternatively, the liquid phase diffusion is performed by interposing between the joining surfaces of the joining members made of titanium alloy material, heating the joining members to a temperature T satisfying J <T <M, and maintaining the temperature T for a certain period of time. A method for joining a titanium material or a titanium alloy material, which comprises joining.
【請求項4】 接合層を形成する被接合材の接合面又は
接合部材の両端面の面粗さRmaxが50μm以下である請
求項1、2又は3記載のチタン材又はチタン合金材の接
合方法。
4. The method for joining a titanium material or a titanium alloy material according to claim 1, wherein the surface roughness Rmax of the joining surface of the materials to be joined forming the joining layer or both end surfaces of the joining member is 50 μm or less. .
【請求項5】 接合層をイオンプレーティング法、蒸着
法又はスパッタリング法を用いて形成する請求項1、
2、3又は4記載のチタン材又はチタン合金材の接合方
法。
5. The bonding layer is formed by using an ion plating method, a vapor deposition method or a sputtering method.
The method for joining titanium materials or titanium alloy materials according to 2, 3 or 4.
【請求項6】 接合層の厚さが1μm以上且つ50μm
以下である請求項1、2、3、4又は5記載のチタン材
又はチタン合金材の接合方法。
6. The bonding layer has a thickness of 1 μm or more and 50 μm.
The method for joining a titanium material or a titanium alloy material according to claim 1, 2, 3, 4 or 5 below.
【請求項7】 接合層がTi、Zr、Cu及びNiから
なるものであり、且つ20mass%≦Ti、20mass%≦
Zr、40mass%≦(Ti+Zr)≦90mass%、10
mass%≦(Cu+Ni)≦60mass%の組成からなるも
のである請求項1、2、3、4、5又は6記載のチタン
材又はチタン合金材の接合方法。
7. The bonding layer is made of Ti, Zr, Cu and Ni, and 20 mass% ≦ Ti, 20 mass% ≦
Zr, 40 mass% ≦ (Ti + Zr) ≦ 90 mass%, 10
The method for joining a titanium material or a titanium alloy material according to claim 1, 2, 3, 4, 5, or 6, which has a composition of mass% ≤ (Cu + Ni) ≤ 60 mass%.
【請求項8】 周波数200KHz以下の高周波誘導加
熱法を用いて液相拡散接合する請求項1、2、3、4、
5、6又は7記載のチタン材又はチタン合金材の接合方
法。
8. The liquid phase diffusion bonding using a high frequency induction heating method having a frequency of 200 KHz or less.
5. A method for joining titanium material or titanium alloy material according to 5, 6 or 7.
【請求項9】 酸素及び窒素の含有量がそれぞれ0.0
1vol%以下の不活性ガス又は真空中で液相拡散接合す
る請求項1、2、3、4、5、6、7又は8記載のチタ
ン材又はチタン合金材の接合方法。
9. The contents of oxygen and nitrogen are each 0.0
The method for joining titanium materials or titanium alloy materials according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein liquid phase diffusion bonding is performed in an inert gas of 1 vol% or less or in vacuum.
【請求項10】 接合面が傾斜面である請求項1、2、
3、4、5、6、7、8又は9記載のチタン材又はチタ
ン合金材の接合方法。
10. The joining surface is an inclined surface, 1, 2.
The method for joining titanium material or titanium alloy material according to 3, 4, 5, 6, 7, 8 or 9.
【請求項11】 接合部の加熱手段と、接合部の温度を
測定する手段と、接合面に圧力を加える手段と、その圧
力を計測する手段と、これらの制御手段とからなること
を特徴とするチタン材又はチタン合金材の接合装置。
11. A bonding part heating means, a bonding part temperature measuring means, a bonding surface pressure applying means, a pressure measuring means, and a control means for these. Device for joining titanium material or titanium alloy material.
JP25557295A 1995-02-08 1995-09-06 Titanium or titanium alloy joining method Expired - Fee Related JP3509087B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25557295A JP3509087B2 (en) 1995-02-08 1995-09-06 Titanium or titanium alloy joining method
DE1996618402 DE69618402T2 (en) 1995-09-06 1996-04-29 Process for welding components made of titanium and titanium alloys
EP96302989A EP0761374B1 (en) 1995-09-06 1996-04-29 Methods for bonding titanium and titanium alloy members

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4482895 1995-02-08
JP7-44828 1995-02-08
JP25557295A JP3509087B2 (en) 1995-02-08 1995-09-06 Titanium or titanium alloy joining method
US08/617,579 US5831252A (en) 1995-02-08 1996-03-19 Methods of bonding titanium and titanium alloy members by high frequency heating

Publications (2)

Publication Number Publication Date
JPH08276281A true JPH08276281A (en) 1996-10-22
JP3509087B2 JP3509087B2 (en) 2004-03-22

Family

ID=27292036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25557295A Expired - Fee Related JP3509087B2 (en) 1995-02-08 1995-09-06 Titanium or titanium alloy joining method

Country Status (1)

Country Link
JP (1) JP3509087B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241236A (en) * 2008-03-31 2009-10-22 National Institute Of Advanced Industrial & Technology Joined body
CN105643138A (en) * 2014-12-02 2016-06-08 阿文美驰技术有限责任公司 Instant liquid phase connection among different materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241236A (en) * 2008-03-31 2009-10-22 National Institute Of Advanced Industrial & Technology Joined body
CN105643138A (en) * 2014-12-02 2016-06-08 阿文美驰技术有限责任公司 Instant liquid phase connection among different materials
JP2016107337A (en) * 2014-12-02 2016-06-20 アービンメリトール・テクノロジー,エルエルシー Transient liquid phase joining of dissimilar materials
US9943927B2 (en) 2014-12-02 2018-04-17 Arvinmeritor Technology, Llc Transient liquid phase joining of dissimilar materials

Also Published As

Publication number Publication date
JP3509087B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
JP3511749B2 (en) Method of joining Ti alloy members
US5831252A (en) Methods of bonding titanium and titanium alloy members by high frequency heating
JPH08276281A (en) Method and device for joining titanium material or titanium alloy material
EP0761374B1 (en) Methods for bonding titanium and titanium alloy members
US3591917A (en) Process for joining surfaces
JP2541061B2 (en) Steel joining method
JPS6130292A (en) Diffusion-joining method by hot isotropic pressure press
JP3583558B2 (en) Pipe frame structure joining method
JPH09314358A (en) Insert member for titanium alloy joining and joining method of titanium alloy
JP3245477B2 (en) Thick plate clad material
JP3185328B2 (en) How to join metal members
JPH04325470A (en) Metallic foil clad ceramics product and its manufacture
JP2500158B2 (en) Steel joining method
US3985989A (en) Method and apparatus for joining appendages to a zirconium alloy member
JPS5832593A (en) Welding method
JPS58167089A (en) Manufacture of clad pipe
JP4538671B2 (en) Dissimilar metal joining method and apparatus
JP2863825B2 (en) Diffusion bonding method of single crystal intermetallic compound material
JP3369610B2 (en) Method for manufacturing bonded body of silicon carbide and austenitic steel
JPH09314357A (en) Insert member for titanium alloy joining and joining method of titanium alloy
JP3090030B2 (en) Liquid phase diffusion bonding method
JP2023039175A (en) Method for producing steel material conjugant
JPH0223499B2 (en)
JPS63295077A (en) Method for joining different kinds of metal material
JP3447891B2 (en) How to join the end of the strip to a flat surface

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031221

LAPS Cancellation because of no payment of annual fees