JPH08269502A - Method for suppressing activity of active metal - Google Patents

Method for suppressing activity of active metal

Info

Publication number
JPH08269502A
JPH08269502A JP7069523A JP6952395A JPH08269502A JP H08269502 A JPH08269502 A JP H08269502A JP 7069523 A JP7069523 A JP 7069523A JP 6952395 A JP6952395 A JP 6952395A JP H08269502 A JPH08269502 A JP H08269502A
Authority
JP
Japan
Prior art keywords
active metal
hydrogen storage
gas
ppm
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7069523A
Other languages
Japanese (ja)
Inventor
Hayami Nagano
早実 長野
Isao Ushijima
功 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7069523A priority Critical patent/JPH08269502A/en
Publication of JPH08269502A publication Critical patent/JPH08269502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE: To provide a method for suppressing activity of active metal to enable handling active metal safely. CONSTITUTION: An extremely thin inactive film is generated on the surface of active metal by bringing the active metal such as hydrogen storage alloy into contact with an inert gas containing trace of gas component to react with the alloy. By generating the extremely thin inert film on the surface of the active metal, the active metal can be safely handled without losing activity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は活性金属を製造若しくは
取扱う分野において活性金属の安全な取扱いを可能とす
る活性金属の活性能抑制法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for suppressing active activity of an active metal which enables safe handling of the active metal in the field of producing or handling the active metal.

【0002】[0002]

【従来の技術】水素吸蔵合金や各種触媒等に使用される
金属粉などの活性金属は酸素、窒素はもちろん、炭酸ガ
ス、水分等とも激しく反応し酸化物、窒化物等を生成す
る。これらの活性金属は取扱いに際し、発火、発炎を生
じたりするため、従来はひたすらAr、He等の不活性
ガス雰囲気(例えばグローブボックス内)で取扱ってき
た。
2. Description of the Related Art Active metals such as metal powders used for hydrogen storage alloys and various catalysts react violently with not only oxygen and nitrogen but also carbon dioxide, water and the like to form oxides and nitrides. Since these active metals may ignite or ignite during handling, they have been conventionally handled only in an inert gas atmosphere of Ar, He or the like (for example, in a glove box).

【0003】[0003]

【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、従来法におけるような活性金属の取扱上の不便
を解消しうる活性金属の処理方法を提供しようとするも
のである。
SUMMARY OF THE INVENTION In view of the above-mentioned state of the art, the present invention is to provide a method for treating an active metal which can eliminate the inconvenience in handling the active metal as in the conventional method.

【0004】[0004]

【課題を解決するための手段】本発明は(1)活性金属
を、これと反応するガス成分を微量含む不活性ガスと接
触させて活性金属表面に極めて薄い不活性膜を生成させ
ることを特徴とする活性金属の活性能抑制法、(2)不
活性ガス中の活性金属と反応する微量のガス成分が(酸
素+窒素)であり、その濃度Aを8500ppm以下と
し、該ガス成分を含む不活性ガスと活性金属の接触時間
Bを300時間以下とし、かつ前記AとBが0.1(時
間・ppm)≦A(ppm)×B(時間)≦3000
(時間・ppm)となるように制御することを特徴とす
る上記(1)の活性金属の活性能抑制法及び(3)活性
金属が水素吸蔵合金である前記(1)又は(2)の活性
金属の活性能抑制法である。
The present invention is characterized in that (1) an active metal is brought into contact with an inert gas containing a trace amount of a gas component that reacts with the active metal to form an extremely thin inert film on the surface of the active metal. And (2) the trace amount of gas component that reacts with the active metal in the inert gas is (oxygen + nitrogen), and the concentration A is 8500 ppm or less, and The contact time B between the active gas and the active metal is 300 hours or less, and the A and B are 0.1 (hour / ppm) ≦ A (ppm) × B (hour) ≦ 3000.
(Time · ppm) so that the activity is controlled so as to be (time / ppm), and (3) the activity of (1) or (2), wherein the active metal is a hydrogen storage alloy. This is a method for suppressing the activity of metal.

【0005】本発明でいう活性金属とは、ある種の気体
または液体と接触させることにより、吸着・吸収または
反応を生じ化合物を生成するものを意味し、活性金属と
しては対象ガスによって異なるが、Ti、Ni、Zr、
Hf、Fe、Al、Mg、Zn、Biなどの微粉やZr
・Co型水素吸蔵合金微粉などがあげられる。活性金属
と反応するガス成分(以下、反応成分という)として
は、活性金属の種類及び利用目的によっても異なるが、
一般的にH2 、O2 、N2 、CH4 、H2 O、CO、C
2 、NH3 、NO、NO2 、SO2 やハロゲン化物が
あげられ、活性金属と反応成分との反応によって例えば
酸化膜、窒化膜、炭化膜、硫化膜などの不活性膜を生成
する。
The active metal as used in the present invention means a compound which is adsorbed, absorbed or reacted to form a compound when brought into contact with a certain gas or liquid, and the active metal varies depending on the target gas. Ti, Ni, Zr,
Fine powder such as Hf, Fe, Al, Mg, Zn, Bi and Zr
-Co-type hydrogen storage alloy fine powder and the like are included. The gas component that reacts with the active metal (hereinafter referred to as the reaction component) varies depending on the type of the active metal and the purpose of use,
Generally, H 2 , O 2 , N 2 , CH 4 , H 2 O, CO, C
Examples thereof include O 2 , NH 3 , NO, NO 2 , SO 2 and halides, which produce an inactive film such as an oxide film, a nitride film, a carbonized film or a sulfide film by a reaction between an active metal and a reaction component.

【0006】本発明の方法においては、活性金属をA
r、Heなどの不活性ガス中に微量の酸素、窒素などの
反応成分を含んだ雰囲気中に常温で開放し、または活性
金属を充填した塔、容器に微量の酸素、窒素などの反応
成分を含んだ不活性ガス(以下、処理ガスという)を、
所定条件で流通させ活性金属表面に不活性膜を生成させ
る。この処理法において重要なことは、処理条件の範囲
設定で、次の項目に配慮して設定することが必要であ
る。 1.過剰処理は活性金属の失活を来し、不充分処理では
発火等の危険性が残る。 2.処理条件は処理ガス中の酸素、窒素などの反応成分
の濃度と接触時間に支配されるため、処理条件と処理ガ
スとの相関を確立しておく。
In the method of the present invention, the active metal is A
Open at room temperature in an atmosphere that contains a small amount of reactive components such as oxygen and nitrogen in an inert gas such as r or He, or add a small amount of reactive components such as oxygen and nitrogen to a column or container filled with an active metal. Inert gas containing (hereinafter referred to as processing gas),
It is circulated under a predetermined condition to form an inactive film on the surface of the active metal. What is important in this processing method is that the range of processing conditions must be set in consideration of the following items. 1. Excessive treatment leads to deactivation of the active metal, and inadequate treatment leaves a risk of ignition. 2. Since the processing conditions are governed by the concentrations of reaction components such as oxygen and nitrogen in the processing gas and the contact time, the correlation between the processing conditions and the processing gas is established.

【0007】金属は一部の例外を除き、表面に酸化物、
窒化物、炭化物等の不活性膜を形成してそれ自身は安定
な状態を保持している。本発明はこの現象は活性金属に
も適用できると考えてなされたものである。
Metals, with some exceptions, have oxides on the surface,
An inactive film of nitride, carbide, etc. is formed and maintains itself in a stable state. The present invention has been made on the assumption that this phenomenon can be applied to active metals.

【0008】活性金属は処理ガス中の酸素、窒素などの
反応成分と反応して不活性膜を生成する。例えばZr・
Co型水素吸蔵合金や鉄に酸素を接触させた場合には次
式のように酸化物を生成する。
The active metal reacts with reactive components such as oxygen and nitrogen in the processing gas to form an inactive film. For example, Zr
When oxygen is brought into contact with a Co-type hydrogen storage alloy or iron, an oxide is generated as in the following formula.

【化1】Zr・Co+O2 →Zrx y ・Cox z Fe+O2 →Fex y ここでx、y、zはZr、Co、Feの酸化物形態によ
って定まる定数である。また、反応成分が窒素の場合は
窒化物、炭酸ガス等に対しては炭化物、酸化物などの不
活性膜を生成する。
## STR1 ## Zr · Co + O 2 → Zr x O y · Co x O z Fe + O 2 → Fe x O y wherein x, y, z are constants determined Zr, Co, by the oxide form of Fe. Further, when the reaction component is nitrogen, an inactive film such as a nitride or a carbide or an oxide is formed for carbon dioxide gas.

【0009】これらの反応はいずれも発熱反応で発熱量
は反応成分濃度したがって単位時間に反応する反応成分
量により定まる。反応成分濃度が高すぎると激しい発熱
をともない発火と金属の溶融にともない、不活性膜が内
部にも生成し、失活するため、活性金属の特性は失われ
る。従って、本発明ではこの反応を徐々に、しかも表面
に極めて薄い不活性膜を生成させることにより活性金属
の表面のみを不活性にし、活性金属内部は健全で活性金
属の特性を保持するようにしたものである。
Each of these reactions is an exothermic reaction, and the exothermic amount is determined by the concentration of the reaction components and thus the amount of the reaction components reacted in a unit time. If the concentration of the reaction component is too high, an inactive film is formed inside the metal due to ignition accompanied by intense heat generation and melting of the metal, and the metal is deactivated, so that the characteristics of the active metal are lost. Therefore, according to the present invention, this reaction is gradually performed, and by forming an extremely thin inert film on the surface, only the surface of the active metal is made inactive, and the inside of the active metal is sound and maintains the characteristics of the active metal. It is a thing.

【0010】処理ガス中の反応成分の濃度及び活性金属
との接触時間は、処理対象とする活性金属の種類や形
態、反応成分の種類により大幅に異なるので、それぞれ
の条件に応じて適宜設定すればよいが、一般的傾向とし
ては反応成分の濃度が高ければ接触時間を短くし、反応
成分の濃度が低い場合には接触時間を長くすればよいこ
とはもちろんである。
Since the concentration of the reaction component in the processing gas and the contact time with the active metal vary greatly depending on the type and form of the active metal to be treated and the type of the reaction component, it may be set appropriately according to each condition. However, as a general tendency, the contact time may be shortened when the concentration of the reaction component is high, and the contact time may be lengthened when the concentration of the reaction component is low.

【0011】例えば、活性金属がNi、Ti、Zr、H
f、Coなどの金属又は合金であり、活性金属と反応す
る反応成分を(酸素+窒素)とした場合、活性金属表面
にのみ不活性膜を生成させることのできる具体的条件と
しては、反応成分の濃度Aと、それらの反応成分と活性
金属との接触時間Bが0.1(時間・ppm)≦A(p
pm)×B(時間)≦3000(時間・ppm)の関係
を満たしていればよい。
For example, the active metal is Ni, Ti, Zr, H.
When the reaction component that reacts with the active metal is (oxygen + nitrogen), which is a metal or alloy such as f or Co, the specific conditions under which the inactive film can be formed only on the active metal surface are: And the contact time B between these reaction components and the active metal is 0.1 (hour · ppm) ≦ A (p
It is sufficient that the relationship of (pm) × B (hour) ≦ 3000 (hour · ppm) is satisfied.

【0012】[0012]

【実施例】以下実施例により本発明の方法をさらに具体
的に説明する。この実施例においては、Zr−Co合金
からなる水素吸蔵合金を使用し、表面に極薄の不活性膜
を生成させて活性能を抑制する試験を行った。試験条件
は表1に示すとおりである。
EXAMPLES The method of the present invention will be described in more detail with reference to the following examples. In this example, a hydrogen storage alloy made of a Zr—Co alloy was used, and a test was conducted to suppress the activity by forming an extremely thin inert film on the surface. The test conditions are as shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】(試験方法)常温で水素を吸蔵させ、過熱
・減圧して水素を放出させる処理(常温〜600℃、圧
力:大気圧〜10-3Torr)を3回繰り返して活性化
したZr−Co活性金属(合金1モル当たりの水素吸着
量0.5〜2.8モル)を、前記角型グローブボックス
の一方のグローブボックス内で丸型シャーレに秤取し、
10〜10000ppmの(酸素+窒素;実験では空気
を使用)を含むアルゴン雰囲気とした他方のグローブボ
ックスに移し入れ、所定時間開放暴露して活性能抑制処
理を行った後、水素吸蔵合金としての性能評価を行っ
た。
(Test Method) Zr-activated by occluding hydrogen at room temperature, heating (reducing hydrogen by depressurizing) and releasing hydrogen (at room temperature to 600 ° C., pressure: atmospheric pressure to 10 -3 Torr) three times. Co active metal (hydrogen adsorption amount of 0.5 to 2.8 mol per mol of alloy) was weighed in a round petri dish in one of the square glove boxes.
After transferring to another glove box in an argon atmosphere containing 10 to 10000 ppm (oxygen + nitrogen; air was used in the experiment), exposing for a predetermined time and performing activity suppression treatment, then performance as a hydrogen storage alloy An evaluation was made.

【0015】図1に活性能抑制処理の状況を示す。図1
において活性能抑制処理(以下、単に処理という)を行
う活性金属1を所定の雰囲気ガスに調整したグローブボ
ックスのチャバ2内に開放扉3、パスボックス4を経て
装入、静置する。装入操作は通常のグローブボックス操
作に基づいて、排気ポンプ5を使用し、外気を遮断しな
がら行うようにする。チャンバ2には吸着浄化塔6、循
環ファン7が設けられており、適宜チャンバ内の不純物
浄化を行う。さらに、ガスガスサンプリング装置8、ガ
ス分析計9によりチャンバ2内のガス組成が分析され、
その結果を循環ファン7又は切換・調節弁12、13、
14にフィードバックし、チャンバ2に循環ガスを戻す
か又は流量計15を経てアルゴンガス10若しくは酸
素、窒素等を含む標準ガス11を供給する。なお、チャ
ンバ2内の温度、圧力等は温度・圧力計16により常時
観測される。17は操作用のグローブを示す。
FIG. 1 shows the status of the activity suppressing treatment. FIG.
In the above, the active metal 1 to be subjected to the activity suppressing treatment (hereinafter, simply referred to as treatment) is loaded into the chabah 2 of the glove box adjusted to a predetermined atmosphere gas through the open door 3 and the pass box 4, and allowed to stand still. The charging operation is performed based on a normal glove box operation using the exhaust pump 5 while shutting off the outside air. The chamber 2 is provided with an adsorption purification tower 6 and a circulation fan 7, and appropriately purifies impurities in the chamber. Furthermore, the gas composition in the chamber 2 is analyzed by the gas gas sampling device 8 and the gas analyzer 9,
The result is the circulation fan 7 or the switching / control valves 12, 13,
It is fed back to 14, and the circulating gas is returned to the chamber 2, or the argon gas 10 or the standard gas 11 containing oxygen, nitrogen, etc. is supplied through the flow meter 15. The temperature and pressure in the chamber 2 are constantly monitored by the temperature / pressure gauge 16. Reference numeral 17 denotes a glove for operation.

【0016】所定の雰囲気で所定時間開放曝露した処理
活性金属を、活性金属評価試験用カプセルに入れ、図2
に示す試験装置によって、水素吸蔵・放出能力の評価を
行い水素吸蔵・放出能力と曝露条件との関係を評価し
た。図2の試験装置において、処理活性金属は温度調節
器22を備えた金属ベッド収納容器21に収納され、水
素貯留タンク24からの水素により吸蔵・放出試験が行
われる。23は金属ベッド収納容器21へのごみの混入
を防ぐためのフィルタであり、水素貯留タンク24に
は、バラトロン圧力計25、電離真空計26が取付けら
れている。原料水素はガスボンベ28からコールドトラ
ップ27を経て水素貯留タンク24へ送られる。余剰の
水素、着脱水素又は真空廃棄ガスはロータリ真空ポンプ
29、ターボ分子ポンプ30から、安全のための水バブ
ラ31を経由して大気に放出される。
The treated active metal exposed in a predetermined atmosphere for a predetermined period of time was placed in an active metal evaluation test capsule, and as shown in FIG.
The hydrogen storage / desorption capacity was evaluated by the test device shown in Fig. 1 and the relationship between the hydrogen storage / desorption capacity and the exposure conditions was evaluated. In the test apparatus of FIG. 2, the treated active metal is stored in a metal bed storage container 21 equipped with a temperature controller 22, and a storage / release test is carried out with hydrogen from a hydrogen storage tank 24. Reference numeral 23 is a filter for preventing the entry of dust into the metal bed storage container 21, and the hydrogen storage tank 24 is equipped with a Baratron pressure gauge 25 and an ionization vacuum gauge 26. The raw material hydrogen is sent from the gas cylinder 28 to the hydrogen storage tank 24 via the cold trap 27. Excess hydrogen, detachable hydrogen or vacuum waste gas is discharged from the rotary vacuum pump 29 and the turbo molecular pump 30 to the atmosphere via a water bubbler 31 for safety.

【0017】このようにして試験を行った結果の1例を
図3に示す。図3は水素吸蔵合金を反応成分含有不活性
ガスとしてそれぞれ15及び930ppmの空気(酸素
+窒素)を含有するアルゴンガスで室温下に処理した際
の性能低下率と処理時間(接触時間)との関係を示すグ
ラフである。図3から、930ppmの空気を含む不活
性ガスで処理した場合は、数時間程度の処理で活性低下
率が1%を超えてしまうが、15ppmの空気を含む不
活性ガスの場合には100時間程度まで1%以下の活性
低下率を維持できることがわかる。
FIG. 3 shows an example of the result of the test conducted as described above. FIG. 3 shows the performance reduction rate and the treatment time (contact time) when the hydrogen storage alloy was treated at room temperature with argon gas containing 15 and 930 ppm of air (oxygen + nitrogen) as the reactive component-containing inert gas, respectively. It is a graph which shows a relationship. From FIG. 3, when treated with an inert gas containing 930 ppm of air, the activity reduction rate exceeds 1% after about several hours of treatment, but 100 hours with an inert gas containing 15 ppm of air. It can be seen that the activity reduction rate of 1% or less can be maintained to a certain degree.

【0018】反応成分(空気)の濃度と処理時間(接触
時間)を変えて室温で処理した試験結果を活性金属の水
素吸蔵・放出能力が新品性能に対して、1%以内の低下
にとどまった曝露条件を安全領域とし、20%以上の性
能低下を来した曝露条件を危険(失活)領域として整理
した。安全領域に入る曝露条件の上限値としては、例え
ば、(O2 +N2 )濃度が300ppmで接触時間が1
0Hrであり、下限値としては、(O2 +N2 )濃度が
10ppmで接触時間が0.01Hrとなる。この結果
をまとめて図4に示した。図4において、○印より左側
は安全領域、×印より右側は失活領域、○印と×印の間
部は注意領域である。ここでいう安全領域とは、活性金
属の性能低下が0.2〜1%である範囲を意味する。
The test results obtained by treating at room temperature by changing the concentration of the reaction component (air) and the treatment time (contact time) showed that the hydrogen storage / release capacity of the active metal was reduced within 1% of the new performance. The exposure conditions were classified as the safe region, and the exposure conditions that caused a performance decrease of 20% or more were arranged as the dangerous (deactivated) region. As the upper limit of the exposure condition that enters the safety region, for example, the (O 2 + N 2 ) concentration is 300 ppm and the contact time is 1
It is 0 Hr, and as the lower limit value, the contact time is 0.01 Hr when the (O 2 + N 2 ) concentration is 10 ppm. The results are shown together in FIG. In FIG. 4, the left side of the ∘ mark is the safety area, the right side of the ∘ mark is the deactivation area, and the area between the ∘ and x marks is the caution area. Here, the safe area means a range in which the performance of the active metal is reduced by 0.2 to 1%.

【0019】次に本発明の方法によって処理した活性金
属の安全性の評価試験を行った。試験は未処理品及び本
発明の方法によって処理した水素吸蔵合金の試料を空気
中に放置(室温25℃)し、放置時間と活性金属の温度
の上昇程度を調べた。結果は図5に示すとおりで、合金
1モル当たり水素を0.8モル吸蔵させた水素吸蔵合金
(未処理品)によるテスト1では約2分後に爆発燃焼し
た。また、水素吸蔵量が0.02モル以下の未処理水素
吸蔵合金によるテスト2でも3分前後で赤熱した。これ
に対し、100ppmの空気を含むアルゴンガス中で8
時間処理した水素吸蔵合金(水素を1.6モル吸蔵した
もの)によるテスト3では100分経過後でもやや温か
くなる程度で取扱い上の危険を感じることはなかった。
一般に、この種の活性金属を取り扱う場合、特別な場合
を除いて室内開放が20分を超えることはなく、本発明
の方法による処理品が十分な安全性を有していることが
わかる。
Next, a safety evaluation test of the active metal treated by the method of the present invention was conducted. In the test, an untreated product and a sample of the hydrogen storage alloy treated by the method of the present invention were allowed to stand in air (room temperature 25 ° C.), and the standing time and the degree of increase in the temperature of the active metal were examined. The results are shown in FIG. 5, and in Test 1 using a hydrogen storage alloy (untreated product) in which 0.8 mol of hydrogen was stored per mol of the alloy, explosive combustion occurred after about 2 minutes. Also, in Test 2 using an untreated hydrogen storage alloy having a hydrogen storage amount of 0.02 mol or less, red heat occurred in about 3 minutes. On the other hand, in an argon gas containing 100 ppm of air, 8
In the test 3 using the hydrogen storage alloy that had been treated for a time (the one in which 1.6 mol of hydrogen was stored), the temperature became slightly warm even after 100 minutes, and no danger of handling was felt.
In general, when this kind of active metal is handled, the indoor opening does not exceed 20 minutes except for special cases, and it can be seen that the product treated by the method of the present invention has sufficient safety.

【0020】本発明の方法により処理した水素吸蔵合金
と未処理の水素吸蔵合金について、X線回折分析により
表面の組成を分析した。その結果、処理品では活性金属
の酸化物(酸化ジルコニウム等)が主成分であったが、
未処理品では活性金属の酸化物は検出されなかった。
The composition of the surface of the hydrogen storage alloy treated by the method of the present invention and the untreated hydrogen storage alloy were analyzed by X-ray diffraction analysis. As a result, the treated products contained active metal oxides (zirconium oxide, etc.) as the main component.
No oxide of active metal was detected in the untreated product.

【0021】[0021]

【発明の効果】活性金属表面に極薄の不活性膜を生成さ
せることにより、活性金属を失活させることなく安全に
取扱うことが可能となった。
By forming an ultrathin inert film on the surface of the active metal, it becomes possible to handle the active metal safely without deactivating it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法による活性能抑制処理試験の1例
を示す説明図。
FIG. 1 is an explanatory diagram showing an example of an activity suppressing treatment test according to the method of the present invention.

【図2】水素吸蔵合金の水素吸蔵・放出能力の評価を行
う試験装置の説明図。
FIG. 2 is an explanatory view of a test device for evaluating the hydrogen storage / release capacity of a hydrogen storage alloy.

【図3】水素吸蔵合金を反応成分含有不活性ガスで処理
した際の性能低下率と処理時間との関係の例を示すグラ
フ。
FIG. 3 is a graph showing an example of the relationship between the rate of performance deterioration and the treatment time when a hydrogen storage alloy is treated with a reactive component-containing inert gas.

【図4】試験結果に基づく処理条件と安全領域、失活領
域との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the processing conditions based on the test results and the safety region and deactivation region.

【図5】水素吸蔵合金の試料を空気中に放置した際の、
放置時間と活性金属の温度との関係の例を示すグラフ。
FIG. 5 shows a sample of a hydrogen storage alloy left in the air,
The graph which shows the example of the leaving time and the temperature of an active metal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性金属を、これと反応するガス成分を
微量含む不活性ガスと接触させて活性金属表面に極めて
薄い不活性膜を生成させることを特徴とする活性金属の
活性能抑制法。
1. A method for suppressing the activity of an active metal, which comprises contacting the active metal with an inert gas containing a trace amount of a gas component that reacts with the active metal to form an extremely thin inert film on the surface of the active metal.
【請求項2】 不活性ガス中の活性金属と反応する微量
のガス成分が(酸素+窒素)であり、その濃度Aを85
00ppm以下とし、該ガス成分を含む不活性ガスと活
性金属の接触時間Bを300時間以下とし、かつ前記A
とBが0.1(時間・ppm)≦A(ppm)×B(時
間)≦3000(時間・ppm)となるように制御する
ことを特徴とする請求項1記載の活性金属の活性能抑制
法。
2. A trace amount of a gas component which reacts with an active metal in an inert gas is (oxygen + nitrogen), and its concentration A is 85.
The contact time B between the inert gas containing the gas component and the active metal is 300 hours or less, and
And B are controlled so as to be 0.1 (hour / ppm) ≦ A (ppm) × B (hour) ≦ 3000 (hour / ppm). Law.
【請求項3】 活性金属が水素吸蔵合金である請求項1
又は2に記載の活性金属の活性能抑制法。
3. The active metal is a hydrogen storage alloy.
Or the method for suppressing the activity of the active metal according to 2 above.
JP7069523A 1995-03-28 1995-03-28 Method for suppressing activity of active metal Pending JPH08269502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7069523A JPH08269502A (en) 1995-03-28 1995-03-28 Method for suppressing activity of active metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7069523A JPH08269502A (en) 1995-03-28 1995-03-28 Method for suppressing activity of active metal

Publications (1)

Publication Number Publication Date
JPH08269502A true JPH08269502A (en) 1996-10-15

Family

ID=13405177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7069523A Pending JPH08269502A (en) 1995-03-28 1995-03-28 Method for suppressing activity of active metal

Country Status (1)

Country Link
JP (1) JPH08269502A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068122A (en) * 2004-08-31 2006-03-16 Shibuya Kogyo Co Ltd Isolator system
JP2011514435A (en) * 2008-01-23 2011-05-06 トラディウム・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Blunt metal powder or alloy powder and method and / or reaction vessel for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068122A (en) * 2004-08-31 2006-03-16 Shibuya Kogyo Co Ltd Isolator system
JP4529593B2 (en) * 2004-08-31 2010-08-25 澁谷工業株式会社 Isolator system
JP2011514435A (en) * 2008-01-23 2011-05-06 トラディウム・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Blunt metal powder or alloy powder and method and / or reaction vessel for producing the same
US8821610B2 (en) 2008-01-23 2014-09-02 Tradium Gmbh Phlegmatized metal powder or alloy powder and method and reaction vessel for the production thereof

Similar Documents

Publication Publication Date Title
JP2751958B2 (en) Adsorbent and method for removing trace oxygen from inert gas
EP0784595B1 (en) Process for removing oxygen from ammonia at room temperature
TWI333428B (en) Adsorption composition and process for removing carbon monoxide from substance streams
EP0240270A1 (en) One-step process for purifying an inert gas
JP2004515344A (en) Methods and materials for purifying hydride, inert and non-reactive gases
EP0194366A1 (en) Method of cleaning exhaust gases
JP3214698B2 (en) Removal method of gaseous hydride
Cappelen et al. Oxidation of silicon carbide in oxygen and in water vapour at 1500 C
Müslehiddinoğlu et al. CO adsorption on supported and promoted Ag epoxidation catalysts
JPH08269502A (en) Method for suppressing activity of active metal
Bergene et al. Surface areas of Pt–Rh catalyst gauzes used for ammonia oxidation
Segal et al. Ammonia synthesis catalyzed by uranium nitride: I. The reaction mechanism
Sakaguchi et al. The confinement of hydrogen in LaNi5 by poisoning of the hydride surface
US4771030A (en) Process for preparing particulate aluminum metal for adsorbing mercury from natural gas
Mari et al. Protection of Fe-Cr-Al alloys in sulfidizing environments by means of an α-Al 2 O 3 scale
JP2005281115A (en) Gas refining apparatus
Chinchen et al. Co-adsorption of oxygen and carbon dioxide on copper metal in a copper/zinc oxide/alumina catalyst
JPS63185431A (en) Removal of silicon hydride and gas treatment apparauts used therein
JPS6010776B2 (en) Ethylene removal agent
JPS62213822A (en) Treatment of gas containing arsine
JPS62193633A (en) Reducing agent for nitrogen oxide
JPS62286521A (en) Method for purifying exhaust gas
JPH06327931A (en) Purifying method of waste gas
SU1134538A1 (en) Composition for accumulating hydrogen
RU2275232C2 (en) Method of purification of the inert gas from methane

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991019