JPH08273578A - Scanning electron microscope apparatus - Google Patents

Scanning electron microscope apparatus

Info

Publication number
JPH08273578A
JPH08273578A JP7097802A JP9780295A JPH08273578A JP H08273578 A JPH08273578 A JP H08273578A JP 7097802 A JP7097802 A JP 7097802A JP 9780295 A JP9780295 A JP 9780295A JP H08273578 A JPH08273578 A JP H08273578A
Authority
JP
Japan
Prior art keywords
scanning electron
microscope
electron microscope
optical
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7097802A
Other languages
Japanese (ja)
Inventor
Jirou Toumatsu
治郎 等松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP7097802A priority Critical patent/JPH08273578A/en
Publication of JPH08273578A publication Critical patent/JPH08273578A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To allow effective use of space within a sample chamber in a scanning electron microscope apparatus having an optical microscope and to readily deal with variations in sample thickness by eliminating the space which the optical microscope occupies within the sample chamber. CONSTITUTION: A long-focal-distance optical microscope 19 having an optical axis which, over a sample, crosses the optical axis of a scanning electron microscope 3 is provided outside a sample chamber 4 provided in the scanning electron microscope 3, and is movable in the direction crossing the optical axis, so that the intersection point of the optical axis of the optical microscope and that of the scanning electron microscope moves vertically. The space which the optical microscope occupies within the sample chamber is thereby eliminated to allow effective use of the space within the sample chamber and to readily deal with variations in the vertical position of a sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型電子顕微鏡装置、
特に観察に於ける視野選択を容易に行うことができる光
学顕微鏡を備えた走査型電子顕微鏡装置に関するもので
ある。
BACKGROUND OF THE INVENTION The present invention relates to a scanning electron microscope apparatus,
In particular, the present invention relates to a scanning electron microscope apparatus equipped with an optical microscope capable of easily selecting a visual field for observation.

【0002】[0002]

【従来の技術】従来の光学顕微鏡を併設した走査型電子
顕微鏡装置としては、例えば特開平4−308639号
に示されるものがある。該走査型電子顕微鏡装置を図1
1に於いて説明する。
2. Description of the Related Art A conventional scanning electron microscope apparatus provided with an optical microscope is disclosed in, for example, Japanese Patent Laid-Open No. 308639/1992. The scanning electron microscope apparatus is shown in FIG.
It will be explained in 1.

【0003】電子線を発する電子銃1、該電子銃1より
射出された電子線を試料面に対して走査する走査機構2
を具備した鏡筒3aが気密な試料室4の上面に立設され
て走査型電子顕微鏡3が構成され、該試料室4の内部に
は試料5が載置され、移動可能に設けられた試料台6、
前記試料5に電子線を走査させることで発生する2次電
子を捕捉する2次電子検出器7が収納されている。
An electron gun 1 which emits an electron beam, and a scanning mechanism 2 which scans the sample surface with the electron beam emitted from the electron gun 1.
A scanning electron microscope 3 is constructed by vertically arranging a lens barrel 3a equipped with a sample chamber 4 on an airtight sample chamber 4. A sample 5 is placed inside the sample chamber 4 and is movably provided. Stand 6,
A secondary electron detector 7 that traps secondary electrons generated by scanning the sample 5 with an electron beam is housed.

【0004】更に前記試料室4の斜め上方には円筒アダ
プタ8が設けられ、該円筒アダプタ8にはベローズ10
を介して光学顕微鏡9が光軸方向に移動可能に且気密に
設けられている。該光学顕微鏡9は図示しない移動機構
により光軸方向に移動され、又光学顕微鏡9の光軸は走
査型電子顕微鏡の観察位置の中心に合致している。
Further, a cylindrical adapter 8 is provided diagonally above the sample chamber 4, and a bellows 10 is provided in the cylindrical adapter 8.
An optical microscope 9 is provided so as to be movable in the direction of the optical axis and airtightly via. The optical microscope 9 is moved in the optical axis direction by a moving mechanism (not shown), and the optical axis of the optical microscope 9 coincides with the center of the observation position of the scanning electron microscope.

【0005】上記走査型電子顕微鏡により試料5の観察
を行う場合について説明する。
A case of observing the sample 5 with the scanning electron microscope will be described.

【0006】図示しない移動機構により光学顕微鏡9を
2点鎖線に示す様に移動させ、試料台6を移動させて、
光学顕微鏡9により試料5の表面を観察し、走査型電子
顕微鏡により観察すべき位置を特定する。観察すべき位
置が特定できたら前記光学顕微鏡9を後退させ、走査型
電子顕微鏡の電子線走査を遮ったり、前記試料5より発
生する2次電子が光学顕微鏡9に衝突しない様にする。
その後、前記電子銃1から電子線を発生させ、走査機構
2により走査し、前記2次電子検出器7により捕捉した
2次電子を基に得られる画像を図示しないCRT上に表
示し観察していた。
An optical microscope 9 is moved by a moving mechanism (not shown) as shown by a chain double-dashed line, and the sample stage 6 is moved.
The surface of the sample 5 is observed by the optical microscope 9, and the position to be observed is specified by the scanning electron microscope. When the position to be observed can be specified, the optical microscope 9 is retracted to block the electron beam scanning of the scanning electron microscope and prevent the secondary electrons generated from the sample 5 from colliding with the optical microscope 9.
Then, an electron beam is generated from the electron gun 1, scanned by the scanning mechanism 2, and an image obtained based on the secondary electrons captured by the secondary electron detector 7 is displayed on a CRT (not shown) for observation. It was

【0007】[0007]

【発明が解決しようとする課題】ところが上記した従来
の走査型電子顕微鏡では短焦点の光学顕微鏡の為、試料
に光学顕微鏡を近付ける必要があり、光学顕微鏡9が試
料室4内に収納される構成であり、光学顕微鏡9の占有
する空間が試料5近傍迄及び、有効な試料室4の空間が
狭められてしまい、試料5を設置する空間、試料5を移
動させる距離、或は試料の傾斜が制限され、2次電子、
反射電子を検出する検出器を同時に設けることができ
ず、2次電子、反射電子を同時に捕捉し、それぞれの電
子に基づく画像を作成し観察に利用するということがで
きなかった。
However, since the conventional scanning electron microscope described above is an optical microscope with a short focus, it is necessary to bring the optical microscope close to the sample, and the optical microscope 9 is housed in the sample chamber 4. Therefore, the space occupied by the optical microscope 9 extends to the vicinity of the sample 5 and the effective space of the sample chamber 4 is narrowed, so that the space for installing the sample 5, the distance for moving the sample 5, or the inclination of the sample is reduced. Restricted, secondary electrons,
Since a detector for detecting backscattered electrons cannot be provided at the same time, it has been impossible to simultaneously capture the secondary electrons and the backscattered electrons, create an image based on each electron, and utilize it for observation.

【0008】更に、上記従来例では光学顕微鏡9の光軸
は固定されており、その為、試料5の上下位置(作動距
離)が大きく変わった場合は、光学顕微鏡9で特定する
位置と電子銃1で走査する位置とがずれてくるという問
題があった。
Further, in the above-mentioned conventional example, the optical axis of the optical microscope 9 is fixed. Therefore, when the vertical position (working distance) of the sample 5 is largely changed, the position specified by the optical microscope 9 and the electron gun There is a problem that the scanning position is shifted by 1.

【0009】本発明は斯かる実情に鑑み、光学顕微鏡の
試料室内での占有空間をなくし、試料室の内部空間を有
効に利用できる様にすると共に、試料の上下位置(作動
距離)に変更があった場合にも容易に対応し得る様にし
たものである。
In view of such circumstances, the present invention eliminates the occupied space in the sample chamber of the optical microscope, makes it possible to effectively use the internal space of the sample chamber, and changes the vertical position (working distance) of the sample. Even if there is, it can be easily dealt with.

【0010】[0010]

【課題を解決するための手段】本発明は、走査型電子顕
微鏡に設けられた試料室の外に該走査型電子顕微鏡の光
軸と試料上で交差可能な光軸を有する長焦点距離光学顕
微鏡を設け、或は走査型電子顕微鏡の光軸途中からレー
ザ光線を走査型電子顕微鏡の光軸に合致させ試料に向か
って照射するレーザ光線照射手段を設け、或は試料室に
2次電子検出器、反射電子検出器を同時に設け、該両検
出器からの信号をスイッチング回路を介して映像表示手
段に入力する様構成し、或は光学顕微鏡に撮像手段を設
け、該撮像手段からの映像を映像手段に表示する様構成
し、或は映像手段に入力される画像を記憶する画像処理
装置を具備し、或は光学顕微鏡の撮像画面と走査型電子
顕微鏡で得られる画面とを画像処理装置を介してモニタ
に表示する様にし、該モニタは光学顕微鏡、走査型電子
顕微鏡のいずれか一方の画像と前記画像処理装置に記憶
された光学顕微鏡、走査型電子顕微鏡のいずれか他方の
画像を表示する様構成し、或は光学顕微鏡を光軸に対し
て交差する方向に平行移動可能に試料室に設け、光学顕
微鏡の光軸と走査型電子顕微鏡の光軸の交点が上下方向
に移動する様構成し、或は光学顕微鏡を傾動可能に試料
室に設け、光学顕微鏡の光軸と走査型電子顕微鏡の光軸
の交点が上下方向に移動する様構成した走査型電子顕微
鏡装置に係るものである。
The present invention provides a long focal length optical microscope having an optical axis outside the sample chamber provided in the scanning electron microscope and capable of intersecting with the optical axis of the scanning electron microscope. Or a laser beam irradiation means for irradiating a sample with a laser beam aligned with the optical axis of the scanning electron microscope from the middle of the optical axis of the scanning electron microscope, or a secondary electron detector in the sample chamber. , A backscattered electron detector is provided at the same time, and signals from the two detectors are input to the image display means via a switching circuit, or an image pickup means is provided in the optical microscope, and the image from the image pickup means is imaged. Means for displaying on the image means or storing an image inputted to the image means, or an image pickup screen of the optical microscope and a screen obtained by the scanning electron microscope are provided via the image processing device. Display on the monitor The monitor is configured to display an image of either the optical microscope or the scanning electron microscope and the image of the other of the optical microscope and the scanning electron microscope stored in the image processing apparatus, or It is provided in the sample chamber so that it can move in parallel to the direction intersecting the optical axis, and the intersection of the optical axis of the optical microscope and the optical axis of the scanning electron microscope moves vertically, or the optical microscope can be tilted. The present invention relates to a scanning electron microscope apparatus provided in a sample chamber and configured so that an intersection of the optical axis of the optical microscope and the optical axis of the scanning electron microscope moves in the vertical direction.

【0011】[0011]

【作用】光学顕微鏡により観察部位を特定し、次に走査
型電子顕微鏡により電子線を走査し試料より発せられる
電子を捕捉して画像を作成する。又、光学顕微鏡は長焦
点を有するので試料室の外に設けられ、試料室内の空間
を有効に利用でき、又光学顕微鏡を移動することで試料
の上下位置(作動距離)が変化した場合等に対応する。
Operation: The observation site is specified by the optical microscope, and then the electron beam is scanned by the scanning electron microscope to capture the electrons emitted from the sample to form an image. Since the optical microscope has a long focal point, it is installed outside the sample chamber and the space inside the sample chamber can be effectively used. Also, when the optical microscope is moved to change the vertical position (working distance) of the sample, etc. Correspond.

【0012】[0012]

【実施例】以下、図面を参照しつつ本発明の一実施例を
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は第1の実施例を示し、図中に於いて
図8中で示したものと同様の構成要素には同符号を付し
てある。
FIG. 1 shows a first embodiment, in which the same components as those shown in FIG. 8 are designated by the same reference numerals.

【0014】試料室4の上面に下端部が試料室4内に突
出した鏡筒3aが立設され、該鏡筒3a内部には上方よ
り電子銃1、第1コンデンサレンズ11、第2コンデン
サレンズ12、走査コイル13、対物レンズ14が順次
配設されている。又、前記鏡筒3aの下端下方には試料
ステージ15がX,Y軸方向、回転、傾斜、上下方向の
移動機構を介して任意の方向に傾動自在に設けられ、該
試料ステージ15の上面に設けられる試料台16には試
料5が載置され、該試料ステージ15は前記鏡筒3a下
端の直下に位置する。
A lens barrel 3a having a lower end protruding into the sample chamber 4 is erected on the upper surface of the sample chamber 4, and the electron gun 1, the first condenser lens 11, and the second condenser lens are arranged in the lens barrel 3a from above. 12, a scanning coil 13, and an objective lens 14 are sequentially arranged. A sample stage 15 is provided below the lower end of the lens barrel 3a so as to be tiltable in any direction through a moving mechanism in the X and Y axis directions, rotation, tilt, and up and down. The sample 5 is placed on the sample table 16 provided, and the sample stage 15 is located immediately below the lower end of the lens barrel 3a.

【0015】前記鏡筒3aの光軸上の所要位置、例えば
前記第2コンデンサレンズ12と走査コイル13との間
に可動ミラー35を設け、該可動ミラー35に向かって
レーザ光線を発するレーザ光線発光手段36を設ける。
可動ミラー35は楕円面状のミラーを有し、挿入・引出
機構と中心合わせ機構を設けるか、或は電子線を通過さ
せるのに充分な穴を設ける。電子線の照射前に可動ミラ
ー35を挿入し、電子線の光軸と同軸になる様に中心合
わせを行う。レーザ光線発光手段36から発せられたレ
ーザ光線は前記可動ミラー35により電子銃1の光軸と
同軸になる様に調整されて試料5に向かって反射され
る。而して、前記可動ミラー35、レーザ光線発光手段
36のレーザー光線照射手段により、走査型電子顕微鏡
の走査中心位置がレーザ光線により示される。電子線の
照射時には、可動ミラー35は引出され、位置合わせさ
れた試料5の走査中心位置に電子線が照射される。或
は、可動ミラー35に電子線を通過させるのに充分な穴
を設け、挿入・引出機構を設けずに走査型電子顕微鏡の
走査中心位置がレーザ光線により示される。尚、可動ミ
ラー35の楕円面状のミラーによって試料5上にレーザ
光線が照射される。
A movable mirror 35 is provided at a required position on the optical axis of the lens barrel 3a, for example, between the second condenser lens 12 and the scanning coil 13, and a laser beam is emitted to emit a laser beam toward the movable mirror 35. Means 36 are provided.
The movable mirror 35 has an elliptical mirror, and is provided with an insertion / drawing mechanism and a centering mechanism, or is provided with a hole sufficient for passing an electron beam. Before irradiating the electron beam, the movable mirror 35 is inserted and centering is performed so as to be coaxial with the optical axis of the electron beam. The laser beam emitted from the laser beam emitting means 36 is adjusted by the movable mirror 35 so as to be coaxial with the optical axis of the electron gun 1 and reflected toward the sample 5. Then, the movable mirror 35 and the laser beam emitting means of the laser beam emitting means 36 indicate the scanning center position of the scanning electron microscope by the laser beam. At the time of irradiation with the electron beam, the movable mirror 35 is pulled out, and the electron beam is applied to the aligned scanning center position of the sample 5. Alternatively, the movable mirror 35 is provided with a sufficient hole for passing an electron beam, and the scanning center position of the scanning electron microscope is indicated by a laser beam without providing an insertion / drawing mechanism. The elliptical mirror of the movable mirror 35 irradiates the sample 5 with a laser beam.

【0016】前記試料室4の側壁には2次電子検出器7
が気密貫通して設けられ、2次電子検出器7の2次電子
検出部7aは前記試料5の側方に位置する。又、試料室
4の他の側壁には反射電子検出器17が気密に貫通して
設けられ、該反射電子検出器17の反射電子検出部17
aは鏡筒3aより射出される電子線に干渉せず光学顕微
鏡の視野を遮らない位置の前記試料5の上方迄延出して
いる。
A secondary electron detector 7 is provided on the side wall of the sample chamber 4.
Are provided so as to penetrate in an airtight manner, and the secondary electron detector 7a of the secondary electron detector 7 is located laterally of the sample 5. Further, a backscattered electron detector 17 is provided on the other side wall of the sample chamber 4 in an airtight manner, and the backscattered electron detector 17 of the backscattered electron detector 17 is provided.
The reference character a extends to a position above the sample 5 at a position where it does not interfere with the electron beam emitted from the lens barrel 3a and does not block the visual field of the optical microscope.

【0017】前記試料室4の上角部には、電子線照射時
に生ずるX線の漏洩を防止する鉛ガラスで気密に張設さ
れた光学顕微鏡取付け窓18が設けられ、該光学顕微鏡
取付け窓18には光学顕微鏡19が立設されている。該
光学顕微鏡19は焦点距離が長いもの、例えば100mm
以上の焦点距離を有するものが用いられ、焦点位置は前
記試料5の表面に合致する。又、光学顕微鏡19の視野
は試料台16の全域をカバーできる広さを有し、肉眼で
の観察に近付ける為、15mmφ〜30mmφ程度の領域を
最大視野としている。更に、光学顕微鏡19はズーム機
構を具備している。
At the upper corner of the sample chamber 4, there is provided an optical microscope mounting window 18 that is airtightly stretched with lead glass for preventing leakage of X-rays generated during electron beam irradiation. An optical microscope 19 is installed upright. The optical microscope 19 has a long focal length, for example, 100 mm.
A lens having the above focal length is used, and the focal position matches the surface of the sample 5. Also, the visual field of the optical microscope 19 has a size that can cover the entire area of the sample holder 16, since the closer to observation with the naked eye, and a 15mm φ ~30mm φ about a region as the maximum field of view. Further, the optical microscope 19 has a zoom mechanism.

【0018】前記光学顕微鏡19の視野は同軸照明系に
より照明される様になっている。即ち、前記光学顕微鏡
19内部にはハーフミラー20が設けられ、該ハーフミ
ラー20に対向して同軸照明ユニット21が連設されて
いる。該同軸照明ユニット21には白熱灯等の光源を有
する冷光照明光源22からの照明光がファイバケーブル
23を介して導かれ、前記ハーフミラー20により光学
顕微鏡19の光軸と一致した方向に反射され、前記試料
5を照明する。
The field of view of the optical microscope 19 is adapted to be illuminated by a coaxial illumination system. That is, a half mirror 20 is provided inside the optical microscope 19, and a coaxial illumination unit 21 is continuously provided so as to face the half mirror 20. Illumination light from a cold light illumination light source 22 having a light source such as an incandescent lamp is guided to the coaxial illumination unit 21 through a fiber cable 23, and is reflected by the half mirror 20 in a direction coinciding with the optical axis of the optical microscope 19. Illuminate the sample 5.

【0019】又、前記光学顕微鏡19の接眼レンズ側に
はカラーCCDカメラ24、テレビカメラ等の撮像手段
が設けられ、光学顕微鏡19で得られた像は前記カラー
CCDカメラ24で撮像され、更に信号化され、カラー
モニタ25で画像化されると共に、画像処理装置26に
入力される。該画像処理装置26は画像記憶回路(図示
せず)を有し、前記光学顕微鏡19で得られる画像を記
憶できる様になっている。従って、カラーモニタ25に
は記憶した過去の画像を適宜表示できる。
An image pickup means such as a color CCD camera 24 or a television camera is provided on the eyepiece side of the optical microscope 19, and an image obtained by the optical microscope 19 is picked up by the color CCD camera 24 and further signaled. The image is converted into an image on the color monitor 25 and is input to the image processing device 26. The image processing device 26 has an image storage circuit (not shown) and can store the image obtained by the optical microscope 19. Therefore, the stored past image can be appropriately displayed on the color monitor 25.

【0020】前記2次電子検出器7、反射電子検出器1
7はスイッチング回路27を介して信号増幅器28に接
続され、前記前記2次電子検出器7、反射電子検出器1
7からの信号は前記信号増幅器28、前記画像処理装置
26を介してカラーモニタ25に及びCRT29等の映
像表示手段に入力される。該CRT29の走査回路30
は前記走査コイル13も駆動し、前記走査コイル13の
走査に同期してCRT29の走査を行う構成となってい
る。
The secondary electron detector 7 and the backscattered electron detector 1
7 is connected to a signal amplifier 28 via a switching circuit 27, and the secondary electron detector 7 and the backscattered electron detector 1 are connected.
The signal from the reference numeral 7 is input to the color monitor 25 and the image display means such as the CRT 29 through the signal amplifier 28 and the image processing device 26. Scanning circuit 30 of the CRT 29
Is also configured to drive the scan coil 13 and to scan the CRT 29 in synchronization with the scan of the scan coil 13.

【0021】ここで、光学顕微鏡19による試料5の位
置設定作業で、走査型電子顕微鏡3の画像上での移動方
向と、光学顕微鏡19で得られる画像の移動方向が一致
することが作業をやり易くする上で重要である。
Here, when the position of the sample 5 is set by the optical microscope 19, the moving direction on the image of the scanning electron microscope 3 and the moving direction of the image obtained by the optical microscope 19 are the same. It is important to make it easier.

【0022】走査型電子顕微鏡の画像上での移動方向
と、光学顕微鏡による移動方向とを一致させる為に、下
記の条件(1)及び(2)を満す様に構成される。
In order to make the moving direction on the image of the scanning electron microscope coincide with the moving direction of the optical microscope, the following conditions (1) and (2) are satisfied.

【0023】光学顕微鏡の条件(1) 図2により、光学顕微鏡像装置と走査型電子顕微鏡像と
の関係を説明する。
Conditions of Optical Microscope (1) The relationship between the optical microscope image device and the scanning electron microscope image will be described with reference to FIG.

【0024】走査型電子顕微鏡の光軸(走査中心)O1
と光学顕微鏡の光軸O2 との交点をAとし、A点に試料
表面を合わせた時の走査型電子顕微鏡の作動距離をD1
とする。光学顕微鏡の焦点距離D2 はA点に焦点が合う
ように設定されている。走査型電子顕微鏡画像は試料を
上方つまり電子銃側より見た画像となり、一方光学顕微
鏡像は図2に於ける試料表面を光学顕微鏡の光軸O2
なす角をθとすると、斜め上方θ角度からの観察像とな
る。双方の画像を近付ける為には構造的に可能な限りθ
を大きくする必要がある。然し角度θは対物レンズの形
状、作動距離D1 光学顕微鏡の最大視野サイズで制限さ
れ、今回の実施例では30°の値を採用した。
Optical axis (scan center) O 1 of the scanning electron microscope
And the optical axis O 2 of the optical microscope is A, and the working distance of the scanning electron microscope when the sample surface is aligned with point A is D 1
And The focal length D 2 of the optical microscope is set so that the point A is in focus. The scanning electron microscope image is an image of the sample viewed from above, that is, the electron gun side. On the other hand, the optical microscope image is obliquely upward θ when the angle formed by the optical axis O 2 of the optical microscope on the sample surface in FIG. 2 is θ. It becomes an observation image from an angle. In order to bring both images close to each other, θ
Needs to be increased. However, the angle θ is limited by the shape of the objective lens and the maximum field size of the working distance D 1 optical microscope, and the value of 30 ° was adopted in this embodiment.

【0025】光学顕微鏡の条件(2) 光学顕微鏡の取付位置は、図2の条件を施せばどこでも
よいかというと、そうではなく、以下の制約を満たす為
には、所定の取付位置が決定される。
Conditions of Optical Microscope (2) The mounting position of the optical microscope may be anywhere as long as the conditions of FIG. 2 are applied. Instead, the predetermined mounting position is determined in order to satisfy the following constraints. It

【0026】前述の通り、双方の観察方向が異なる為、
光学顕微鏡像と走査型電子顕微鏡像との画像の完全な一
致は不可能であるが、少なくとも、次の要件を満足する
ことが望ましい。即ち、画像の天地、左右は一致させ
ること、走査型電子顕微鏡試料装置の傾斜機能を用
い、走査型電子顕微鏡での傾斜観察条件に於いても光学
顕微鏡像が得られること、試料の移動方向と画像の移
動方向との関係が光学顕微鏡像と走査型電子顕微鏡像と
で一致していることである。
As described above, since the two observation directions are different,
Although it is impossible to completely match the images of the optical microscope image and the scanning electron microscope image, it is desirable that at least the following requirements be satisfied. That is, the top and bottom of the image should match, the left and right should match, the tilt function of the scanning electron microscope sample device should be used, and an optical microscope image should be obtained even under tilted observation conditions with a scanning electron microscope. That is, the relationship with the moving direction of the image is the same in the optical microscope image and the scanning electron microscope image.

【0027】この状態を図3により説明する。図3は試
料室を上方より見た図であり、図4は試料部の断面を示
す。
This state will be described with reference to FIG. FIG. 3 is a view of the sample chamber seen from above, and FIG. 4 shows a cross section of the sample portion.

【0028】図3の様に試料の移動方向をX+ ,X- ,
Y+ ,Y- とした場合、走査型電子顕微鏡の画像は図5
の様に設定される。この為、光学顕微鏡に於いては走査
型電子顕微鏡像と同様の天地左右の関係を得るには、図
3中、走査型電子顕微鏡走査中心(A)を通る試料Y移
動軸上に、光学顕微鏡を設定する必要があることが解
る。而してY移動軸上では、Y+ 側とY- 側のいずれか
に光学顕微鏡装着が可能である。
As shown in FIG. 3, the moving direction of the sample is X +, X-,
The image of the scanning electron microscope is shown in Fig. 5 for Y + and Y-.
Is set. For this reason, in the optical microscope, in order to obtain the same vertical relationship as that of the scanning electron microscope image, in order to obtain the vertical relationship in FIG. 3, the optical microscope is placed on the moving axis of the sample Y passing through the scanning electron microscope scanning center (A). It turns out that it is necessary to set. Thus, on the Y movement axis, the optical microscope can be mounted on either the Y + side or the Y- side.

【0029】先ず、Y- 側に光学顕微鏡を装着した場
合、光学顕微鏡画像は図6の様になり、又試料移動に対
する画像の移動方向も走査型電子顕微鏡と一致する。但
し、走査型電子顕微鏡の試料傾斜機能は、+傾斜の際に
Y+ 側が下がり、Y- 側が上昇する。この為、光学顕微
鏡をY- 側に装着する場合、試料傾斜によって傾斜角が
図2に於ける角θを越えると試料表面の光学顕微鏡像が
得られない。従って、図3に於けるY- 側への装着は好
ましくない。
First, when the optical microscope is mounted on the Y-side, the image of the optical microscope is as shown in FIG. 6, and the moving direction of the image with respect to the sample movement is also the same as that of the scanning electron microscope. However, in the sample tilting function of the scanning electron microscope, the Y + side is lowered and the Y- side is raised when + tilted. Therefore, when the optical microscope is mounted on the Y-side, an optical microscope image of the sample surface cannot be obtained if the tilt angle exceeds the angle θ in FIG. 2 due to the tilt of the sample. Therefore, the mounting on the Y- side in FIG. 3 is not preferable.

【0030】次に、Y+ 側の光学顕微鏡の位置に装着す
る場合、光学顕微鏡像は図7に示す様に走査型電子顕微
鏡像の天地左右がすべて逆転したものとなるが、前述の
図3に於けるY- 側に装着の場合の様な試料傾斜による
問題はなくなり、むしろ試料傾斜により図2に於ける角
θの値を可変できるようになり、制約条件のを満足さ
せることができる。
Next, when the optical microscope image is attached to the position of the optical microscope on the Y + side, as shown in FIG. 7, the scanning electron microscope image has the right and left sides upside down. The problem due to the sample inclination unlike the case of mounting on the Y-side in the above is eliminated, and rather the value of the angle θ in FIG. 2 can be changed by the sample inclination, so that the constraint condition can be satisfied.

【0031】次に前記制約条件及びを満足させるに
は、以下の2つの方法による。
Next, the following two methods are used to satisfy the above constraint conditions and.

【0032】(A)CCDカメラの回転により一致させ
る CCDカメラを180°回転取付け、光学顕微鏡像の天
地左右を走査型電子顕微鏡像に一致させることができ
る。 (B)走査型電子顕微鏡の走査軸を回転させる 走査型電子顕微鏡のもつ走査軸回転機能(スキャンロー
テーション)により、180°走査軸を回転させ、光学
顕微鏡像を合わせる。
(A) Matching by Rotation of CCD Camera By mounting the CCD camera rotated 180 °, it is possible to match the top and bottom of the optical microscope image with the scanning electron microscope image. (B) Rotate the scanning axis of the scanning electron microscope The scanning axis is rotated by 180 ° by the scanning axis rotating function (scan rotation) of the scanning electron microscope, and the optical microscope images are aligned.

【0033】上記2方法のいずれでも、制約条件及び
を満足させることができる。
With either of the above two methods, the constraint conditions and can be satisfied.

【0034】而して、本実施例では、図2で示す位置に
光学顕微鏡を取付け、上記(A)(B)の方法で光学顕
微鏡の画像の天地左右と、試料の移動方向を一致させ
た。
Thus, in this embodiment, the optical microscope was attached at the position shown in FIG. 2, and the vertical direction of the image of the optical microscope was made to coincide with the moving direction of the sample by the above methods (A) and (B). .

【0035】以下、作動を説明する。The operation will be described below.

【0036】先ず、光学顕微鏡19を低倍率として試料
5の観察位置を特定する。次に、光学顕微鏡19をズー
ムアップして、観察部位の細部を正確に走査型電子顕微
鏡による観察位置である画面の中心に試料5の位置を設
定する。光学顕微鏡19による試料5の観察位置設定に
於いて、前記走査コイル13上部からのレーザ光線が走
査型電子顕微鏡装置3の走査中心位置を照射しているの
で光学顕微鏡19による部位設定は極めて簡単で正確と
なる。
First, the observation position of the sample 5 is specified by setting the optical microscope 19 at a low magnification. Next, the optical microscope 19 is zoomed up, and the position of the sample 5 is accurately set at the center of the screen, which is the observation position by the scanning electron microscope, for the details of the observation site. When setting the observation position of the sample 5 by the optical microscope 19, since the laser beam from the upper part of the scanning coil 13 irradiates the scanning center position of the scanning electron microscope device 3, the site setting by the optical microscope 19 is extremely simple. Be accurate.

【0037】尚、光学顕微鏡による像観察の為の照明光
照射中は走査型電子顕微鏡(SEM)による像観察はで
きない。これは、走査型電子顕微鏡像の為の検出器に内
蔵されている光電子増倍管(PMT)が光学顕微鏡用照
明光を検出してしまい、画像表示不能となる為である。
従って、光学顕微鏡像と走査型電子顕微鏡像を同時に表
示、観察するには、いずれかの画像の一方を画像処理装
置26を介しての記憶像とすることで可能となる。
Incidentally, the image observation by the scanning electron microscope (SEM) cannot be performed during the irradiation of the illumination light for the image observation by the optical microscope. This is because the photomultiplier tube (PMT) built in the detector for the scanning electron microscope image detects the illumination light for the optical microscope, and the image cannot be displayed.
Therefore, in order to simultaneously display and observe the optical microscope image and the scanning electron microscope image, it is possible to use one of the images as a stored image via the image processing device 26.

【0038】次に、走査型電子顕微鏡による観察につい
て説明する。
Next, observation with a scanning electron microscope will be described.

【0039】電子銃1より放出された電子線を、前記第
1コンデンサレンズ11、第2コンデンサレンズ12で
縮小して鋭い電子プロープと成し、該電子プロープを前
記対物レンズ14により試料5の表面に収斂させ、照射
すると同時に、前記走査コイル13により試料面上を走
査する。この時試料表面より放出される2次電子又は反
射電子を前記2次電子検出器7又は反射電子検出器17
により捕捉して電気信号に変換し、更に増幅する。
The electron beam emitted from the electron gun 1 is reduced by the first condenser lens 11 and the second condenser lens 12 to form a sharp electron probe, and the electron probe is made by the objective lens 14 to the surface of the sample 5. The sample surface is scanned by the scanning coil 13 at the same time as it is converged and irradiated. At this time, secondary electrons or backscattered electrons emitted from the sample surface are transferred to the secondary electron detector 7 or backscattered electron detector 17.
It is captured by, converted into an electric signal, and further amplified.

【0040】前記2次電子検出器7、反射電子検出器1
7からの信号は前記スイッチング回路27により選択さ
れて信号増幅器28に入力される。試料5の凹凸等の情
報を得る場合には主に2次電子検出器7を前記信号増幅
器28に接続し、試料の凹凸情報の他、組成、結晶性等
の情報を得る場合は反射電子検出器17を前記信号増幅
器28に接続する。
The secondary electron detector 7 and the backscattered electron detector 1
The signal from 7 is selected by the switching circuit 27 and input to the signal amplifier 28. The secondary electron detector 7 is mainly connected to the signal amplifier 28 in order to obtain information such as the unevenness of the sample 5, and backscattered electron detection is performed to obtain information such as composition and crystallinity in addition to the unevenness information of the sample. The device 17 is connected to the signal amplifier 28.

【0041】前記信号増幅器28からの信号は前記CR
T29に入力され、該CRT29は前記走査回路30に
より前記走査コイル13と同期駆動され画像を形成す
る。
The signal from the signal amplifier 28 is the CR
It is input to T29, and the CRT 29 is driven by the scanning circuit 30 in synchronization with the scanning coil 13 to form an image.

【0042】而して、観察条件に応じて前記スイッチン
グ回路27により、2次電子検出器7又は反射電子検出
器17かの検出器の選択をし、光学顕微鏡19で特定し
た部位を走査型電子顕微鏡により走査し、走査結果を前
記CRT29により観察することができる。
Then, the switching circuit 27 selects the detector such as the secondary electron detector 7 or the backscattered electron detector 17 according to the observation condition, and the portion specified by the optical microscope 19 is scanned by the scanning electron. It can be scanned by a microscope and the scanning result can be observed by the CRT 29.

【0043】図8により第2の実施例を説明する。A second embodiment will be described with reference to FIG.

【0044】光学顕微鏡取付け窓18を垂直に設け、該
光学顕微鏡取付け窓18に対して上下方向に摺動自在に
3角スライドブロック31を設け、該3角スライドブロ
ック31に光学顕微鏡19を設け、該光学顕微鏡19が
前記3角スライドブロック31と共に上下方向に移動可
能とする。尚、光学顕微鏡19を移動させた時、真空が
破れることのない様充分大きなスライド面が形成されて
いる。
An optical microscope mounting window 18 is provided vertically, a triangular slide block 31 is provided slidably in the vertical direction with respect to the optical microscope mounting window 18, and an optical microscope 19 is provided on the triangular slide block 31. The optical microscope 19 is movable in the vertical direction together with the triangular slide block 31. A sufficiently large slide surface is formed so that the vacuum is not broken when the optical microscope 19 is moved.

【0045】而して、光学顕微鏡19を上下方向、光学
顕微鏡19の光軸と交差する方向に移動させることで、
光学顕微鏡19の光軸と前記走査型電子顕微鏡の光軸と
の交点がAからA′に移動する。従って、試料の厚みが
変化し走査型電子顕微鏡の作動距離D1 が変化しても容
易に対応させることができる。尚、光学顕微鏡の移動方
向は図8の様に光軸に対して斜めでも、或は直角方向で
あってもよい。
By moving the optical microscope 19 in the vertical direction and in the direction intersecting the optical axis of the optical microscope 19,
The intersection of the optical axis of the optical microscope 19 and the optical axis of the scanning electron microscope moves from A to A '. Therefore, even if the working distance D 1 of the scanning electron microscope changes due to the change in the thickness of the sample, it can be easily dealt with. The moving direction of the optical microscope may be oblique to the optical axis as shown in FIG. 8 or may be perpendicular to the optical axis.

【0046】図9により第3の実施例を説明する。A third embodiment will be described with reference to FIG.

【0047】交点Aを移動させる他の機構として、前記
試料室4の角部に凸面座の光学顕微鏡取付け窓18を設
け、該光学顕微鏡取付け窓18に該光学顕微鏡取付け窓
18の凸面に摺動自在に契合する凹面スライド座32を
設け、該凹面スライド座32に光学顕微鏡19を設け、
該光学顕微鏡19を傾動させることで光学顕微鏡19の
光軸と交差する方向に移動させ、前記交点Aを上下方向
に移動させる様にしてもよい。
As another mechanism for moving the intersection A, a convex seat optical microscope mounting window 18 is provided at a corner of the sample chamber 4, and the optical microscope mounting window 18 slides on the convex surface of the optical microscope mounting window 18. A concave slide seat 32 that freely engages is provided, and the optical microscope 19 is provided on the concave slide seat 32.
The optical microscope 19 may be tilted to move in a direction intersecting the optical axis of the optical microscope 19, and the intersection A may be moved in the vertical direction.

【0048】更に交点Aを移動させる他の機構として、
図10に示す様に光学顕微鏡取付け窓18を凹面に形成
し、該光学顕微鏡取付け窓18に摺動自在に契合する凸
面スライド座33を設けてもよい。
As another mechanism for moving the intersection A,
As shown in FIG. 10, the optical microscope mounting window 18 may be formed into a concave surface, and a convex slide seat 33 that slidably engages with the optical microscope mounting window 18 may be provided.

【0049】[0049]

【発明の効果】以上述べた如く本発明によれば、光学顕
微鏡を試料室の外に設け、試料室に光学顕微鏡が占める
空間を除去したので、試料室内の有効空間が大幅に増大
し、試料台、試料等を配置する場合の制約が緩和され、
更にレーザ光線により走査型電子顕微鏡の走査中心位置
が示されるので観察部位の特定作業が容易となり、更に
2次電子検出器、反射電子検出器を同時に設けることが
可能となり、走査型電子顕微鏡で得られる情報が増大
し、又画像処理装置により画像を記録する様にしたので
光学顕微鏡で得られる画像と走査型電子顕微鏡で得られ
る画像が同時に観察でき観察部位の特定作業が簡単に行
え、更に光学顕微鏡による観察点を上下方向に移動可能
としたので試料の厚みが変化した場合等、走査型電子顕
微鏡の作動距離D1 が変化しても容易に対応させること
ができる。
As described above, according to the present invention, since the optical microscope is provided outside the sample chamber and the space occupied by the optical microscope in the sample chamber is removed, the effective space in the sample chamber is greatly increased, The restrictions when arranging a table, sample, etc. are eased,
Furthermore, since the scanning center position of the scanning electron microscope is indicated by the laser beam, it becomes easy to specify the observation site, and it becomes possible to install a secondary electron detector and a backscattered electron detector at the same time. The amount of information that can be acquired is increased, and since the image is recorded by the image processing device, the image obtained by the optical microscope and the image obtained by the scanning electron microscope can be observed at the same time, and the work of specifying the observation site can be performed easily. Since the observation point by the microscope can be moved in the vertical direction, even if the working distance D 1 of the scanning electron microscope changes, such as when the thickness of the sample changes, it can be easily dealt with.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】該実施例に於ける走査型電子顕微鏡と光学顕微
鏡との位置関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a positional relationship between a scanning electron microscope and an optical microscope in the example.

【図3】試料の移動方向と光学顕微鏡の画像の移動方向
の説明図である。
FIG. 3 is an explanatory diagram of a moving direction of a sample and a moving direction of an image of an optical microscope.

【図4】試料と試料台との関係を示す図である。FIG. 4 is a diagram showing a relationship between a sample and a sample table.

【図5】走査型電子顕微鏡像に関する説明図である。FIG. 5 is an explanatory diagram regarding a scanning electron microscope image.

【図6】光学顕微鏡像に関する説明図である。FIG. 6 is an explanatory diagram regarding an optical microscope image.

【図7】光学顕微鏡像に関する説明図である。FIG. 7 is an explanatory diagram regarding an optical microscope image.

【図8】本発明の他の実施例を示す説明図である。FIG. 8 is an explanatory diagram showing another embodiment of the present invention.

【図9】本発明の他の実施例を示す説明図である。FIG. 9 is an explanatory diagram showing another embodiment of the present invention.

【図10】本発明の他の実施例を示す説明図である。FIG. 10 is an explanatory diagram showing another embodiment of the present invention.

【図11】従来例を示す説明図である。FIG. 11 is an explanatory diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 電子銃 3 走査型電子顕微鏡 4 試料室 5 試料 7 2次電子検出器 16 試料台 17 反射電子検出器 19 光学顕微鏡 21 同軸照明ユニット 22 冷光照明光源 23 ファイバケーブル 24 カラーCCDカメラ 25 カラーモニタ 26 画像処理装置 27 スイッチング回路 29 CRT 31 3角スライドブロック 32 凹面スライド座 35 可動ミラー 36 レーザ光線発光手段 1 electron gun 3 scanning electron microscope 4 sample chamber 5 sample 7 secondary electron detector 16 sample stage 17 backscattered electron detector 19 optical microscope 21 coaxial illumination unit 22 cold light illumination source 23 fiber cable 24 color CCD camera 25 color monitor 26 image Processing device 27 Switching circuit 29 CRT 31 Triangular slide block 32 Concave slide seat 35 Movable mirror 36 Laser beam emitting means

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 走査型電子顕微鏡に設けられた試料室の
外に該走査型電子顕微鏡の光軸と試料上で交差可能な光
軸を有する長焦点距離光学顕微鏡を設けたことを特徴と
する走査型電子顕微鏡装置。
1. A long focal length optical microscope having an optical axis capable of intersecting with the optical axis of the scanning electron microscope on the sample is provided outside the sample chamber provided in the scanning electron microscope. Scanning electron microscope device.
【請求項2】 走査型電子顕微鏡の光軸途中からレーザ
光線を走査型電子顕微鏡の光軸に合致させ試料に向かっ
て照射するレーザ光線照射手段を設けた請求項1の走査
型電子顕微鏡装置。
2. The scanning electron microscope apparatus according to claim 1, further comprising laser beam irradiation means for irradiating the sample with a laser beam aligned with the optical axis of the scanning electron microscope from the middle of the optical axis of the scanning electron microscope.
【請求項3】 試料室に2次電子検出器、反射電子検出
器を同時に設け、該両検出器からの信号をスイッチング
回路を介して映像表示手段に入力する様構成した請求項
1の走査型電子顕微鏡装置。
3. The scanning type according to claim 1, wherein a secondary electron detector and a backscattered electron detector are simultaneously provided in the sample chamber, and signals from both detectors are input to the image display means through a switching circuit. Electron microscope device.
【請求項4】 光学顕微鏡に撮像手段を設け、該撮像手
段からの映像を映像手段に表示する様構成した請求項1
の走査型電子顕微鏡装置。
4. The image pickup means is provided in the optical microscope, and the image from the image pickup means is displayed on the image pickup means.
Scanning electron microscope device.
【請求項5】 映像手段に入力される画像を記憶する画
像処理装置を具備した請求項1の走査型電子顕微鏡装
置。
5. The scanning electron microscope apparatus according to claim 1, further comprising an image processing device for storing an image input to the imager.
【請求項6】 光学顕微鏡の撮像画面と走査型電子顕微
鏡で得られる画面とを画像処理装置を介してモニタに表
示する様にし、該モニタは光学顕微鏡、走査型電子顕微
鏡のいずれか一方の画像と前記画像処理装置に記憶され
た光学顕微鏡、走査型電子顕微鏡のいずれか他方の画像
を表示する様構成した請求項1の走査型電子顕微鏡装
置。
6. An image pickup screen of an optical microscope and a screen obtained by a scanning electron microscope are displayed on a monitor via an image processing device, and the monitor displays an image of either the optical microscope or the scanning electron microscope. 2. The scanning electron microscope apparatus according to claim 1, wherein the image of either the optical microscope or the scanning electron microscope stored in the image processing apparatus is displayed.
【請求項7】 光学顕微鏡を光軸に対して交差する方向
に平行移動可能に試料室に設け、光学顕微鏡の光軸と走
査型電子顕微鏡の光軸の交点が上下方向に移動する様構
成した請求項1の走査型電子顕微鏡装置。
7. An optical microscope is provided in a sample chamber so as to be movable in parallel in a direction intersecting the optical axis, and the intersection of the optical axis of the optical microscope and the optical axis of the scanning electron microscope is moved in the vertical direction. The scanning electron microscope apparatus according to claim 1.
【請求項8】 光学顕微鏡を傾動可能に試料室に設け、
光学顕微鏡の光軸と走査型電子顕微鏡の光軸の交点が上
下方向に移動する様構成した請求項1の走査型電子顕微
鏡装置。
8. An optical microscope is tiltably provided in a sample chamber,
2. The scanning electron microscope apparatus according to claim 1, wherein the intersection of the optical axis of the optical microscope and the optical axis of the scanning electron microscope moves in the vertical direction.
JP7097802A 1995-03-30 1995-03-30 Scanning electron microscope apparatus Pending JPH08273578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7097802A JPH08273578A (en) 1995-03-30 1995-03-30 Scanning electron microscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7097802A JPH08273578A (en) 1995-03-30 1995-03-30 Scanning electron microscope apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004214292A Division JP4004490B2 (en) 2004-07-22 2004-07-22 Scanning electron microscope

Publications (1)

Publication Number Publication Date
JPH08273578A true JPH08273578A (en) 1996-10-18

Family

ID=14201920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7097802A Pending JPH08273578A (en) 1995-03-30 1995-03-30 Scanning electron microscope apparatus

Country Status (1)

Country Link
JP (1) JPH08273578A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227932A (en) * 1999-11-30 2001-08-24 Minoru Ito Mask inspection apparatus
WO2009062929A2 (en) * 2007-11-13 2009-05-22 Carl Zeiss Smt Ltd Beam device and system comprising a particle beam device and an optical microscope
JP2010097768A (en) * 2008-10-15 2010-04-30 Topcon Corp Complex type observation device
WO2010084860A1 (en) * 2009-01-22 2010-07-29 株式会社日立ハイテクノロジーズ Electron microscope
JP2012015033A (en) * 2010-07-02 2012-01-19 Keyence Corp Magnification observation apparatus and method
CN103308464A (en) * 2012-03-13 2013-09-18 株式会社岛津制作所 Microscope
CN113964006A (en) * 2020-07-21 2022-01-21 聚束科技(北京)有限公司 Method and system for tracking beam spot of particle beam device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227932A (en) * 1999-11-30 2001-08-24 Minoru Ito Mask inspection apparatus
WO2009062929A2 (en) * 2007-11-13 2009-05-22 Carl Zeiss Smt Ltd Beam device and system comprising a particle beam device and an optical microscope
EP2061067A3 (en) * 2007-11-13 2010-04-07 Carl Zeiss SMT Limited Beam device and system comprising a particle beam device and an optical microscope
WO2009062929A3 (en) * 2007-11-13 2010-09-16 Carl Zeiss Smt Ltd Beam device and system comprising a particle beam device and an optical microscope
US8530856B2 (en) 2007-11-13 2013-09-10 Carl Zeiss Nts Limited Beam device system comprising a particle beam device and an optical microscope
JP2010097768A (en) * 2008-10-15 2010-04-30 Topcon Corp Complex type observation device
JP5372020B2 (en) * 2009-01-22 2013-12-18 株式会社日立ハイテクノロジーズ electronic microscope
WO2010084860A1 (en) * 2009-01-22 2010-07-29 株式会社日立ハイテクノロジーズ Electron microscope
US8947520B2 (en) 2009-01-22 2015-02-03 Hitachi High-Technologies Corporation Electron microscope
JP2012015033A (en) * 2010-07-02 2012-01-19 Keyence Corp Magnification observation apparatus and method
JP2013190554A (en) * 2012-03-13 2013-09-26 Shimadzu Corp Microscope
CN103308464A (en) * 2012-03-13 2013-09-18 株式会社岛津制作所 Microscope
CN113964006A (en) * 2020-07-21 2022-01-21 聚束科技(北京)有限公司 Method and system for tracking beam spot of particle beam device
CN113964006B (en) * 2020-07-21 2023-09-12 聚束科技(北京)有限公司 Beam spot tracking method and system of particle beam device

Similar Documents

Publication Publication Date Title
CN101241087B (en) Apparatus for observing a sample with a particle beam and an optical microscope
EP1882967B1 (en) Scanning examination apparatus
US7888643B2 (en) Focusing and positioning device for a particle-optical raster microscope
CN109314029B (en) Charged particle beam device
JP4004490B2 (en) Scanning electron microscope
US20220206277A1 (en) System and method for macroscopic and microscopic imaging ex-vivo tissue
JP2002042713A (en) Scanning electron microscope provided with detection part in objective lens
JPH08273578A (en) Scanning electron microscope apparatus
JP2010080144A (en) Compound microscope device and method of observing sample
US6031230A (en) Reflected electron detector and a scanning electron microscope device using it
US6800853B2 (en) Electron microscope and method of photographing TEM images
JP3896196B2 (en) Scanning microscope
JP4574758B2 (en) Microscope image observation device
JPH10214583A (en) Scanning electron microscope
US6573502B2 (en) Combined electron microscope
JP3573508B2 (en) Confocal scanning optical microscope
JP4129088B2 (en) Scanning transmission electron microscope
JP4456962B2 (en) SAMPLE DISPLAY DEVICE, SAMPLE DISPLAY DEVICE OPERATION METHOD, SAMPLE DISPLAY DEVICE OPERATION PROGRAM, AND COMPUTER-READABLE RECORDING MEDIUM OR RECORDED DEVICE
JP2002122552A (en) Defect inspection device and method
JP3270627B2 (en) Display method of sample height in electron beam microanalyzer
JP6255305B2 (en) Optical microscope
JPH0756788B2 (en) electronic microscope
JP2002279926A (en) Transmission type electron microscope
JP4769035B2 (en) Scanning observation device
JP2913807B2 (en) Electron beam irradiation analyzer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719