JPH0826947B2 - Shape memory resin pipe and steel pipe lining method using it - Google Patents

Shape memory resin pipe and steel pipe lining method using it

Info

Publication number
JPH0826947B2
JPH0826947B2 JP2164740A JP16474090A JPH0826947B2 JP H0826947 B2 JPH0826947 B2 JP H0826947B2 JP 2164740 A JP2164740 A JP 2164740A JP 16474090 A JP16474090 A JP 16474090A JP H0826947 B2 JPH0826947 B2 JP H0826947B2
Authority
JP
Japan
Prior art keywords
resin
pipe
shape memory
diameter
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2164740A
Other languages
Japanese (ja)
Other versions
JPH0396785A (en
Inventor
浩史 岸川
雅一 大北
浩司 山本
和行 中筋
浩一 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of JPH0396785A publication Critical patent/JPH0396785A/en
Publication of JPH0826947B2 publication Critical patent/JPH0826947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/26Lining or sheathing of internal surfaces
    • B29C63/34Lining or sheathing of internal surfaces using tubular layers or sheathings
    • B29C63/343Lining or sheathing of internal surfaces using tubular layers or sheathings the tubular sheathing having a deformed non-circular cross-section prior to introduction

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、形状記憶樹脂管およびそれを用いた鋼管の
ライニング方法に関する。
Description: TECHNICAL FIELD The present invention relates to a shape memory resin pipe and a steel pipe lining method using the same.

(従来の技術) 従来、水道管やガス管等の土中埋設管が老朽化して交
換の必要を生じた時、掘り起こして新管と交換していた
が、掘り起こし作業に人手、時間、機械を要するため高
コストとなるとともに、工期が長く、交通を阻害すると
いう欠点があった。
(Prior art) Conventionally, when underground pipes such as water pipes and gas pipes were deteriorated and needed to be replaced, they were dug up and replaced with new pipes. As a result, the cost is high, and the construction period is long, which impedes traffic.

これらの対策として、既設の老朽管を更生する各種の
方法がこれまでに提案されている。従来の管更生法に
は、既設管に空気と共に塗料を圧送して管内面をライニ
ングする方法、既設管の中にそれより小径のパイプを挿
入するパイプインパイプ工法、ライニングホースを反転
させながら既設管に挿入していく反転工法等があり、実
際に応用されている。
As measures against these, various methods of rehabilitating existing aged pipes have been proposed so far. The conventional pipe rehabilitation method is a method of lining the inner surface of the pipe by pumping paint with air to the existing pipe, a pipe-in-pipe construction method of inserting a pipe with a smaller diameter into the existing pipe, and the existing lining hose while reversing it. There is an inversion method that inserts it into the pipe, and it is actually applied.

このうちパイプインパイプ工法は、更生される既設老
朽管の中に、その内径の90%前後の外径を有する樹脂管
を挿入し、この挿入した樹脂管と周囲の既設管との隙間
にセメントモルタル(セメントミルク)を注入して、新
たに挿入した樹脂管を固定することにより行われる。樹
脂管としては、ポリエチレンなどの汎用熱可塑性樹脂製
の管が使用されている。
Of these, the pipe-in-pipe method involves inserting a resin pipe with an outer diameter of about 90% of its inner diameter into an existing aged pipe to be rehabilitated, and cementing the gap between the inserted resin pipe and the surrounding existing pipe. It is performed by injecting mortar (cement milk) and fixing the newly inserted resin tube. As the resin tube, a tube made of a general-purpose thermoplastic resin such as polyethylene is used.

(発明が解決しようとする課題) 従来のパイプインパイプ工法では、既設管の中にスム
ースに挿入するためには、上述したように樹脂管外径が
既設管内径の90%前後と、既設管よりかなり小さい管径
の樹脂管しか使用できず、そのため管内径が細くなっ
て、流送能力が低下するという問題があった。また樹脂
管を固定するため既設管との隙間にセメントモルタル等
の詰め物を注入して、固化させる必要があり、工程の煩
雑化、高コスト化の原因となっている。
(Problems to be solved by the invention) In the conventional pipe-in-pipe construction method, in order to smoothly insert into the existing pipe, as described above, the resin pipe outer diameter is about 90% of the existing pipe inner diameter, Only a resin pipe having a considerably smaller pipe diameter can be used, so that there is a problem that the pipe inner diameter becomes thin and the flow-delivery capability is lowered. Further, in order to fix the resin pipe, it is necessary to inject a filling material such as cement mortar into a gap between the existing pipe and solidify it, which causes a complicated process and an increase in cost.

本発明の第一の目的は、パイプインパイプ工法による
管更生などに適用可能な鋼管のライニング方法、および
これに利用しうる新規な形状記憶樹脂管を提供すること
である。
A first object of the present invention is to provide a steel pipe lining method applicable to pipe rehabilitation by a pipe-in-pipe method and a novel shape memory resin pipe that can be used for the method.

(課題を解決するための手段) 近年、ポリノルボルネン、トランス−1,4−ポリイソ
プレン、スチレン−ブタジエン共重合体、ポリウレタ
ン、ポリε−カプロラクトン等の樹脂に形状記憶特性が
あることが発見された。これらの樹脂は、ある温度以上
に加熱するとゴム弾性を示し、この状態で外力を加えて
変形を起こしたまま冷却すると、変形した状態で形状が
固定される。これを再度加熱するとゴム弾性が復活し
て、変形前の形状に復元する性質を示すことにより形状
記憶特性が発揮される。
(Means for Solving the Problems) Recently, it was discovered that resins such as polynorbornene, trans-1,4-polyisoprene, styrene-butadiene copolymer, polyurethane, and poly ε-caprolactone have shape memory properties. . These resins show rubber elasticity when heated to a certain temperature or higher, and when they are cooled while being deformed by applying an external force in this state, their shapes are fixed in the deformed state. When this is heated again, the rubber elasticity is restored and the shape memory characteristics are exhibited by exhibiting the property of restoring the shape before deformation.

本発明者らは、このような形状記憶特性を示す樹脂に
着目し、この特性を利用して上記第一目的を達成すべく
検討した。その結果、形状記憶樹脂から樹脂管を製造
し、これを縮径ないしは折り畳んで小さくしてから既設
管に挿入した後、加温により元の形状に回復させると、
パイプインパイプ工法における管径の減少を最小限に抑
えることができ、しかも既設管と新管の間に詰め物を不
要にすることができることが判明した。また、形状記憶
特性を示す樹脂は、汎用樹脂の価格の約10倍以上と高価
であるが、かなりの量の通常の熱可塑性樹脂を混合した
樹脂管を使用しても上記第一目的を実用上十分な程度に
達成できることも見出した。
The present inventors paid attention to a resin having such a shape memory characteristic, and studied to achieve the first object by utilizing this characteristic. As a result, if a resin tube is manufactured from shape memory resin, then it is reduced in diameter or folded to make it smaller, then inserted into an existing tube, and then restored to its original shape by heating,
It has been found that the reduction of the pipe diameter in the pipe-in-pipe method can be suppressed to a minimum, and the filling between the existing pipe and the new pipe can be eliminated. In addition, resins that show shape memory characteristics are expensive, about 10 times the price of general-purpose resins, but even if a resin pipe mixed with a considerable amount of ordinary thermoplastic resin is used, the above-mentioned first purpose is practically used. We also found that it can be achieved to a sufficient degree.

ここに、本願発明の要旨は、形状記憶樹脂から、ある
いは形状記憶特性を有していない熱可塑性樹脂に5重量
%以上の形状記憶樹脂を含有させた混合物もしくは共重
合物からなる実質的な形状記憶特性を有する形状記憶樹
脂管であり、ライニングすべき鋼管の内径に等しいか、
それより大きな外径を有する該樹脂管を、該樹脂管の形
状回復温度より高温かつ該樹脂管を構成する樹脂の溶融
温度より低温で、縮径加工することにより該鋼管内に挿
入可能な形状に変形させ、変形させた樹脂管を鋼管に挿
入した後、加温して、形状回復により樹脂管を鋼管内面
に密着させることを特徴とする、鋼管内面のライニング
方法である。
Here, the gist of the present invention is that the shape of a shape memory resin is substantially the same as that of a mixture or a copolymer of a thermoplastic resin having no shape memory property containing 5% by weight or more of the shape memory resin. A shape memory resin pipe with memory characteristics, equal to the inner diameter of the steel pipe to be lined,
A shape that can be inserted into the steel pipe by reducing the diameter of the resin pipe having a larger outer diameter than the shape recovery temperature of the resin pipe and lower than the melting temperature of the resin forming the resin pipe. A method for lining a steel pipe inner surface is characterized in that the resin pipe is deformed into a shape, and the deformed resin pipe is inserted into the steel pipe, and then heated to bring the resin pipe into close contact with the steel pipe inner surface by shape recovery.

また、本発明は上記ライニング方法で使用する形状記
憶樹脂管、すなわち、形状記憶特性を有していない熱可
塑性樹脂に5重量%以上の形状記憶樹脂を含有させた混
合物もしくは共重合物からなる、実質的な形状記憶特性
を有する鋼管内面ライニング用の形状記憶樹脂管にも関
する。
Further, the present invention comprises a shape memory resin pipe used in the above lining method, that is, a mixture or a copolymer containing 5% by weight or more of a shape memory resin in a thermoplastic resin having no shape memory characteristic, The present invention also relates to a shape memory resin pipe for lining the inner surface of a steel pipe having a substantial shape memory characteristic.

(作用) 以下、本発明を詳細に説明する。(Operation) Hereinafter, the present invention will be described in detail.

本発明の形状記憶樹脂管は、形状記憶特性を示す任意
の樹脂を用いて製造することができる。これまで形状記
憶特性を示すことが知られている樹脂としては、ポリノ
ルボルネン、トランス−1,4−ポリイソプレン、スチレ
ン−ブタジエン共重合体、ポリウレタン、ε−カプロラ
クトン、ポリエステル等があるが、これらに限定される
ものではない。
The shape memory resin pipe of the present invention can be manufactured using any resin exhibiting shape memory characteristics. Resins known to exhibit shape memory properties so far include polynorbornene, trans-1,4-polyisoprene, styrene-butadiene copolymer, polyurethane, ε-caprolactone, polyester, and the like. It is not limited.

一般に、形状記憶樹脂とは、ガラス転移温度或いは結
晶融点が室温以上であって、この室温以上での転移を利
用し、その温度以下では歪み(変形形状)の固定を、そ
の温度以上のゴム弾性域では歪みの回復を発現させるも
のである。
Generally, a shape memory resin has a glass transition temperature or a crystalline melting point of room temperature or higher, and utilizes the transition at or above this room temperature to fix the strain (deformed shape) below that temperature, and to adjust the rubber elasticity above that temperature. In the region, the recovery of strain is expressed.

本発明にかかる形状記憶樹脂管は、形状記憶樹脂を10
0%使用したものでも良いが、一般に形状記憶樹脂は高
価であるため、汎用の熱可塑性樹脂との混合物あるいは
共重合物を用いることが経済的には有利である。汎用の
熱可塑性樹脂は、一般にガラス転移温度が室温より低い
ため、通常の変形方法では室温以上で数10%以上といっ
た大きな変形歪みの保持と回復を示すことはない。
The shape memory resin pipe according to the present invention is made of a shape memory resin 10
Although 0% may be used, since shape memory resins are generally expensive, it is economically advantageous to use a mixture or copolymer with a general-purpose thermoplastic resin. Since a general-purpose thermoplastic resin generally has a glass transition temperature lower than room temperature, the ordinary deformation method does not show large deformation strain retention and recovery of several tens% or more at room temperature or higher.

このような混合物や共重合物を用いた場合には、変形
を100%回復することのできる回復可能最大変形率は低
下するが、本発明の目的には通常20〜30%以上の変形回
復をすれば良い。形状記憶樹脂単味での回復可能最大変
形率は400〜500%程度と非常に大きいので、汎用の熱可
塑性樹脂との混合物あるいは共重合物中に含まれる形状
記憶樹脂の割合が5重量%以上あれば、20〜30%の実質
的な変形回復が可能となり、実質的な形状記憶特性を有
しているといえる。従って、本発明の形状記憶樹脂管の
製造には、汎用の熱可塑性樹脂に形状記憶樹脂を5重量
%以上配合した混合物もしくは共重合物も、実質的に形
状記憶特性を保持している限り使用することができる。
形状記憶樹脂の混合割合は5〜95重量%であり、経済性
を考えれば50%以下、特に5〜20重量%の範囲が好まし
い。
When such a mixture or a copolymer is used, the maximum recoverable deformation rate capable of recovering 100% of the deformation decreases, but for the purpose of the present invention, a deformation recovery of 20 to 30% or more is usually required. Just do it. The maximum recoverable deformation rate of the shape memory resin alone is as high as 400 to 500%, so the proportion of the shape memory resin contained in the mixture or copolymer with general-purpose thermoplastic resin is 5% by weight or more. If so, it is possible to achieve a substantial deformation recovery of 20 to 30%, and it can be said that it has a substantial shape memory characteristic. Therefore, in the production of the shape-memory resin pipe of the present invention, a mixture or copolymer of a general-purpose thermoplastic resin and 5% by weight or more of the shape-memory resin is used as long as the shape-memory characteristics are substantially maintained. can do.
The mixing ratio of the shape memory resin is 5 to 95% by weight, and in view of economic efficiency, it is preferably 50% or less, particularly preferably 5 to 20% by weight.

形状記憶樹脂に混合または共重合させる熱可塑性樹脂
としては、任意の熱可塑性樹脂を使用することができる
が、変形に追従できるように可撓性が高く、また安定性
や耐薬品性に優れたものが好ましい。好適な熱可塑性樹
脂としては、ポリエチレン、ポリプロピレン、ポリブテ
ン等のポリオレフィン樹脂、あるいはポリエチレンテレ
フタレート、ポリブチレンテレフタレート等の飽和ポリ
エステル樹脂等が挙げられる。
As the thermoplastic resin to be mixed or copolymerized with the shape memory resin, any thermoplastic resin can be used, but it is highly flexible so that it can follow deformation, and has excellent stability and chemical resistance. Those are preferable. Suitable thermoplastic resins include polyolefin resins such as polyethylene, polypropylene and polybutene, and saturated polyester resins such as polyethylene terephthalate and polybutylene terephthalate.

形状記憶樹脂管は、上記のような樹脂100%で作るこ
ともできるが、全体の40重量%以下の範囲でタルク、マ
イカ、炭酸カルシウム等の体質顔料やカーボンブラッ
ク、二酸化チタン、ベンガラ等の着色顔料を含有させて
もよく、また少量の酸化防止剤等の慣用の添加物を含ん
でいても差し支えない。
Shape memory resin tubes can be made from 100% of the above resins, but extendable pigments such as talc, mica, calcium carbonate and carbon black, titanium dioxide, red iron oxide, etc. within the range of 40% by weight or less. A pigment may be contained and a small amount of a conventional additive such as an antioxidant may be contained.

この形状記憶樹脂管は、通常の樹脂管の製造で用いら
れている押出成形法により製造することができる。押出
は、形状記憶樹脂が溶融する温度以上、通常は100℃以
上、好ましくは150〜200℃の範囲で、パイプ押出用の環
状ダイを用いて行う。押出後に通常はサイジングダイを
通して、管寸法(内径、外径)を所望値に調整する。こ
うして製管されたパイプを、自然冷却あるいは強制冷却
(空冷、水冷など)により、形状回復温度より10〜30℃
程度高い温度、通常40〜100℃程度に冷却し、この温度
に達した時点で、後述するような適当な方法により縮径
ないし折り畳み等の変形を加え、この変形状態を保った
まま更に、空冷、水冷等の強制冷却を行い、この縮径な
いし折り畳み形状を固定する。
This shape memory resin pipe can be manufactured by the extrusion molding method used in the manufacture of ordinary resin pipes. Extrusion is carried out at a temperature at which the shape memory resin melts or higher, usually at 100 ° C. or higher, preferably in the range of 150 to 200 ° C., using an annular die for pipe extrusion. After extrusion, the tube dimensions (inner diameter, outer diameter) are usually adjusted to desired values through a sizing die. The pipe manufactured in this way is cooled by natural cooling or forced cooling (air cooling, water cooling, etc.) from the shape recovery temperature to 10-30 ° C.
After cooling to a high temperature, usually around 40 to 100 ° C, when this temperature is reached, deformation such as diameter reduction or folding is applied by an appropriate method as described later, and further air cooling is performed while maintaining this deformed state. Forced cooling such as water cooling is performed to fix the reduced diameter or folded shape.

なお、縮径もしくは折り畳み等の変形加工は、一旦室
温まで冷却した樹脂管を、上記のように形状回復温度よ
り10〜30℃程度高い温度に加熱して行うことも当然可能
である。
It should be noted that the deformation processing such as the diameter reduction or the folding can be naturally performed by heating the resin tube once cooled to room temperature to a temperature higher by about 10 to 30 ° C. than the shape recovery temperature as described above.

この樹脂管に用いる形状記憶樹脂の形状回復温度は、
現場施工される管更生用途に用いる場合には、30〜100
℃、特に30〜80℃の範囲のものが好ましい。この温度が
30℃以下では、夏期の施工が困難であり、また100℃を
超えると、形状回復の加熱に高エネルギーを要するため
経済的に不利である。
The shape recovery temperature of the shape memory resin used for this resin pipe is
When used for on-site pipe rehabilitation, 30 to 100
C., preferably in the range of 30-80.degree. This temperature is
If the temperature is lower than 30 ° C, the construction in summer is difficult, and if the temperature exceeds 100 ° C, heating for shape recovery requires high energy, which is economically disadvantageous.

こうして得られた形状記憶樹脂管は、形状回復温度よ
り高温に加熱されると、縮径または折り畳みによる変形
前の元の樹脂管の形状に簡単に戻る。
When the shape memory resin pipe thus obtained is heated to a temperature higher than the shape recovery temperature, it easily returns to the original shape of the resin pipe before being deformed due to the diameter reduction or folding.

本発明の形状記憶樹脂管を用いて鋼管のライニングを
行う場合、その鋼管の内径に等しいか、それより大きな
外径の樹脂管を使用する。樹脂管の外径は、鋼管の内径
より5〜15%大きい程度が通常は好ましい。次いで、こ
の樹脂管を、形状回復温度より高温かつ樹脂管を構成す
る樹脂の溶融温度より低温において、ライニングすべき
鋼管内に容易に挿入可能な形状に縮径または折り畳みに
よる変形を加え、この変形形状を維持したまま冷却し
て、この形状を固定する。縮径の場合は、樹脂管の外径
が鋼管の内径より5〜30%程度小さくなるように縮径す
るのが好ましい。
When lining a steel pipe using the shape memory resin pipe of the present invention, a resin pipe having an outer diameter equal to or larger than the inner diameter of the steel pipe is used. It is usually preferable that the outer diameter of the resin pipe is 5 to 15% larger than the inner diameter of the steel pipe. Next, at a temperature higher than the shape recovery temperature and lower than the melting temperature of the resin forming the resin tube, this resin tube is deformed by reducing the diameter or folding into a shape that can be easily inserted into the steel tube to be lined, and this deformation This shape is fixed by cooling while maintaining the shape. In the case of reducing the diameter, it is preferable to reduce the outer diameter of the resin pipe by about 5 to 30% smaller than the inner diameter of the steel pipe.

縮径や折り畳み等の変形は、施工する現場で行い、こ
の変形させた樹脂管を冷却による形状の固定を行わず
に、鋼管内に挿入して鋼管のライニングを行うことも可
能である。しかし、一般には、樹脂管の変形と冷却によ
る変形形状の固定は予め工場で行うことが有利である。
特に、上述したように、樹脂管製造時の押出後の冷却過
程で樹脂管の変形とその固定を行うと、製造工程の簡略
化とエネルギー節約につながり、経済的に有利となる。
Deformation such as diameter reduction or folding can be performed at the site of construction, and the deformed resin pipe can be inserted into the steel pipe without fixing the shape by cooling, and the steel pipe can be lined. However, in general, it is advantageous to perform the deformation of the resin pipe and the fixing of the deformed shape by cooling in advance at the factory.
In particular, as described above, when the resin pipe is deformed and fixed in the cooling process after extrusion during manufacturing of the resin pipe, the manufacturing process is simplified and energy is saved, which is economically advantageous.

第1図(a)および(b)は、鋼管2内に挿入された
変形した樹脂管1を示す。第1図(a)は縮径の例、第
2図(b)は折り畳みの例である。
FIGS. 1 (a) and 1 (b) show a deformed resin pipe 1 inserted in a steel pipe 2. FIG. 1 (a) is an example of diameter reduction, and FIG. 2 (b) is an example of folding.

折り畳み加工は、適当な形状の1もしくは2以上のロ
ールに通すことにより行うことができる。ロールの通過
中あるいは通過直後に、水冷・空冷などの強制冷却を行
って、折り畳み形状を固定する。
The folding process can be performed by passing it through one or more rolls having an appropriate shape. During or immediately after passing the rolls, forced cooling such as water cooling or air cooling is performed to fix the folded shape.

形状記憶樹脂管の縮径は、例えば、先細のテーパーを
つけた環状あるいは円筒形オリフィスを有する縮径用引
抜きダイに樹脂管を通してダイから引き抜くダイ抽伸に
より行うことができる。この縮径方法では、縮径に伴う
樹脂管の縦伸びが比較的大きい。例えば、径を80%に縮
径した場合で、長さ方向に約1.6倍の伸びが発生する。
そのため、縮径した樹脂管を加熱して元の形状に戻す
際、樹脂管の長さがかんり縮むので、その縮み率を考慮
に入れて、ライニングすべき鋼管長さより長い樹脂管を
用いる必要がある。縮径用ダイによる引抜きは、必要に
応じて2回以上反復することもできる。縮径後、上記の
ように冷却して、縮径形状を固定する。
The diameter of the shape-memory resin tube can be reduced by, for example, a die drawing in which the resin tube is drawn through the resin tube through a diameter-reducing drawing die having a tapered tapered annular or cylindrical orifice. In this diameter reduction method, the longitudinal elongation of the resin pipe due to the diameter reduction is relatively large. For example, when the diameter is reduced to 80%, elongation of about 1.6 times occurs in the length direction.
Therefore, when the reduced diameter resin pipe is heated and returned to its original shape, the length of the resin pipe shrinks, so it is necessary to use a resin pipe longer than the length of the steel pipe to be lined, taking the shrinkage rate into consideration. There is. The drawing with the diameter-reducing die can be repeated twice or more as necessary. After the diameter reduction, the diameter reduction shape is fixed by cooling as described above.

樹脂管の縮径は、複数個に分割された孔型ロールを備
えた孔型ロール圧延機を用いた圧延により行うこともで
きる。
The diameter of the resin tube can be reduced by rolling using a hole rolling mill equipped with a plurality of hole rolling rolls.

孔型ロール圧延機は、第2図(a)に示すように、2
個以上の圧延ロールの組合わせから構成される孔型ロー
ル10を備えている。組合わせた時の孔型が略円形構成す
るように、例えば、2個に分割された時は半円状の、3
個以上に分割された時には円弧状の溝が周面に設けられ
たロールを備えた孔型ロールを使用するのが、縮径後の
樹脂管の挿入が容易となり、また均一な圧延が行われる
ことから好ましい。ロール数は4個以下が好ましく、5
個を超えるとロール回転軸の構成が複雑になる。図に示
した孔型ロールは4個のロール11、12、13、14からな
り、各ロールはそれぞれのシャフト15、16、17、18を軸
として、同一方向(図では前進または後進方向)に回転
することにより圧延が行われる。
As shown in FIG.
The hole type roll 10 is composed of a combination of at least one rolling roll. For example, when the holes are divided into two, a semi-circular shape is formed so that the hole type when combined has a substantially circular shape.
When it is divided into more than one piece, it is easier to insert the resin pipe after the diameter reduction and to perform uniform rolling by using a hole type roll with a roll provided with an arcuate groove on the peripheral surface. Therefore, it is preferable. The number of rolls is preferably 4 or less, 5
If the number of rolls exceeds the number, the configuration of the roll rotation shaft becomes complicated. The hole-type roll shown in the figure consists of four rolls 11, 12, 13, 14 and each roll has its shaft 15, 16, 17, 18 in the same direction (forward or backward direction in the figure). Rolling is performed by rotating.

この圧延は多段で行うことが望ましい。即ち、孔型の
径を漸減させた複数個の孔型ロール圧延機を第2図
(a)〜(d)に示すようにタンデムに配置し、段階的
に縮径を行うと、大きな縮径率を得ることができると同
時に、孔型ロールの不連続部での樹脂がはみ出しても、
交互に圧延を受けることにより縮径形状の歪みが少なく
なる。従って、複数個の孔型ロール圧延機のタンデム配
置は、ロール2個の時は90°、ロール3個の時は60°、
ロール4個の時は45°交互にずらした配置とすることが
好ましい。このように複数個の圧延機を用いる場合に
は、各圧延機スタンド間で適度の張力を付与するため
に、各圧延機でのロール回転の周速は、圧延が進むにつ
れて減面率に応じて徐々に増加させることが好ましい。
同じ周速では、ロールを通過した樹脂管が次のロールま
でに膨径して縮径がうまくいかないことがある。
It is desirable to carry out this rolling in multiple stages. That is, when a plurality of hole type roll rolling mills having gradually decreased diameters are arranged in tandem as shown in FIGS. 2 (a) to (d) and the diameter is gradually reduced, a large diameter reduction is achieved. At the same time that the rate can be obtained, even if the resin in the discontinuous portion of the hole type roll squeezes out,
By undergoing rolling alternately, the distortion of the reduced diameter shape is reduced. Therefore, the tandem arrangement of multiple hole rolling mills is 90 ° for 2 rolls, 60 ° for 3 rolls,
When there are four rolls, it is preferable that the rolls are arranged at 45 ° alternately. When a plurality of rolling mills are used in this way, the peripheral speed of roll rotation in each rolling mill depends on the area reduction rate as rolling progresses, in order to give an appropriate tension between each rolling mill stand. It is preferable to increase gradually.
At the same peripheral speed, the resin pipe that has passed through the roll may expand until the next roll, and the diameter may not be reduced.

こうして孔型ロール圧延機による縮径が終了した後、
弾性回復を抑えながら樹脂管を冷却して、その縮径形状
を固定する。弾性回復の抑制は、軸方向に張力をかける
ことで可能である。
After the diameter reduction by the hole-type rolling mill is completed,
The resin tube is cooled while suppressing the elastic recovery and the reduced diameter shape is fixed. The elastic recovery can be suppressed by applying tension in the axial direction.

孔型ロール圧延機による縮径では、圧延力により管肉
厚が増肉する方向に力が働き、管の縦伸びが抑制され
る。そのため、例えば、80%の縮径の場合で、樹脂管の
長さ方向の伸びは1.2倍程度に抑えられ、加熱により元
の形状に回復させる際の縮みが少ないという利点があ
る。
When the diameter is reduced by a hole-type rolling mill, a force acts in a direction in which the wall thickness of the pipe increases due to the rolling force, and the longitudinal elongation of the pipe is suppressed. Therefore, for example, when the diameter is reduced by 80%, the elongation in the length direction of the resin pipe is suppressed to about 1.2 times, and there is an advantage that the shrinkage when recovering the original shape by heating is small.

このように折り畳みまたは縮径により小さく変形させ
た形状記憶樹脂管を、ライニングすべき鋼管の中に挿入
した後、熱風もしくはスチームを送風するか、あるいは
温水を通水する等の方法により樹脂管を形状回復温度以
上に加温することにより、樹脂管を元の形状に回復させ
る。それにより、第1図(c)に示すように樹脂管1が
元のパイプ形状に拡がって鋼管2の内面に密着し、鋼管
のライニングが達成される。
After inserting the shape-memory resin pipe that has been deformed by folding or reducing its diameter in this way into the steel pipe to be lined, blow the hot air or steam, or pass the hot water through the resin pipe. By heating above the shape recovery temperature, the resin tube is restored to its original shape. As a result, as shown in FIG. 1 (c), the resin pipe 1 expands into the original pipe shape and comes into close contact with the inner surface of the steel pipe 2, and the lining of the steel pipe is achieved.

この鋼管のライニングは、新管の内面コーティングと
して利用してもよく、あるいは前述したように、老朽管
の更生ないし補修の目的で利用することも可能である。
また、鋼管のライニングは、鋼管の全長に及ぶ必要はな
く、鋼管の長さの一部のみでもよいことは当然である。
The lining of the steel pipe may be used as an inner surface coating for a new pipe, or as described above, it may be used for the purpose of rehabilitation or repair of an aged pipe.
Further, it is needless to say that the lining of the steel pipe does not need to extend over the entire length of the steel pipe, and may be only a part of the length of the steel pipe.

本発明の方法により詰め物不要で鋼管をライニングす
ることができる。また、樹脂管が密着することから、管
径の縮小による流送能力の低下は最小限に抑えられる。
The method of the present invention allows lining of steel pipes without padding. Further, since the resin pipes are in close contact with each other, the reduction in the delivery capacity due to the reduction of the pipe diameter can be minimized.

本発明の方法により老朽管を更生する場合、樹脂管の
挿入に先立ち、老朽管の錆やコブ等を除去するために、
ピグやサンドを含むエア流等の既知の方法でクリーニン
グを行っても支障はなく、管径を確保する意味でむしろ
好適である。
When rehabilitating an aged pipe by the method of the present invention, prior to the insertion of the resin pipe, in order to remove rust and bumps of the aged pipe,
There is no problem even if the cleaning is performed by a known method such as an air flow containing a pig or sand, and it is rather preferable in terms of securing the pipe diameter.

先に挿入した樹脂管を、新たに挿入した樹脂管と接合
する時は加熱融着しても良いし、片方の樹脂管をもう一
方の樹脂管に挿入して加温膨張(復元)させても良い
(第3図参照)。この時、外面を適当な径の半割管(図
示せず)でサポートすることにより内面を平滑な形で接
合することができる。
When joining the previously inserted resin pipe to the newly inserted resin pipe, heat fusion may be performed, or one resin pipe may be inserted into the other resin pipe and expanded (restored) by heating. Is also good (see FIG. 3). At this time, the inner surface can be joined in a smooth shape by supporting the outer surface with a half tube (not shown) having an appropriate diameter.

次に実施例により本発明をさらに説明する。 The present invention will be further described with reference to examples.

実施例1 形状記憶特性を示すスチレン−ブタジエン共重合体
(旭化成工業(株)製のアスマー、形状回復温度約60
℃)とポリノルボルネン(日本ゼオン(株)製のノーソ
レックス、形状回復温度約40℃)、ならびに実質的な形
状記憶特性を示さない中密度ポリエチレン[密度0.940g
/cm3、MFR=0.2/10分(190℃、荷重2.16kg)]の1種も
しくは2種以上を使用して、第1表に示す組成の樹脂ペ
レットA〜Dを準備した。
Example 1 A styrene-butadiene copolymer exhibiting shape memory characteristics (Asmer manufactured by Asahi Kasei Kogyo Co., Ltd., shape recovery temperature of about 60).
℃) and polynorbornene (Nosolex manufactured by Nippon Zeon Co., Ltd., shape recovery temperature about 40 ° C), and medium density polyethylene [density 0.940g, which does not show substantial shape memory characteristics].
/ cm 3 , MFR = 0.2 / 10 minutes (190 ° C, load 2.16 kg)], or resin pellets A to D having the composition shown in Table 1 were prepared.

各樹脂ペレットを環状ダイを取り付けた1軸スクリュ
ー押出機(L/D=25)により第2表に示す温度で押出
し、次いでサイジングダイに通して同表に示す外径の管
(肉厚5mm)に製管した。押出機より排出される樹脂管
を真空水冷槽により空冷し、樹脂管温度が60℃〜70℃に
なった時点で、第2表に示すように、試験No.1〜4で
は、後出の実施例3と同様の多段孔型ロール圧延機によ
る縮径を行い(4個に分割された孔型ロールを用いた4
段圧延)、縮径終了後、軸方向に張力をかけた状態で水
冷し、樹脂管温度を30℃まで冷却して縮径形状を固定し
た。また試験No.5では、樹脂管温度が560℃になった時
点で、幅10mmのロールで管軸と平行に上方より押圧する
と共に、左右および下部のサポートロールにより最大幅
が190mmとなるように折り畳み加工を行い、試験No.1〜
4と同様、直ちに水冷して形状を固定した。
Each resin pellet is extruded at a temperature shown in Table 2 by a single-screw extruder (L / D = 25) equipped with an annular die, and then is passed through a sizing die and a pipe having an outer diameter shown in the same table (wall thickness 5 mm). It was made into a pipe. The resin pipe discharged from the extruder was air-cooled in a vacuum water cooling tank, and when the resin pipe temperature reached 60 ° C to 70 ° C, as shown in Table 2, in Test Nos. 1 to 4, the later-described The diameter was reduced by a multi-stage hole rolling mill similar to that in Example 3 (4 using a hole type roll divided into four pieces.
(Step rolling) and after the reduction of diameter, water cooling was performed while tension was applied in the axial direction, and the temperature of the resin tube was cooled to 30 ° C. to fix the reduced diameter shape. In Test No. 5, when the temperature of the resin pipe reached 560 ° C, rolls with a width of 10 mm were pressed from above in parallel with the pipe axis, and the maximum width was 190 mm with the support rolls on the left and right and the bottom. Folded and tested No. 1 ~
Similar to 4, the shape was fixed immediately by water cooling.

こうして得られた縮径により変形させた長さ7mの樹脂
管もしくは折り畳みにより変形させた長さ5.5mの樹脂管
を長さ5.5mの200A(内径205mm)の炭素鋼管に挿入し、8
0℃のスチームを5分間通風した。この挿入は、樹脂管
の外寸が鋼管の内径よりかなり小さいため(縮径の場合
で鋼管の内径の73〜78%)、いずれも非常に容易であっ
た。スチーム通風後の樹脂管の外径は第2表に示した通
りであり、何れも樹脂管は元の形状に復元する方向に変
化し、200A鋼管の内面に密着した。すなわち、形状記憶
特性を示すスチレン/ブタジエン共重合体のみからなる
樹脂管だけでなく、形状記憶特性を示す樹脂5〜20重量
%と形状記憶特性を示さないポリエチレン80〜95重量%
との混合物から製管した樹脂管でも十分な形状回復能力
を示し、遜色のない結果が得られた。
Insert the resin tube with a length of 7 m deformed by the diameter reduction thus obtained or the resin tube with a length of 5.5 m deformed by folding into a carbon steel tube of 200 A (inner diameter 205 mm) with a length of 5.5 m.
The steam at 0 ° C was ventilated for 5 minutes. This insertion was very easy because the outer diameter of the resin pipe was much smaller than the inner diameter of the steel pipe (73-78% of the inner diameter of the steel pipe when the diameter was reduced). The outer diameter of the resin pipe after steam ventilation is as shown in Table 2, and in all cases, the resin pipe changed to the direction of returning to the original shape and adhered to the inner surface of the 200A steel pipe. That is, not only a resin tube made of only a styrene / butadiene copolymer exhibiting shape memory characteristics, but 5 to 20% by weight of a resin exhibiting shape memory characteristics and 80 to 95% by weight of polyethylene not exhibiting shape memory characteristics.
Even a resin pipe made from the mixture of and showed sufficient shape recovery ability, and comparable results were obtained.

実施例2 第1表に示した樹脂A(スチレン/ブタジエン共重合
体)および樹脂D(スチレン/ブタジエン共重合体20重
量%と中密度ポリエチレン80重量%との混合物)、さら
に別のポリエステル系形状記憶樹脂E(日本ゼオン
(株)製のシェイブルA-80)を、環状ダイを取り付けた
1軸スクリュー押出機(L/D=25)を用いて第3表に示
す温度で押出し、次いでサイジングダイに通して外径60
mm、肉厚5mmにサイジングすることにより製管した樹脂
管を、真空冷却水槽で第3表に示す樹脂温度になるまで
冷却した。この時点でのライン速度は約2.7m/minであっ
た。真空水槽を出た樹脂管を、入側径62mm、出側径40mm
のテーパー円筒状オリフィスを備えた縮径用ダイに通し
て縮径した。樹脂Dではダイ出口での弾性回復により縮
径後の樹脂管の外径は41mmとなり、その他の樹脂では外
径40mmの縮径樹脂管が得られた。この後、連続的に冷却
水槽に導入して30℃まで冷却し、この縮径形状を固定し
た。この時のライン速度は引取機の位置で6m/minであっ
た。
Example 2 Resin A (styrene / butadiene copolymer) and resin D (mixture of 20% by weight of styrene / butadiene copolymer and 80% by weight of medium density polyethylene) shown in Table 1, and another polyester type Memory resin E (Sheible A-80 manufactured by Nippon Zeon Co., Ltd.) was extruded at a temperature shown in Table 3 using a single-screw extruder (L / D = 25) equipped with an annular die, and then sizing die. Through outer diameter 60
The resin pipe produced by sizing to a thickness of 5 mm and a wall thickness of 5 mm was cooled in a vacuum cooling water tank to the resin temperature shown in Table 3. The line speed at this point was about 2.7 m / min. The resin pipe that came out of the vacuum water tank had an inlet side diameter of 62 mm and an outlet side diameter of 40 mm.
The diameter was reduced by passing it through a diameter-reducing die equipped with a tapered cylindrical orifice. With resin D, due to elastic recovery at the die outlet, the outer diameter of the resin tube after diameter reduction was 41 mm, and with other resins, a diameter-reduced resin tube with an outer diameter of 40 mm was obtained. After that, it was continuously introduced into a cooling water tank and cooled to 30 ° C. to fix the reduced diameter shape. The line speed at this time was 6 m / min at the position of the take-up machine.

こうして縮径した、収縮率を見込んだ適宜長さの樹脂
管を、内径52.9mm、肉厚3.8mm、長さ5.5mの鋼管に挿入
した。縮径樹脂管は、鋼管の内径に比べてかなり細いた
め、その挿入は非常に容易に短時間で完了した。この樹
脂管の一方の管端部より温風機にて80℃の熱風を5分間
通風した。加熱された樹脂管は膨径して鋼管内面に密着
し、良好な鋼管のライニングが達成された。この加熱時
の樹脂管の長手方向の収縮率を測定した。
The resin tube of which the diameter was reduced in this way and having an appropriate length in consideration of the shrinkage ratio was inserted into a steel tube having an inner diameter of 52.9 mm, a wall thickness of 3.8 mm, and a length of 5.5 m. Since the diameter-reduced resin pipe is considerably thinner than the inner diameter of the steel pipe, its insertion was completed very easily and in a short time. Hot air at 80 ° C. was blown from one end of this resin tube with a warm air blower for 5 minutes. The heated resin pipe expanded and adhered to the inner surface of the steel pipe, and good lining of the steel pipe was achieved. The shrinkage ratio in the longitudinal direction of the resin pipe during this heating was measured.

別に、上記と同様に縮径した樹脂管を1カ月放置した
後、その外径を測定したところ、40〜42mmであった。こ
の放置後の樹脂管を使用して、上記と同様に鋼管のライ
ニングを行ったが、同様に良好にライニングが達成され
た。1カ月放置後の縮径樹脂管を上記と同様に80℃に5
分間加熱した場合の形状回復率(復元外径)も測定し
た。
Separately, a resin tube reduced in diameter in the same manner as above was allowed to stand for 1 month, and then its outer diameter was measured to be 40 to 42 mm. Using this resin pipe after standing, the steel pipe was lined in the same manner as described above, but the lining was similarly achieved. After leaving it for 1 month, reduce the diameter of the resin tube to 80 ℃ in the same manner as above.
The shape recovery rate (restored outer diameter) when heated for a minute was also measured.

以上の結果を、第3表にまとめて示す。 The above results are summarized in Table 3.

実施例3 実施例1および2で用いたスチレン/ブタジエン共重
合体系形状記憶樹脂A、この形状記憶樹脂A20重量%と
中密度ポリエチレン80重量%との混合樹脂D、およびポ
リエステル系形状記憶樹脂Eを、実施例2と同様の方法
で外径60mm、肉厚5mmの樹脂管に製管した後、第5表に
示す温度になるまで冷却した。真空水槽を出た樹脂管
を、第2図に示すように4個に分割された略円形の孔型
を有する孔型ロール圧延機を交互に45°ずらして6台タ
ンデム配置してなる多段孔型ロール圧延装置により、第
4表に示すスケジュールで圧延することにより、外径38
mmに縮径した。最終圧延の直前、即ち、5段目と6段目
の間に二重冷却水槽を配置して、5段目の圧延後に縮径
された樹脂管の冷却による形状固定を行った。第4表か
らわかるよに、6段目の圧延機は5段目と同じ孔型を有
しており、縮径ではなく、形状保持のために設置したも
のである。
Example 3 The styrene / butadiene copolymer type shape memory resin A used in Examples 1 and 2, the mixed resin D of 20% by weight of this shape memory resin A and 80% by weight of medium density polyethylene, and the polyester type shape memory resin E were used. A resin tube having an outer diameter of 60 mm and a wall thickness of 5 mm was manufactured in the same manner as in Example 2, and then cooled to the temperature shown in Table 5. A multi-stage hole in which the resin pipe exiting the vacuum water tank is placed in a tandem arrangement of six units by alternately shifting the hole type rolling mills having a substantially circular hole type divided into four as shown in FIG. 2 by 45 °. By rolling with the die roll rolling device according to the schedule shown in Table 4, the outer diameter 38
The diameter was reduced to mm. Immediately before the final rolling, that is, between the fifth and sixth stages, a double cooling water tank was arranged to fix the shape of the resin pipe having a reduced diameter after the fifth rolling by cooling. As can be seen from Table 4, the sixth-stage rolling mill has the same hole shape as that of the fifth-stage rolling mill, and is installed not to reduce the diameter but to maintain the shape.

こうして縮径した、収縮率を見込んだ適宜長さの樹脂
管を、内径52.9mm、肉厚3.8mm、長さ5.5mの鋼管に挿入
した。縮径樹脂管は、鋼管の内径に比べてかなり細いた
め、その挿入は非常に容易に短時間で完了した。この樹
脂管の一方の管端部より温風機にて80℃の熱風を約2分
間通風した。加熱された樹脂管は膨径して鋼管内面に密
着し、良好な鋼管のライニングが達成された。この加熱
時の樹脂管の長手方向の収縮率を測定した。
The resin tube of which the diameter was reduced in this way and having an appropriate length in consideration of the shrinkage ratio was inserted into a steel tube having an inner diameter of 52.9 mm, a wall thickness of 3.8 mm, and a length of 5.5 m. Since the diameter-reduced resin pipe is considerably thinner than the inner diameter of the steel pipe, its insertion was completed very easily and in a short time. Hot air at 80 ° C. was blown for about 2 minutes with a warm air blower from one end of this resin pipe. The heated resin pipe expanded and adhered to the inner surface of the steel pipe, and good lining of the steel pipe was achieved. The shrinkage ratio in the longitudinal direction of the resin pipe during this heating was measured.

別に、上記と同様に縮径した樹脂管を30℃で1カ月放
置した後、その外径を測定した。この放置後の樹脂管を
使用して、上記と同様に鋼管のライニングを行ったが、
同様に良好にライニングが達成された。
Separately, a resin tube reduced in diameter in the same manner as above was left at 30 ° C. for 1 month, and then its outer diameter was measured. Using this left-standing resin pipe, the steel pipe was lined as above.
The lining was achieved equally well.

以上の結果を、第5表にまとめて示す。 The above results are summarized in Table 5.

(発明の効果) 上述したように、本発明の形状記憶樹脂管は、簡単な
操作で鋼管の内面ライニングに利用できる。この鋼管ラ
イニング方法によれば、形状記憶樹脂管を小さい形状に
変形してから鋼管に挿入するため、挿入工程が非常に楽
である。また加熱により樹脂管が元の形状に復元して樹
脂が鋼管に密着するため、既設管の更生に本発明の方法
を利用した場合、管径の減少およびそれによる流送能力
の低下を最小限に抑制することができる上、従来のパイ
プインパイプ法では必要であった管挿入後の隙間への詰
め物の注入が必要なくなり、施工作業が単純化され、資
材の節約にもなる。さらに、元の形状への復元は数分間
のスチーム通風などの加温で可能であるため、工期も従
来より短縮される。
(Effect of the Invention) As described above, the shape memory resin pipe of the present invention can be used for the inner surface lining of a steel pipe by a simple operation. According to this steel pipe lining method, since the shape memory resin pipe is deformed into a small shape and then inserted into the steel pipe, the inserting process is very easy. In addition, when the method of the present invention is used to rehabilitate an existing pipe, the resin pipe returns to its original shape by heating and the resin adheres to the steel pipe. In addition, it is not necessary to inject the filling material into the gap after inserting the pipe, which is required in the conventional pipe-in-pipe method, so that the construction work is simplified and the material is saved. Furthermore, since the restoration to the original shape can be done by heating with steam ventilation for several minutes, the construction period can be shortened compared to the conventional one.

本発明の目的は、高価な形状記憶樹脂100%からなる
樹脂管を使用する必要はなく、汎用の安価な熱可塑性樹
脂に形状記憶樹脂を5重量%以上含有させた混合物もし
くは共重合体を使用すれば十分であるので、形状記憶樹
脂を使用することによるコスト上昇はそれほどない。従
って、本発明方法による鋼管の内面ライニングは、施工
性に優れ、流送能力の低下を防ぎ、かつ経済的である点
で、非常に有利である。
The object of the present invention is not to use an expensive resin tube made of 100% shape memory resin, but to use a mixture or copolymer in which a general-purpose inexpensive thermoplastic resin contains 5% by weight or more of the shape memory resin. Since this is sufficient, the cost increase by using the shape memory resin is not so great. Therefore, the inner surface lining of the steel pipe according to the method of the present invention is very advantageous in that it is excellent in workability, prevents the deterioration of the flow capacity, and is economical.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(c)は、本発明による鋼管のライニン
グ法の概要を示す説明図、 第2図(a)〜(d)は、タンデム配置の多段孔型ロー
ルを示す説明図、および 第3図は、形状回復を利用した樹脂管の接合法を示す説
明図である。 1:樹脂管、2:鋼管 10、20、30、40:孔型ロール 11、12、13、14:分割ロール 15、16、17、18:ロールシャフト
1 (a) to (c) are explanatory views showing an outline of a steel pipe lining method according to the present invention, and FIGS. 2 (a) to (d) are explanatory views showing a tandem-arranged multistage hole type roll, And FIG. 3 is an explanatory view showing a method of joining resin pipes utilizing shape recovery. 1: Resin pipe, 2: Steel pipe 10, 20, 30, 40: Hole type roll 11, 12, 13, 14: Split roll 15, 16, 17, 18: Roll shaft

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29C 55/30 7639−4F 61/06 7639−4F (72)発明者 中筋 和行 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (72)発明者 黒田 浩一 大阪府大阪市中央区北浜4丁目5番33号 住友金属工業株式会社内 (56)参考文献 特開 昭62−151689(JP,A) 特開 平1−242894(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B29C 55/30 7639-4F 61/06 7639-4F (72) Inventor Kazuyuki Nakasuji Osaka City, Osaka Prefecture 4-5-3 Kitahama, Chuo-ku, Sumitomo Metal Industries, Ltd. (72) Inventor, Koichi Kuroda 4-53-3 Kitahama, Kitahama, Chuo-ku, Osaka City, Osaka (56) Reference JP 62 -151689 (JP, A) JP-A-1-242894 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】形状記憶樹脂から、あるいは形状記憶特性
を有していない熱可塑性樹脂に5重量%以上の形状記憶
樹脂を含有させた混合物もしくは共重合物からなる実質
的な形状記憶特性を有する形状記憶樹脂管であり、ライ
ニングすべき鋼管の内径に等しいか、それより大きな外
径を有する該樹脂管を、該樹脂管の形状回復温度より高
温かつ該樹脂管を構成する樹脂の溶融温度より低温で、
縮径加工することにより該鋼管内に挿入可能な形状に変
形させ、変形させた樹脂管を鋼管に挿入した後、加温し
て、形状回復により樹脂管を鋼管内面に密着させること
を特徴とする、鋼管内面のライニング方法。
1. Substantial shape memory properties are obtained from a shape memory resin, or a mixture or a copolymer containing 5% by weight or more of a shape memory resin in a thermoplastic resin having no shape memory property. A resin pipe which is a shape memory resin pipe and has an outer diameter equal to or larger than the inner diameter of the steel pipe to be lined is higher than the shape recovery temperature of the resin pipe and higher than the melting temperature of the resin forming the resin pipe. At low temperature,
Characterized by deforming to a shape that can be inserted into the steel pipe by reducing the diameter, inserting the deformed resin pipe into the steel pipe, and then heating the resin pipe to bring the resin pipe into close contact with the inner surface of the steel pipe by shape recovery. A method of lining the inner surface of a steel pipe.
【請求項2】前記樹脂管の縮径加工を、複数個に分割さ
れた孔型ロールを備えた圧延機を用いた圧延により行
う、請求項1記載の方法。
2. The method according to claim 1, wherein the diameter reduction processing of the resin pipe is performed by rolling using a rolling mill equipped with a plurality of hole rolls.
【請求項3】タンデムに配置された複数の前記圧延機に
より連続的に圧延することにより前記樹脂管の縮径を行
う、請求項2記載の方法。
3. The method according to claim 2, wherein the diameter of the resin pipe is reduced by continuously rolling with a plurality of rolling mills arranged in tandem.
【請求項4】形状記憶特性を有していない熱可塑性樹脂
に5重量%以上の形状記憶樹脂を含有させた混合物もし
くは共重合物からなる、実質的な形状記憶特性を有する
鋼管内面ライニング用の形状記憶樹脂管。
4. A steel pipe inner surface lining having a substantial shape memory characteristic, which comprises a mixture or a copolymer containing 5% by weight or more of the shape memory resin in a thermoplastic resin having no shape memory characteristic. Shape memory resin tube.
JP2164740A 1989-06-23 1990-06-22 Shape memory resin pipe and steel pipe lining method using it Expired - Fee Related JPH0826947B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-161167 1989-06-23
JP16116789 1989-06-23

Publications (2)

Publication Number Publication Date
JPH0396785A JPH0396785A (en) 1991-04-22
JPH0826947B2 true JPH0826947B2 (en) 1996-03-21

Family

ID=15729872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164740A Expired - Fee Related JPH0826947B2 (en) 1989-06-23 1990-06-22 Shape memory resin pipe and steel pipe lining method using it

Country Status (1)

Country Link
JP (1) JPH0826947B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2264765B (en) * 1992-02-27 1995-04-12 British Gas Plc Method of lining a pipeline
WO2006046974A2 (en) * 2004-06-04 2006-05-04 Cornerstone Research Group, Inc. Method of making and using shape memory polymer composite patches
CN104761794B (en) * 2015-04-14 2017-08-25 长江大学 A kind of gutta-percha shape memory macromolecule composite material and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151689A (en) * 1985-12-25 1987-07-06 日立金属株式会社 Manufacture of pipe joint made of resin
JPH01242894A (en) * 1988-03-23 1989-09-27 Showa Electric Wire & Cable Co Ltd Manufacture of internal surface resin coated pipe

Also Published As

Publication number Publication date
JPH0396785A (en) 1991-04-22

Similar Documents

Publication Publication Date Title
CA1193063A (en) Process for the preparation of shaped articles
EP1840444A1 (en) Cladding for heat insulated conduits
JP3229319B2 (en) How to repair underground plumbing
CN101670665A (en) Online biaxial-orienting PVC extrusion molding mould
US6547908B2 (en) Method of manufacturing a thermoplastic tubular jacket
JPH0826947B2 (en) Shape memory resin pipe and steel pipe lining method using it
JPH04128024A (en) Manufacture of resin pipe for lining of existing pipe
US3554999A (en) Method of making a shrink device
AU648653B2 (en) Method, pipeline and device for fitting an inner tube in an existing pipeline using air venting means
EP0834034B1 (en) Apparatus and methods for reducing plastics pipes
JP2745912B2 (en) Inner pipe lining method
JPH07115410B2 (en) Inner surface lining method using polyolefin resin tube
RU2385228C2 (en) Method to produce thermally expanding hose from thermoplastic polymer (versions)
JPH0661844B2 (en) Lining material for reverse lining
JP3321912B2 (en) Reduced diameter polyolefin resin tube and its application
JPH04231792A (en) Configuration keeping and restoration method of polyolefine resin and application thereof
JP2005047105A (en) Inner surface-lined steel pipe and its manufacturing method
JP2005047101A (en) Inner surface-lined steel pipe and its manufacturing method
JPH0661843B2 (en) Lining material for reverse lining
JP2619103B2 (en) PVC pipe for lining existing pipe
JP2602378B2 (en) Polyethylene resin pipe for lining existing pipe
JPH07266449A (en) Method and device for producing plastic pipe and plastic pipe
JP2004066647A (en) Method for rehabilitating pipeline
JPH0392331A (en) Lining material
JP3275469B2 (en) Method for reducing the diameter of hole-shaped rolls and resin tubes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees