JPH08274373A - Semiconductor light emitting element, and its manufacture - Google Patents

Semiconductor light emitting element, and its manufacture

Info

Publication number
JPH08274373A
JPH08274373A JP9592695A JP9592695A JPH08274373A JP H08274373 A JPH08274373 A JP H08274373A JP 9592695 A JP9592695 A JP 9592695A JP 9592695 A JP9592695 A JP 9592695A JP H08274373 A JPH08274373 A JP H08274373A
Authority
JP
Japan
Prior art keywords
conductivity type
semiconductor
film
type
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9592695A
Other languages
Japanese (ja)
Inventor
Yoji Seki
洋二 関
Osamu Oda
小田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP9592695A priority Critical patent/JPH08274373A/en
Publication of JPH08274373A publication Critical patent/JPH08274373A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To prevent the occurrence of unpaired coupling at the interface by the elastic distortion working between a board and a film so as to get pn hetero junction low in interface level density by thinning down the film of a semiconductor oxide at the section to join with a group II-VI compound semiconductor crystal substrate to be 10 atom layer or under. CONSTITUTION: A film of oxide semiconductor, which shows second conductivity type (n type or p type) 10 atom layer or under in thickness and besides has a band gap larger than the band gap of a first conductivity type of group II-VI compound semiconductor, is grown on the first conductivity type (p type or n type) of group II-VI compound semiconductor crystal substrate, thus pn hetero junction is made. Furthermore, a film of oxide semiconductor, which shows second conductivity type and besides has a band gap larger than the band gap of the first conductivity type of group II-YI compound semiconductor, is made thereon. Hereby, a semiconductor light emitting element excellent in light emission efficiency is made.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体発光素子に関
し、特に、II-VI族化合物半導体を用いた半導体発光素
子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device using a II-VI group compound semiconductor.

【0002】[0002]

【従来の技術】近年、各種表示用デバイスなどに半導体
発光素子が広く利用されている。しかしながら、赤色よ
り短波長の光、緑色から青色を発光するものは未だに高
輝度のものが得られていない。緑色の発光材料に用いら
れているGaPは、間接遷移型結晶で高輝度の発光を得る
のは困難であり、また、青色の発光材料に用いられてい
るZnSe、GaN等は伝導型の制御が難しく、pn接合が容易
に得られないという問題が有った。
2. Description of the Related Art In recent years, semiconductor light emitting devices have been widely used in various display devices. However, it has not been possible to obtain a high-luminance light that emits light having a shorter wavelength than red and that emits green to blue light. GaP used as a green light emitting material is an indirect transition type crystal, and it is difficult to obtain high-intensity light emission, and ZnSe, GaN, etc. used as a blue light emitting material have a conductive type control. There is a problem that it is difficult to obtain a pn junction easily.

【0003】II-VI族化合物半導体は、直接遷移型でバ
ンドギャップが広いものが多く、緑色から近紫外に至る
波長域での発光材料として良好な特性を備えている。し
かしながら、II-VI族化合物半導体の多くは自己補償効
果のため不純物添加による導電性の制御ができず、CdTe
以外のII-VI族化合物半導体ではp型またはn型のどちら
かの半導体しかできないため、同一半導体の中での発光
に必要なpn接合を形成することはできなかった。
Many II-VI group compound semiconductors are of the direct transition type and have a wide band gap, and have good characteristics as a light emitting material in a wavelength range from green to near ultraviolet. However, most of II-VI group compound semiconductors cannot control conductivity by adding impurities because of self-compensation effect.
Since II-VI group compound semiconductors other than the above can only have a p-type or n-type semiconductor, it was not possible to form a pn junction necessary for light emission in the same semiconductor.

【0004】[0004]

【発明が解決しようとする課題】このような問題点を解
決する手段として、p型(またはn型)のII-VI族化合物半
導体超薄膜と真性II-VI族化合物半導体超薄膜とを交互
に積層して超格子構造とするものや(特開昭61-26271)
や、p型のII-VI族化合物半導体層Aとn型のII-VI族化合
物半導体層Bとの中間にAからBに連続的に組成を変化
させた層を設けるもの(特開昭61-59785)などが提案され
ているが実用化には至っていない。
As a means for solving such a problem, a p-type (or n-type) ultrathin II-VI compound semiconductor film and an ultrathin intrinsic II-VI compound semiconductor film are alternately formed. One having a superlattice structure laminated (Japanese Patent Laid-Open No. 61-26271)
Alternatively, a layer in which the composition is continuously changed from A to B is provided between the p-type II-VI group compound semiconductor layer A and the n-type II-VI group compound semiconductor layer B (Japanese Patent Laid-Open No. Sho 61-61). -59785) etc. have been proposed but have not been put to practical use.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するため、鋭意検討した結果、本発明に至っ
た。すなわち、本発明は、第1の導電型のII-VI族化合
物半導体単結晶基板の上に、厚み10原子層以下の第2の
導電型を示し、かつ、第1の導電型のII-VI族化合物半
導体のバンドギャップより大きいバンドギャップを有す
る酸化物半導体の膜が成長されpnヘテロ接合が形成さ
れ、更にその上に第2の導電型を示し、かつ、第1の導
電型のII-VI族化合物半導体のバンドギャップより大き
いバンドギャップを有する酸化物半導体の膜が形成され
ていることを特徴とする半導体発光素子である。また、
第1の導電型のII-VI族化合物半導体単結晶基板の上
に、吸着されたときに基板の半導体と反応せずかつ安定
な酸化物を生成可能であり、更にこの酸化物が第2の導
電型を示し、かつ、第1の導電型のII-VI族化合物半導
体のバンドギャップより大きいバンドギャップを有する
酸化物半導体である金属の薄膜を10原子層以下に化学吸
着させ、その金属薄膜を酸化させ酸化物半導体の膜を成
膜してpnヘテロ接合を形成した後、更に第2の導電型
を示し、かつ、第1の導電型のII-VI族化合物半導体の
バンドギャップより大きいバンドギャップを有する酸化
物半導体の膜を形成するようにしたことを特徴とする半
導体発光素子の製造方法である。さらには、この酸化物
半導体が、In2O3、SnO2、ZnOから選ばれる一種または複
数の酸化物半導体であることを特徴とする半導体発光素
子及びその製造方法である。
The inventors of the present invention have made extensive studies to solve the above-mentioned problems, and as a result, arrived at the present invention. That is, the present invention shows the second conductivity type having a thickness of 10 atomic layers or less on the II-VI group compound semiconductor single crystal substrate of the first conductivity type, and the II-VI of the first conductivity type. A film of an oxide semiconductor having a bandgap larger than that of a group compound semiconductor is grown to form a pn heterojunction, and a second conductivity type is formed on the pn heterojunction, and a II-VI of the first conductivity type is formed. A semiconductor light emitting device, wherein an oxide semiconductor film having a bandgap larger than that of a group compound semiconductor is formed. Also,
On the first conductivity type II-VI group compound semiconductor single crystal substrate, it is possible to form a stable oxide that does not react with the semiconductor of the substrate when it is adsorbed, and this oxide is second A metal thin film, which is an oxide semiconductor having a conductivity type and a band gap larger than that of the II-VI group compound semiconductor of the first conductivity type, is chemically adsorbed to 10 atomic layers or less, and the metal thin film is After being oxidized to form a film of an oxide semiconductor to form a pn heterojunction, a bandgap larger than the bandgap of the II-VI group compound semiconductor of the second conductivity type and the second conductivity type. A method of manufacturing a semiconductor light emitting device, wherein a film of an oxide semiconductor having a is formed. Furthermore, the oxide semiconductor is one or more oxide semiconductors selected from In 2 O 3 , SnO 2 and ZnO, and a semiconductor light emitting device and a method for manufacturing the same.

【0006】[0006]

【作用】第1の導電型のII-VI族化合物半導体単結晶基
板の上に、厚み10原子層以下の、第2の導電型を示し、
かつ、第1の導電型のII-VI族化合物半導体のバンドギ
ャップより大きいバンドギャップを有する酸化物半導体
の膜(A)が成長され、pnヘテロ接合が形成され、さら
に第2の導電型を示し、かつ、第1の導電型のII-VI族
化合物半導体のバンドギャップより大きいバンドギャッ
プを有する酸化物半導体の膜(B)が成長されている半導
体発光素子である。尚、ここで第1の導電型、第2の導
電型とは、p型またはn型(n型またはp型)の導電型
のことを示す。
[Function] A second conductivity type having a thickness of 10 atomic layers or less is formed on a II-VI group compound semiconductor single crystal substrate of the first conductivity type,
In addition, an oxide semiconductor film (A) having a bandgap larger than that of the II-VI group compound semiconductor of the first conductivity type is grown, a pn heterojunction is formed, and the second conductivity type is shown. And a semiconductor light emitting device in which an oxide semiconductor film (B) having a bandgap larger than that of the first conductivity type II-VI group compound semiconductor is grown. Here, the first conductivity type and the second conductivity type refer to p-type or n-type (n-type or p-type) conductivity type.

【0007】II-VI族化合物半導体単結晶基板に接合す
る部分の酸化物半導体の膜(A)は、10原子層以下の薄さ
であるため、基板と膜との間に働く弾性歪みによる界面
での不対結合の発生が防止され、界面準位密度の低いp
nヘテロ接合を得ることができ、より発光効率の高い半
導体発光素子を製造することが可能となる。酸化物半導
体の膜(A)が10原子層を越える厚みであると、基板と膜
との間に働く弾性歪みによる界面での不対結合の発生し
てしまう。また、吸着されたときに基板の半導体と反応
せずかつ安定な酸化物を生成可能な金属の薄膜を10原子
層以下に化学吸着させ、この金属薄膜を酸化させるよう
にしたので、基板に表面欠陥を生じさせることなく酸化
物半導体の膜を成膜でき、界面準位密度の低いpnヘテ
ロ接合を得ることができる。
Since the oxide semiconductor film (A) at the portion bonded to the II-VI group compound semiconductor single crystal substrate has a thickness of 10 atomic layers or less, an interface due to elastic strain acting between the substrate and the film is formed. The occurrence of unpaired bonds in the p
An n-heterojunction can be obtained, and a semiconductor light emitting device with higher light emission efficiency can be manufactured. If the oxide semiconductor film (A) has a thickness of more than 10 atomic layers, an unpaired bond is generated at the interface due to elastic strain acting between the substrate and the film. In addition, a metal thin film that does not react with the semiconductor of the substrate when it is adsorbed and can generate stable oxide is chemically adsorbed to 10 atomic layers or less, and this metal thin film is oxidized so that the surface of the substrate An oxide semiconductor film can be formed without causing defects, and a pn heterojunction with low interface state density can be obtained.

【0008】酸化物半導体の膜(A)、酸化物半導体の膜
(B)は、導電型が同じで、同種または異種の酸化物半導
体の膜である。これらの酸化物半導体の膜としては、In
2O3(Eg=3.6eV)、SnO2 (Eg=3.5eV)、ZnO (Eg=3.3eV)等か
ら選ばれる一種または複数の酸化物半導体が好ましく用
いることができる(()内の数値は、300Kでのバンドギャ
ップEg(eV)である)。これらの酸化物半導体は透明な薄
膜を容易に得ることができ、また抵抗率を低くすること
もできるため、II-VI族化合物半導体の上に形成する材
料として適している。尚、これらの酸化物半導体に適当
なドーパントをドープしたものを用いてもよい。II-VI
族化合物半導体基板としては、p型ZnTe(Eg=2.26eV)基
板、p型CdTe(Eg=1.52eV)基板等を用いることができる
(()内の数値は、300KでのバンドギャップEg(eV)であ
る)。
Oxide semiconductor film (A), oxide semiconductor film
(B) is an oxide semiconductor film of the same or different conductivity type. As these oxide semiconductor films, In
2 O 3 (Eg = 3.6 eV), SnO 2 (Eg = 3.5 eV), one or more oxide semiconductors selected from ZnO (Eg = 3.3 eV) and the like can be preferably used (the numerical value in () is , Bandgap Eg (eV) at 300K). These oxide semiconductors are suitable as a material to be formed on a II-VI group compound semiconductor because a transparent thin film can be easily obtained and the resistivity can be lowered. Note that these oxide semiconductors may be doped with a suitable dopant. II-VI
As the group compound semiconductor substrate, a p-type ZnTe (Eg = 2.26eV) substrate, a p-type CdTe (Eg = 1.52eV) substrate, or the like can be used (the numbers in parentheses are bandgap Eg (eV at 300K). )).

【0009】この厚み10原子層以下の、第2の導電型を
示し、かつ、第1の導電型のII-VI族化合物半導体のバ
ンドギャップより大きいバンドギャップを有する酸化物
半導体の膜(A)は、吸着されたときに基板の半導体と反
応せずかつ安定な酸化物を生成可能な金属を基板上に化
学吸着し、酸化することによって形成する。金属の被着
方法としては、キャリアガスを金属原料設置側から基板
設置側に流して基板上に金属薄膜を被着させる気相輸送
法、真空容器内で金属原料を加熱蒸発させて基板上に金
属薄膜を被着させる分子線エピタキシシャル法或いは真
空蒸着法、及び有機金属原料を用いて基板上に金属薄膜
を被着させる有機金属気相成長法などが適用できる。10
原子層以下という非常に薄い金属薄膜の被着方法として
は、気相輸送法では、金属原料設置部の温度よりも基板
設置部の温度の方が0.1℃以上10℃以下高くなるように
温度を制御して金属薄膜を被着するようにすると、金属
は被着時間に依存せず、高々2〜3原子層、通常は1原
子層が基板に化学吸着され、それ以上は被着されず、安
心して10原子層以下の金属薄膜を被着することができ
る。なお、これは気相輸送法だけでなく分子線エピタキ
シャル法及び真空蒸着法においても、属原料設置部の温
度と基板設置部の温度を同様に制御することで同じ効果
を得ることができる。
An oxide semiconductor film (A) having a thickness of 10 atomic layers or less and exhibiting the second conductivity type and having a band gap larger than that of the II-VI group compound semiconductor of the first conductivity type. Is formed by chemisorbing and oxidizing a metal that does not react with the semiconductor of the substrate when it is adsorbed and can generate a stable oxide on the substrate. As a method for depositing a metal, a vapor phase transport method in which a carrier gas is flown from a metal raw material installation side to a substrate installation side to deposit a metal thin film on the substrate, and a metal raw material is heated and evaporated in a vacuum container to be deposited on the substrate A molecular beam epitaxy method or a vacuum deposition method for depositing a metal thin film, an organic metal vapor deposition method for depositing a metal thin film on a substrate using an organometallic raw material, and the like can be applied. Ten
As a method of depositing a very thin metal thin film of atomic layer or less, in the vapor phase transport method, the temperature is set so that the temperature of the substrate installation part is higher than the temperature of the metal raw material installation part by 0.1 ° C or more and 10 ° C or less. When the metal thin film is controlled to be deposited, the metal does not depend on the deposition time, and at most 2 to 3 atomic layers, usually 1 atomic layer is chemisorbed on the substrate, and no more is deposited. You can deposit metal thin films of 10 atomic layers or less with confidence. It should be noted that the same effect can be obtained not only by the vapor transport method but also by the molecular beam epitaxial method and the vacuum vapor deposition method by controlling the temperature of the metal raw material installation portion and the temperature of the substrate installation portion in the same manner.

【0010】また、酸化物半導体の膜(B)の成膜方法と
しては、液相エピタキシー、有機金属成長法などによる
エピタキシャル単結晶膜であっても良いが、多結晶やア
モルファスでも良いので、その形成手段として蒸着やス
パッタリング法などのより安価な方法も用いることがで
きる。
As a method for forming the oxide semiconductor film (B), an epitaxial single crystal film formed by liquid phase epitaxy, an organic metal growth method or the like may be used, but a polycrystalline or amorphous film may be used. A cheaper method such as vapor deposition or sputtering can be used as the forming means.

【0011】[0011]

【実施例】以下、p型ZnTe上にn型In2O3膜を形成する
例について説明する。化学吸着、酸化には図1に示すよ
うな装置を用いる。図1において、1は石英反応管で、
ガス導入管2、ガス排気管3が接続されている。石英反
応管1内に流すガスの流量は流量計4で調整され、反応
管内の温度はヒーター5a、5bによって制御される。反応
管内上流側に金属原料であるIn6を入れたボート7を設
置し、下流側に、表面をBr系のエッチャントで2〜3μm
エッチングした厚さ500μmのp型ZnTe単結晶基板8を設
置する。上記原料ボート部の温度T1よりも基板設置部
の温度T2が0.2℃以上10℃以下高くなるようにヒーター
5a、5bを制御し、昇温保持する。その間、ガス導入管2
より反応管中に水素もしくは窒素のような不活性ガスを
供給し、ボート7からInの蒸気を下流へ輸送し、p型
ZnTe単結晶基板8上に化学吸着させ、10原子層以下の厚
さでInの薄膜を成長させる。続いて、ガス導入管2から
の供給ガスを酸素に切り換え、Inの薄膜を酸化させIn2O
3膜を形成する。
EXAMPLES An example of forming an n-type In 2 O 3 film on p-type ZnTe will be described below. An apparatus as shown in FIG. 1 is used for chemisorption and oxidation. In FIG. 1, 1 is a quartz reaction tube,
The gas introduction pipe 2 and the gas exhaust pipe 3 are connected. The flow rate of the gas flowing in the quartz reaction tube 1 is adjusted by the flow meter 4, and the temperature in the reaction tube is controlled by the heaters 5a and 5b. A boat 7 containing In6, which is a metal raw material, is installed on the upstream side in the reaction tube, and the surface is on the downstream side with a Br-based etchant of 2 to 3 μm
An etched p-type ZnTe single crystal substrate 8 having a thickness of 500 μm is set. Heater so that the temperature T 2 of the substrate installation part is higher than the temperature T 1 of the raw material boat part by 0.2 ° C. or more and 10 ° C. or less
5a and 5b are controlled to maintain the temperature rise. Meanwhile, gas introduction pipe 2
Inert gas such as hydrogen or nitrogen is supplied into the reaction tube to transport In vapor from the boat 7 to the downstream side,
It is chemically adsorbed on the ZnTe single crystal substrate 8 and an In thin film is grown to a thickness of 10 atomic layers or less. Subsequently, the supply gas from the gas introduction pipe 2 is switched to oxygen to oxidize the In thin film and In 2 O
3 Form a film.

【0012】こうして得られたIn2O3薄膜は極めて薄
く、機械的損傷を避けるため、さらに上にIn2O3を2×10
-6Torrの真空下で約300nm蒸着させた。その後、In2O3
を蒸着した面の全面にInを蒸着した後フォトリソグラフ
ィによりn型電極をパターン形成し、ZnTe単結晶基板の
In2O3膜が蒸着されていない面の全面にAuを蒸着してp
型電極を形成した。
The In 2 O 3 thin film thus obtained is extremely thin, and in order to avoid mechanical damage, 2 × 10 2 of In 2 O 3 is further deposited on it.
It was vapor-deposited at about 300 nm under a vacuum of -6 Torr. After that, In is vapor-deposited on the entire surface on which the In 2 O 3 film is vapor-deposited, and then an n-type electrode is patterned by photolithography to form a ZnTe single crystal substrate.
Au is vapor-deposited on the entire surface where the In 2 O 3 film is not vapor-deposited and p
A mold electrode was formed.

【0013】このように電極を形成した基板をスクライ
ブ、へき開して発光素子とし、20mAの電流を流したとこ
ろ、緑色の発光を確認できた。その際、I−V曲線から
求めた理想因子は1.3で1に近く、良好なpn接合を形成
できたことを確認した。また、SnO2、ZnOにおいても同
様の結果を確認できた。
When a substrate having electrodes thus formed was scribed and cleaved to form a light emitting element, and a current of 20 mA was applied, green light emission was confirmed. At that time, the ideal factor obtained from the IV curve was 1.3, which was close to 1, confirming that a good pn junction could be formed. Also, similar results were confirmed for SnO 2 and ZnO.

【0014】[0014]

【発明の効果】以上説明したように、本発明により、II
-VI族化合物半導体単結晶基板に接合する部分の酸化物
半導体の膜(A)は10原子層以下の薄さでであるため、基
板と膜との間に働く弾性歪みによる界面での不対結合の
発生が防止され、界面準位密度の低いpnヘテロ接合を
得ることができ、より発光効率の高い半導体発光素子を
製造することが可能となる。また、吸着されたときに基
板の半導体と反応せずかつ安定な酸化物を生成可能な金
属の薄膜を10原子層以下に化学吸着させ、この金属薄膜
を酸化させるようにしたので、基板に表面欠陥を生じさ
せることなく酸化物半導体の膜を成膜でき、界面準位密
度の低いpnヘテロ接合を得ることができるという効果
がある。
As described above, according to the present invention, II
-Because the oxide semiconductor film (A) at the portion bonded to the Group VI compound semiconductor single crystal substrate has a thickness of 10 atomic layers or less, the mismatch at the interface due to the elastic strain that acts between the substrate and the film. It is possible to prevent the occurrence of coupling, obtain a pn heterojunction with a low interface state density, and manufacture a semiconductor light emitting device with higher light emission efficiency. In addition, a metal thin film that does not react with the semiconductor of the substrate when it is adsorbed and can generate stable oxide is chemically adsorbed to 10 atomic layers or less, and this metal thin film is oxidized so that the surface of the substrate An oxide semiconductor film can be formed without causing defects, and a pn heterojunction with a low interface state density can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の化学吸着、酸化によるIn2O
3膜の形成に使用した装置の一例を示す概略図である。
FIG. 1 In 2 O by chemisorption and oxidation according to an embodiment of the present invention
FIG. 3 is a schematic view showing an example of an apparatus used for forming three films.

【図2】 本発明の半導体発光素子のpn接合前のバン
ドギャップを示す図である。
FIG. 2 is a diagram showing a band gap before a pn junction of the semiconductor light emitting device of the present invention.

【図3】 本発明の半導体発光素子のpn接合時のバン
ドギャップを示す図である。
FIG. 3 is a diagram showing a band gap at a pn junction of the semiconductor light emitting device of the present invention.

【図4】 本発明の半導体発光素子のpn接合後、順バ
イアスを加えた後のバンドギャップを示す図である。
FIG. 4 is a diagram showing a bandgap after a forward bias is applied after the pn junction of the semiconductor light emitting device of the present invention.

【符号の説明】[Explanation of symbols]

1 石英反応管 2 ガス導入管 3 ガス排気管 4 流量計 5a、5b ヒーター 6 In 7 ボート 8 ZnTe単結晶基板 1 quartz reaction tube 2 gas inlet tube 3 gas exhaust tube 4 flowmeter 5a, 5b heater 6 In 7 boat 8 ZnTe single crystal substrate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電型のII-VI族化合物半導体単
結晶基板の上に、厚み10原子層以下の第2の導電型を示
し、かつ、第1の導電型のII-VI族化合物半導体のバン
ドギャップより大きいバンドギャップを有する酸化物半
導体の膜が成長されpnヘテロ接合が形成され、更にそ
の上に第2の導電型を示し、かつ、第1の導電型のII-V
I族化合物半導体のバンドギャップより大きいバンドギ
ャップを有する酸化物半導体の膜が形成されていること
を特徴とする半導体発光素子。
1. A II-VI group of the first conductivity type, which shows a second conductivity type of 10 atomic layers or less in thickness on a II-VI group compound semiconductor single crystal substrate of the first conductivity type. A film of an oxide semiconductor having a bandgap larger than that of a compound semiconductor is grown to form a pn heterojunction, and a second conductivity type is formed on the pn heterojunction, and II-V of the first conductivity type is formed.
A semiconductor light emitting device, wherein an oxide semiconductor film having a bandgap larger than that of a group I compound semiconductor is formed.
【請求項2】 前記酸化物半導体が、In2O3、SnO2、ZnO
から選ばれる一種または複数の酸化物半導体であること
を特徴とする請求項1記載の半導体発光素子。
2. The oxide semiconductor is In 2 O 3 , SnO 2 , ZnO.
The semiconductor light emitting device according to claim 1, which is one or more oxide semiconductors selected from the group consisting of:
【請求項3】 第1の導電型のII-VI族化合物半導体単
結晶基板の上に、吸着されたときに基板の半導体と反応
せずかつ安定な酸化物を生成可能であり、更にこの酸化
物が第2の導電型を示し、かつ、第1の導電型のII-VI
族化合物半導体のバンドギャップより大きいバンドギャ
ップを有する酸化物半導体である金属の薄膜を10原子層
以下に化学吸着させ、その金属薄膜を酸化させ酸化物半
導体の膜を成膜してpnヘテロ接合を形成した後、更に
第2の導電型を示し、かつ、第1の導電型のII-VI族化
合物半導体のバンドギャップより大きいバンドギャップ
を有する酸化物半導体の膜を形成するようにしたことを
特徴とする半導体発光素子の製造方法。
3. A stable oxide, which does not react with the semiconductor of the substrate when adsorbed, can be formed on the first-conductivity-type II-VI group compound semiconductor single crystal substrate, and further, this oxidation is possible. The object exhibits the second conductivity type and is II-VI of the first conductivity type.
A metal thin film, which is an oxide semiconductor having a band gap larger than that of a group compound semiconductor, is chemically adsorbed to 10 atomic layers or less, and the metal thin film is oxidized to form an oxide semiconductor film to form a pn heterojunction. After the formation, an oxide semiconductor film having a second conductivity type and having a bandgap larger than that of the II-VI group compound semiconductor of the first conductivity type is formed. And a method for manufacturing a semiconductor light emitting device.
【請求項4】 前記酸化物半導体が、In2O3、SnO2、ZnO
から選ばれる一種または複数の酸化物半導体であること
を特徴とする請求項3記載の半導体発光素子の製造方
法。
4. The oxide semiconductor is In 2 O 3 , SnO 2 , ZnO.
4. The method for producing a semiconductor light emitting device according to claim 3, wherein the oxide semiconductor is one or more oxide semiconductors selected from the group consisting of:
JP9592695A 1995-03-30 1995-03-30 Semiconductor light emitting element, and its manufacture Withdrawn JPH08274373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9592695A JPH08274373A (en) 1995-03-30 1995-03-30 Semiconductor light emitting element, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9592695A JPH08274373A (en) 1995-03-30 1995-03-30 Semiconductor light emitting element, and its manufacture

Publications (1)

Publication Number Publication Date
JPH08274373A true JPH08274373A (en) 1996-10-18

Family

ID=14150889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9592695A Withdrawn JPH08274373A (en) 1995-03-30 1995-03-30 Semiconductor light emitting element, and its manufacture

Country Status (1)

Country Link
JP (1) JPH08274373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016411A1 (en) * 1998-09-10 2000-03-23 Rohm Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000016411A1 (en) * 1998-09-10 2000-03-23 Rohm Co., Ltd. Semiconductor light-emitting device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3398638B2 (en) LIGHT EMITTING DIODE, SEMICONDUCTOR LASER AND METHOD FOR MANUFACTURING THE SAME
US6846731B2 (en) Schottky diode with silver layer contacting the ZnO and MgxZn1-xO films
JP4447755B2 (en) Method for growing ZnO-based oxide semiconductor layer and method for manufacturing semiconductor light emitting device using the same
JPH04242985A (en) Gallium nitride group compound semiconductor laser diode
CN102694087A (en) Electronic device and method of manufacturing the same
US4591654A (en) Solar cells based on indium phosphide
TW201103076A (en) Gallium nitride-based compound semiconductor manufacturing method
JP3492551B2 (en) P-type II-VI compound semiconductor crystal, method for growing the same, and semiconductor device using the same
JP2884083B1 (en) Method of forming semiconductor layer epitaxially grown on metal layer and light emitting semiconductor device manufactured using this method
US6368889B1 (en) Variable-wavelength light-emitting device and method of manufacture
JP2001168392A (en) Semiconductor element and its manufacturing method
CN1964081A (en) A zinc oxide based blue LED and its manufacture method
JP5034035B2 (en) Manufacturing method of semiconductor light emitting device
JP3341576B2 (en) Group III nitride compound semiconductor light emitting device
JPH08274373A (en) Semiconductor light emitting element, and its manufacture
JP4313478B2 (en) AlGaInP light emitting diode
US20220115560A1 (en) InGaN-BASED LED EPITAXIAL WAFER AND FABRICATION METHOD THEREOF
JP2750330B2 (en) Method for manufacturing compound semiconductor device
JP3298436B2 (en) Semiconductor device
KR102562513B1 (en) Graphene nano-structure gas sensor and its fabrication method
JPH04299876A (en) Semiconductor light emitting element material
JP3824726B2 (en) Nitride-based compound semiconductor device and manufacturing method thereof
JPH0728052B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3140121B2 (en) Semiconductor light emitting device
JPH07263750A (en) Semiconductor light emitting element and manufacture of it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604