JPH0826886A - Method for vapor-phase growth of single crystal - Google Patents

Method for vapor-phase growth of single crystal

Info

Publication number
JPH0826886A
JPH0826886A JP16248794A JP16248794A JPH0826886A JP H0826886 A JPH0826886 A JP H0826886A JP 16248794 A JP16248794 A JP 16248794A JP 16248794 A JP16248794 A JP 16248794A JP H0826886 A JPH0826886 A JP H0826886A
Authority
JP
Japan
Prior art keywords
single crystal
temperature
growth
crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16248794A
Other languages
Japanese (ja)
Other versions
JP3667360B2 (en
Inventor
Akihiro Ishida
明広 石田
Hiroshi Fujiyasu
洋 藤安
Masakazu Kuwabara
正和 桑原
Hirobumi Suga
博文 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP16248794A priority Critical patent/JP3667360B2/en
Publication of JPH0826886A publication Critical patent/JPH0826886A/en
Application granted granted Critical
Publication of JP3667360B2 publication Critical patent/JP3667360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide a method for vapor-phase growth of single crystal, capable of controlling growth rate of single crystal, by sealing a prescribed raw material, seed crystal and a growing substrate in a sealing pipe and controlling vapor control in the sealed pipe. CONSTITUTION:In the method for vapor-phase growth of single crystal, capable of growing single crystal comprising plural kinds of elements in a sealed pipe, temperature at the first position on one side is higher than the growth temperature of single crystal and temperature at the second position on the other side is lower than the growth temperature of the single crystal. A raw material excessively containing materials having a vapor pressure higher than that of growth crystal is arranged at the first position and a substrate for growing the single crystal or seed crystal is arranged at the third position approximately at the same temperature as the growth temperature of the single crystal, between the first and the second positions. The growth rate of the single crystal at the third position is preferably controlled by regulating the temperature of the second position. The raw material preferably consists of polycrystal having the same composition ratio as that of the single crystal and a solid substance of a material having a high vapor pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単結晶の気相成長方法に
関し、特に詳細には封管内に原料と種結晶や成長用基板
を封じ入れ、単結晶を気相成長させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method for a single crystal, and more particularly to a method for vapor phase growing a single crystal by sealing a raw material, a seed crystal and a growth substrate in a sealed tube.

【0002】[0002]

【従来の技術】PbS、PbTe、PbSnTe、Cd
Sなどの単結晶の作製には、いわゆる封管気相成長法が
用いられ、温度分布を制御するアプローチを行なったも
のとして、A.SZCZERBAKOW による文献“Journal of Cry
stal Growth 82(1987),P.709-716”が知られている。
2. Description of the Related Art PbS, PbTe, PbSnTe, Cd
The so-called sealed tube vapor phase epitaxy method is used for the production of single crystals of S, etc., and the method of controlling the temperature distribution is taken as an example. A.SZCZERBAKOW, "Journal of Cry"
stal Growth 82 (1987), P.709-716 ”is known.

【0003】これとは別に、同様に封管法でPbTeと
PbSnTeを結晶成長させた技術として、Z.GOLACKら
による文献“Journal of Crystal Growth 60(1982),P.1
50-152”が知られている。この文献では、石英ガラス製
の封管内に原料と基板(BaF2 )を封じ入れ、原料を
900℃前後に加熱した例が示されている。
Separately from this, as a technique for similarly growing crystals of PbTe and PbSnTe by the sealed tube method, Z. GOLACK et al., “Journal of Crystal Growth 60 (1982), P. 1”.
50-152 "is known. In this document, an example is shown in which a raw material and a substrate (BaF 2 ) are enclosed in a sealed tube made of quartz glass and the raw material is heated to about 900 ° C.

【0004】[0004]

【発明が解決しようとする課題】しかし、これら従来技
術によると、封管内における温度匂配を非常にゆるやか
にし、かつ厳密に制御させる必要があり、しかも、ゆっ
くりと成長させる必要がある。この条件が満たされない
と、結晶性が劣化したり、成長速度が極端に遅くなった
りする等、安定して良質の結晶成長ができない。
However, according to these conventional techniques, it is necessary to make the temperature gradient in the sealed tube extremely gentle and strictly control it, and to grow it slowly. If this condition is not satisfied, the crystallinity will be deteriorated, the growth rate will be extremely slow, etc., and stable high-quality crystal growth cannot be achieved.

【0005】ところで、Z.GOLACKらによる上記文献で
は、封管内でPbTeを結晶成長させるに際し、単結晶
と同一組成の原料を封管内の一端に置く一方で、結晶成
長させるべき基板を他端に置くのではなく、基板を封管
の他端から中央寄りの位置にセットしている。そして、
封管の一端のPbTe原料を900℃前後、他端から中
央寄りのBaF2 基板を850℃前後、封管の他端を7
70℃前後とし、2週間の成長を行なったところ、Ba
2 基板にPbTe単結晶が得られ、かつ封管の他端に
原料が析出したことを報告している。
By the way, in the above-mentioned document by Z. GOLACK et al., When crystallizing PbTe in a sealed tube, a raw material having the same composition as a single crystal is placed at one end in the sealed tube while the substrate to be crystal-grown at the other end Instead of placing it, the substrate is set at a position closer to the center from the other end of the sealed tube. And
The PbTe raw material at one end of the sealed tube is around 900 ° C, the BaF 2 substrate near the center from the other end is around 850 ° C, and the other end of the sealed tube is 7 ° C.
When the temperature was set to about 70 ° C. and the growth was performed for 2 weeks, Ba
It is reported that a PbTe single crystal was obtained on the F 2 substrate and the raw material was deposited on the other end of the sealed tube.

【0006】[0006]

【課題を解決するための手段及び作用】そこで本発明者
は、上記文献の結晶成長技術を更に改良すべく、鋭意検
討を重ねた結果、原料を封入した封管内において、一方
では単結晶を成長させながら、他方では過剰に入れた高
蒸気圧材料の蒸気圧を制御して気体分子密度を制御すれ
ば、封管内の蒸気圧をコントロールしながら結晶成長で
きるのではないかと考えた。そして、蒸気圧は物質ごと
に異なり、原料には複数種類の元素が含まれることか
ら、原料の構成物質のうち蒸気圧の高いものを過剰にし
て封管内に封じ入れれば、蒸気圧コントロールによる結
晶成長は好適になしうるとの着想を得、これに従う実験
を重ねた。
Therefore, the present inventor has conducted diligent studies to further improve the crystal growth technique of the above document, and as a result, grows a single crystal in a sealed tube containing the raw material. On the other hand, on the other hand, if the vapor pressure of the excessively high vapor pressure material was controlled to control the gas molecule density, it was thought that crystal growth could be performed while controlling the vapor pressure in the sealed tube. Since the vapor pressure is different for each substance, and the raw material contains multiple types of elements, if one of the constituent substances of the raw material that has a high vapor pressure is excessively sealed in a sealed tube, the crystal will be controlled by vapor pressure. I got the idea that the growth can be done appropriately, and repeated experiments according to it.

【0007】本発明は、このような研究によって完成さ
れたものであって、複数種類の元素からなる単結晶を、
封管内で原料を昇華・拡散させて結晶成長させる単結晶
の気相成長方法において、長尺の例えば石英ガラス製の
封管内の長手方向に沿って、一方の側の第1の位置を単
結晶の成長温度よりも高温(例えば原料の昇華温度)に
すると共に、他方の側の第2の位置を単結晶の成長温度
よりも低温とし、上記の第1の位置には、単結晶の構成
材料であって成長される結晶よりも蒸気圧の高い材料
(例えば、構成材料のうち最も蒸気圧の高い材料であっ
て成長結晶よりも蒸気圧の高い材料)を過剰に含む原料
を配置し、第1の位置と第2の位置の間の位置であって
単結晶の成長温度と略同一の温度となる第3の位置に
は、単結晶を成長させる基板もしくは種結晶を配置し、
これによって単結晶を気相成長させることを特徴とする
ものである。
The present invention was completed by such research, and a single crystal composed of a plurality of kinds of elements is
In a vapor phase growth method for a single crystal in which a raw material is sublimated / diffused in a sealed tube to grow a crystal, a single crystal is formed at a first position on one side along a longitudinal direction in a long sealed tube made of, for example, quartz glass. Is higher than the growth temperature of the single crystal (for example, the sublimation temperature of the raw material), and the second position on the other side is lower than the growth temperature of the single crystal. And a material having a vapor pressure higher than that of the crystal to be grown (for example, a material having the highest vapor pressure of the constituent materials and a vapor pressure higher than that of the growing crystal) is disposed in excess, and A substrate or a seed crystal for growing a single crystal is arranged at a third position between the first position and the second position and at a temperature substantially the same as the growth temperature of the single crystal,
This is characterized in that a single crystal is vapor-grown.

【0008】ちなみに、PbS単結晶を気相成長するに
あたって、PbS多結晶からなる原料の塊にSを過剰に
入れ、あるいはPbS多結晶の塊とS結晶の塊を共に封
じ入れると、PbSに比べてSの方が蒸気圧が高い。こ
のため、温度匂配をつけることによってS蒸気の拡散を
容易にコントロールでき、その結果として、単結晶の構
成原料であるPbS蒸気の封管内での拡散をコントロー
ルできる。したがって、成長温度よりも低温とされる第
2の位置の温度を制御することで、成長温度とされてい
る第3の位置へのPbS蒸気の供給量がコントロールで
き、結果として、ここにおけるPbS単結晶の結晶成長
速度を制御することができる。
By the way, when vapor-depositing a PbS single crystal, if S is excessively added to the lump of the raw material made of the PbS polycrystal, or if both the lump of the PbS polycrystal and the lump of the S crystal are sealed, it is compared with PbS. S has a higher vapor pressure. Therefore, it is possible to easily control the diffusion of S vapor by giving a temperature gradient, and as a result, it is possible to control the diffusion of PbS vapor, which is a constituent raw material of the single crystal, in the sealed tube. Therefore, by controlling the temperature of the second position, which is lower than the growth temperature, the supply amount of PbS vapor to the third position, which is the growth temperature, can be controlled. The crystal growth rate of crystals can be controlled.

【0009】ここで、本発明における結晶成長の原理に
ついて、簡単に説明する。
Here, the principle of crystal growth in the present invention will be briefly described.

【0010】本発明は、成長原料分子の拡散速度を高蒸
気圧材料の分子密度を制御することでコントロールする
ものである。手順・メカニズムとしては、まず、原料多
結晶、高蒸気圧材料、成長基板を合成石英アンプル内に
真空引き(10-6Torr)して封じ入れる。そして、
真空状態から加熱すると、まずはじめに高蒸気圧材料が
低温部に容易に拡散する。つまり、低温部の温度によ
り、高蒸気圧材料の管内密度をコントロールできる。な
お、実際には原料分子より高蒸気圧材料分子の方が多い
ようになる。原料多結晶も、温度匂配により昇華拡散す
るが、その拡散速度は高蒸気圧材料の分子密度に反比例
する。成長部の基板は、管の内壁との間のスキマを狭く
とり、原料気体分子のコンダクタンスを小さくしている
ので、拡散してきた原料気体分子はほとんど基板上に成
長する。そして、その成長レートは拡散速度に比例す
る。このようにして、低温部の温度で成長速度をコント
ロールできる。
The present invention controls the diffusion rate of growth material molecules by controlling the molecular density of the high vapor pressure material. As a procedure / mechanism, first, a raw material polycrystal, a high vapor pressure material, and a growth substrate are evacuated (10 −6 Torr) and sealed in a synthetic quartz ampoule. And
When heated from a vacuum, the high vapor pressure material first diffuses easily into the cold region. That is, the tube density of the high vapor pressure material can be controlled by the temperature of the low temperature part. In reality, the number of high vapor pressure material molecules is larger than that of the raw material molecules. The raw material polycrystal also sublimes due to the temperature gradient, but its diffusion rate is inversely proportional to the molecular density of the high vapor pressure material. Since the substrate of the growth portion has a narrow gap between the inner wall of the tube and the conductance of the source gas molecules, the diffused source gas molecules almost grow on the substrate. The growth rate is proportional to the diffusion rate. In this way, the growth rate can be controlled by the temperature of the low temperature part.

【0011】[0011]

【実施例】実施例に従い、本発明をより詳細に説明す
る。
EXAMPLES The present invention will be described in more detail with reference to examples.

【0012】本発明が対象とする単結晶は、例えば、P
bS、CdS、PbTe、PbSnTeなどであり、原
料にはこれらの多結晶の塊と高蒸気圧のS、Teの塊と
が共に用いられ、あるいはこれらを混合させた固体が用
いられ、あるいは蒸気圧の高いS、Teを単結晶の組成
比よりも過剰に含んだPbS、CdS、PbTe、Pb
SnTeなどの多結晶などが用いられる。また、結晶成
長のためには、Al23 板、SiO2 板、BaF2
などの基板(例えばスティック状の部材)が用いられ、
あるいは成長すべき単結晶と同一組成の種結晶が用いら
れる。
The single crystal targeted by the present invention is, for example, P
bS, CdS, PbTe, PbSnTe, etc., and the polycrystal lumps of these and high vapor pressure S and Te lumps are used together, or a solid mixture thereof is used, or the vapor pressure is Of PbS, CdS, PbTe, Pb containing a high content of S and Te in excess of the composition ratio of the single crystal
Polycrystal such as SnTe is used. For crystal growth, a substrate such as an Al 2 O 3 plate, a SiO 2 plate or a BaF 2 plate (for example, a stick-shaped member) is used,
Alternatively, a seed crystal having the same composition as the single crystal to be grown is used.

【0013】図1は、PbSを結晶成長させる実施例に
おける温度匂配を、従来例と対比して概念的に説明して
いる。電気炉は例えば5個のヒータ1a〜1eを有し、
その内部に石英ガラス製の封管2が挿入される。封管2
の長手方向の温度分布は例えば6個の熱電対3a〜3f
で測定され、測定結果(電圧)は点線矢印で示すように
温度コントローラ4に与えられる。温度コントローラ4
はこの温度測定値に従い、封管2が長手方向にあらかじ
め設定された温度匂配となるよう、実線矢印で示すよう
にヒータ1a〜1eの発熱量を制御する。
FIG. 1 conceptually explains the temperature gradient in the embodiment in which PbS crystal is grown, in comparison with the conventional example. The electric furnace has, for example, five heaters 1a to 1e,
A quartz glass sealed tube 2 is inserted therein. Sealed tube 2
The temperature distribution in the longitudinal direction is, for example, six thermocouples 3a to 3f.
The measurement result (voltage) is given to the temperature controller 4 as indicated by a dotted arrow. Temperature controller 4
Controls the amount of heat generated by the heaters 1a to 1e in accordance with the measured temperature value so that the sealed tube 2 has a preset temperature gradient in the longitudinal direction, as indicated by solid arrows.

【0014】実施例においては、原料5としてのPbS
多結晶を含む塊(但し、Sが過剰)は封管2の一方の端
部(第1の位置)に配置され、ほぼ中間の結晶成長位置
(第3の位置)には基板6が配置される。そして、原料
5が約1000℃、基板6が結晶成長温度とほぼ等しい
約800℃とされ、封管2の他方の端部(第2の位置)
は蒸気圧の高いSの蒸気圧が数十Torrとなる約30
0℃とされる。
In the examples, PbS as the raw material 5 is used.
A lump containing polycrystals (however, S is excessive) is arranged at one end (first position) of the sealed tube 2, and a substrate 6 is arranged at a substantially middle crystal growth position (third position). It Then, the raw material 5 is set to about 1000 ° C., the substrate 6 is set to about 800 ° C. which is almost equal to the crystal growth temperature, and the other end of the sealed tube 2 (second position)
Is about 30 when the vapor pressure of S, which has a high vapor pressure, becomes several tens Torr.
It is set to 0 ° C.

【0015】これに対し、従来例においては、原料5が
成長すべき単結晶と組成比の等しいPbS多結晶である
点と、基板6が封管2の他方の端部に配置される点と
が、実施例と異なっている。さらに、従来技術では、原
料5の温度は約850℃、基板6は約800℃とするこ
とが必要とされる。
On the other hand, in the conventional example, the raw material 5 is a PbS polycrystal having the same composition ratio as the single crystal to be grown, and the substrate 6 is arranged at the other end of the sealed tube 2. However, it differs from the embodiment. Further, in the conventional technique, the temperature of the raw material 5 is required to be about 850 ° C., and the temperature of the substrate 6 is required to be about 800 ° C.

【0016】図1の上側に示したグラフにおいて、実線
表示(実施例)と点線表示(従来例)を対比すれば明ら
かな通り、従来例では原料5と基板6の間で約50℃の
温度差になっているのに対し、実施例では約200℃の
温度差になっている。したがって、実施例によれば温度
匂配の設定および制御が極めて容易になる。このため、
本発明に係る単結晶の気相成長方法が適用される結晶成
長装置は、その構成を簡易なものとすることができる。
In the graph shown in the upper part of FIG. 1, it is clear that the solid line display (example) and the dotted line display (conventional example) are compared, and in the conventional example, the temperature between the raw material 5 and the substrate 6 is about 50.degree. While there is a difference, in the embodiment, there is a temperature difference of about 200 ° C. Therefore, according to the embodiment, the setting and control of the temperature gradient becomes extremely easy. For this reason,
The crystal growth apparatus to which the single crystal vapor phase growth method according to the present invention is applied can have a simple structure.

【0017】図2はその一例を示しており、図1と同一
要素は同一符号で示してある。図示の通り、電気炉は例
えば3個のヒータ1a〜1cで構成され、中央のヒータ
1bはPbSの結晶成長温度(約800℃)に、原料5
側のヒータ1cは原料5およびSの塊が蒸発する約10
00℃に、反対側のヒータ1aは過剰に入れた蒸気圧の
高いSの蒸気圧が数十Torrとなる約300℃に設定
される。
FIG. 2 shows an example thereof, and the same elements as those in FIG. 1 are designated by the same reference numerals. As shown in the figure, the electric furnace is composed of, for example, three heaters 1a to 1c, and the central heater 1b is at the PbS crystal growth temperature (about 800 ° C.)
The heater 1c on the side is about 10 at which the raw material 5 and the lump of S evaporate.
The temperature of the heater 1a on the opposite side is set to about 300 ° C. at which the vapor pressure of the excessively high vapor pressure S of S becomes several tens Torr.

【0018】次に、本発明者による具体的な実施例およ
び比較例を説明する。
Next, specific examples and comparative examples by the present inventor will be described.

【0019】実施例1 内径10mmの石英ガラス管に高蒸気圧のSを過剰にし
たPbS原料(Sの塊とPbS多結晶の塊)と、Al2
3 基板を成長用に封入し、原料部を1000℃、基板
部を800℃、低温側端部を300℃にした。なお、真
空引き時の封管内の気圧は10-6Torrオーダーであ
る。10日間の結晶成長を行なったところ、30mm程
度の良好な結晶性を有するPbS単結晶が得られた。
Example 1 A PbS raw material (a lump of S and a lump of PbS polycrystal) having a high vapor pressure of S in a quartz glass tube having an inner diameter of 10 mm, and Al 2
An O 3 substrate was sealed for growth, the raw material portion was 1000 ° C., the substrate portion was 800 ° C., and the low temperature side end portion was 300 ° C. The air pressure inside the sealed tube during evacuation is on the order of 10 −6 Torr. When crystal growth was performed for 10 days, a PbS single crystal having a good crystallinity of about 30 mm was obtained.

【0020】実施例2 図3に示すようにして、内径10mmの封管でPbS単
結晶で成長させた。基板は900℃、原料は960℃と
し、Sが析出する部分は320℃とした。なお、昇温と
冷却には、それぞれ2日間をかけ、10日間の成長をさ
せた。直径10mmで長さ30mmのPbS単結晶が得
られた。
Example 2 As shown in FIG. 3, a PbS single crystal was grown in a sealed tube having an inner diameter of 10 mm. The substrate was 900 ° C., the raw material was 960 ° C., and the portion where S was deposited was 320 ° C. It should be noted that each of the temperature rising and the cooling was performed for 2 days, and the growth was performed for 10 days. A PbS single crystal having a diameter of 10 mm and a length of 30 mm was obtained.

【0021】実施例3 図4に示すようにして、内径10mmの封管によりPb
SnTe単結晶を成長させた。図示の通り、基板は82
0℃、Teが過剰の原料は870℃とし、低温の端部は
780℃とした。2日間の昇温、10日間の成長および
2日間の徐冷により、良好な結晶性を有する単結晶が得
られた。
Example 3 As shown in FIG. 4, Pb was sealed with a sealed tube having an inner diameter of 10 mm.
A SnTe single crystal was grown. As shown, the substrate is 82
The raw material at 0 ° C. and Te in excess was 870 ° C., and the low temperature end portion was 780 ° C. By raising the temperature for 2 days, growing for 10 days, and gradually cooling for 2 days, a single crystal having good crystallinity was obtained.

【0022】実施例4,比較例 実施例3と同一の温度条件で、Teが過剰のPbTe単
結晶を成長させた。そして、得られた単結晶をへき開
し、エッチングした後にエッチピット密度を測定したと
ころ、2×105 cm-2程度であった。
Example 4, Comparative Example Under the same temperature conditions as in Example 3, a PbTe single crystal with excessive Te was grown. Then, the obtained single crystal was cleaved, and after etching, the etch pit density was measured and found to be about 2 × 10 5 cm -2 .

【0023】この実施例3と対比するために、封管の一
端に原料、他端に基板を置く従来方法でPbTe単結晶
を成長させ、同様にエッチピット密度を調べた。その結
果、実施例3の約10倍の2×106 cm-2のエッチピ
ットが生じていた。
For comparison with Example 3, a PbTe single crystal was grown by a conventional method in which the raw material was placed at one end of the sealed tube and the substrate was placed at the other end, and the etch pit density was similarly examined. As a result, an etch pit of 2 × 10 6 cm −2 , which is about 10 times that of Example 3, was formed.

【0024】この実施例4と比較例を、図5に対比して
示す。実施例4によれば、温度匂配の設定が容易で、し
かもコントロールも容易であることがわかる。
The fourth embodiment and the comparative example are shown in comparison with FIG. According to Example 4, it can be seen that the temperature gradient can be easily set and the control is easy.

【0025】ここで、本発明における結晶成長の速度に
ついて、PbTeを例にして説明する。封管内における
PbTe結晶成長では、原料部温度870℃においてP
bTe蒸気圧は約4.8Torrであり、リザーバ部温
度780℃でTe2 蒸気圧は、約80Torrである。
つまりアンプル内では、PbTe分子よりもTe2 分子
の方が密度が高くなっている。
Now, the crystal growth rate in the present invention will be described by taking PbTe as an example. In the PbTe crystal growth in the sealed tube, P at the raw material part temperature of 870 ° C.
The bTe vapor pressure is about 4.8 Torr, and the Te 2 vapor pressure is about 80 Torr at a reservoir temperature of 780 ° C.
That is, in the ampoule, the Te 2 molecule has a higher density than the PbTe molecule.

【0026】このときのPbTe分子の平均自由行程λ
は、 λ=1/{4・21/2 ・σ・nTe} …(1) であらわされる。ここで、σはPbTe分子の散乱断面
積、nTeはTe2 の分子の密度である。
Mean free path λ of PbTe molecule at this time
Is represented by λ = 1 / {4 · 2 1/2 · σ · n Te } (1). Here, σ is the scattering cross section of the PbTe molecule, and n Te is the density of the Te 2 molecule.

【0027】PbTe結晶成長においては、λはおよそ
3×10-4cmであり、原料と結晶成長部までの距離約
8cmに比べ非常に小さい。したがって、PbTe分子
の移動は、拡散現象として取り扱うことができる。
In PbTe crystal growth, λ is about 3 × 10 -4 cm, which is much smaller than the distance between the raw material and the crystal growth portion of about 8 cm. Therefore, the movement of PbTe molecules can be treated as a diffusion phenomenon.

【0028】今、拡散流密度Jを単位時間当たりアンプ
ル内の単位断面を通過するPbTe分子の数Jは、Pb
Te分子の密度をnPbTeとおけば、 J=D・dnPbTe/dx …(2) のようにあらわされ、Dは拡散係数、xは距離であり、
dnPbTe/dxは、原料部と結晶成長部との濃度匂配で
ある。PbTeの濃度匂配は、図6に示す。
Now, the number J of PbTe molecules passing through the unit cross section in the ampoule per unit time with the diffusion flow density J is Pb.
If the density of Te molecules is expressed as n PbTe , it is expressed as J = D · dn PbTe / dx (2), D is the diffusion coefficient, and x is the distance,
dn PbTe / dx is a concentration gradient between the raw material part and the crystal growth part. The concentration pattern of PbTe is shown in FIG.

【0029】さらに、拡散係数Dは、 D=u・λ/3 …(3) であらわされる。ただし、uはPbTe分子の平均速度
である。
Further, the diffusion coefficient D is expressed by D = uλ / 3 (3) However, u is the average velocity of the PbTe molecule.

【0030】以上をまとめると拡散流密度Jは、 J=(u・λ/3)・dnPbTe/dx ={u/(12・21/2 ・σ}・{dnPbTe/dx}・{1/nTe} …(4) となる。アンプル内の成長棒の外形を石英アンプルの内
径に近づけ、この部分のPbTeのコンダクタンスを小
さくすれば、拡散してきたPbTe分子はほとんどで成
長棒上に成長し、成長率Gは次式であらわせる。
Summarizing the above, the diffusion flow density J is J = (u · λ / 3) · dn PbTe / dx = {u / (12 · 2 1/2 · σ) · {dn PbTe / dx} · { 1 / n Te } (4) If the outer diameter of the growth rod in the ampoule is brought close to the inner diameter of the quartz ampoule and the conductance of PbTe in this portion is reduced, most of the PbTe molecules that have diffused are on the growth rod. It grows and the growth rate G is expressed by the following equation.

【0031】 G=(aPbTe3 J/4 …(5) ここで、aPbTeはPbTeの格子定数である。G = (a PbTe ) 3 J / 4 (5) where a PbTe is the lattice constant of PbTe.

【0032】原料多結晶と結晶成長部温度は一定であれ
ば、u、dnPbTe/dxはリザーバ部温度によらず、拡
散流密度Jは拡散定数DあるいはnTeに反比例する。す
なわち、成長速度はアンプル内のTe2 の蒸気圧によっ
て変化するため、リザーバ部温度で結晶の成長速度をコ
ントロールすることができる。
If the raw material polycrystal and the temperature of the crystal growth portion are constant, u and dn PbTe / dx are inversely proportional to the diffusion constant D or n Te regardless of the reservoir portion temperature. That is, since the growth rate changes depending on the vapor pressure of Te 2 in the ampoule, the crystal growth rate can be controlled by the reservoir temperature.

【0033】図7はカルコゲン蒸気圧制御部温度(リザ
ーバ部温度)と、PbTe結晶の成長速度の関係を示
す。実線は計算値である。カルコゲン蒸気圧の増加に対
応してPbTe分子の拡散定数が減少し、それにともな
って結晶の成長率が減少することがわかる。
FIG. 7 shows the relationship between the temperature of the chalcogen vapor pressure controller (reservoir temperature) and the growth rate of the PbTe crystal. The solid line is the calculated value. It can be seen that the diffusion constant of the PbTe molecule decreases in accordance with the increase in the chalcogen vapor pressure, and the crystal growth rate decreases accordingly.

【0034】[0034]

【発明の効果】以上のように、本発明に係る単結晶の気
相成長方法によれば、簡単な温度コントロールによっ
て、良質の単結晶を容易に成長させることができる。ま
た、結晶成長のための設備も、従来法に比べて簡単にす
ることが可能になる。なお、特開昭63−79797号
にはII−VI族化合物半導体の封管気相成長法におい
て、不活性ガスを封入することが開示されているが、こ
れは原料の解離による成分比の変動を抑制するものであ
って、このような方法では、本発明の効果は全く期待で
きない。
As described above, according to the vapor phase growth method for a single crystal according to the present invention, a good quality single crystal can be easily grown by simple temperature control. Further, the equipment for crystal growth can be simplified as compared with the conventional method. Japanese Patent Application Laid-Open No. 63-79797 discloses sealing an inert gas in a sealed tube vapor phase growth method for II-VI group compound semiconductors, which is a variation in component ratio due to dissociation of raw materials. In such a method, the effect of the present invention cannot be expected at all.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の単結晶の気相成長方法を従来法と比較
して説明する図。
FIG. 1 is a diagram for explaining a vapor phase growth method for a single crystal of an example in comparison with a conventional method.

【図2】実施例の単結晶の気相成長方法が適用可能な結
晶成長装置を説明する図。
FIG. 2 is a diagram illustrating a crystal growth apparatus to which a vapor phase growth method for a single crystal according to an embodiment can be applied.

【図3】実施例2の温度分布を説明する図。FIG. 3 is a diagram illustrating a temperature distribution of Example 2.

【図4】実施例3の温度分布を説明する図。FIG. 4 is a diagram illustrating a temperature distribution of Example 3.

【図5】実施例4と比較例の温度分布を対比して説明す
る図。
FIG. 5 is a diagram illustrating the temperature distributions of Example 4 and a comparative example in comparison.

【図6】PbTeの濃度勾配を示すグラフ。FIG. 6 is a graph showing a concentration gradient of PbTe.

【図7】カルコゲン蒸気圧制御温度とPbTe結晶の成
長速度の関係を示す図。
FIG. 7 is a graph showing the relationship between chalcogen vapor pressure control temperature and PbTe crystal growth rate.

【符号の説明】[Explanation of symbols]

1a〜1e…ヒータ、2…封管、3a〜3f…熱電対、
4…温度コントローラ、5…原料、6…基板。
1a to 1e ... heater, 2 ... sealed tube, 3a to 3f ... thermocouple,
4 ... Temperature controller, 5 ... Raw material, 6 ... Substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤安 洋 静岡県浜松市遠州浜1丁目33番8号 (72)発明者 桑原 正和 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 (72)発明者 菅 博文 静岡県浜松市市野町1126番地の1 浜松ホ トニクス株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroshi Fujian 1-33-8 Enshuhama, Hamamatsu City, Shizuoka Prefecture (72) Inventor Masakazu Kuwahara 1126, Ichinomachi, Hamamatsu City, Shizuoka Prefecture Hamamatsu Photonics Co., Ltd. (72) Inventor Hirofumi Suga 1 Hamamatsu Photonics Co., Ltd. 1 1126 Nomachi, Hamamatsu City, Shizuoka Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数種類の元素からなる単結晶を、封管
内で結晶成長させる単結晶の気相成長方法において、 長尺の前記封管内の長手方向に沿って、一方の側の第1
の位置を前記単結晶の成長温度よりも高温にすると共
に、他方の側の第2の位置を前記単結晶の成長温度より
も低温とし、 前記第1の位置には、前記単結晶の構成材料であって成
長される結晶よりも蒸気圧の高い材料を過剰に含む原料
を配置し、 前記第1の位置と前記第2の位置の間の位置であって前
記単結晶の成長温度と略同一の温度となる第3の位置に
は、前記単結晶を成長させる基板もしくは種結晶を配置
することを特徴とする単結晶の気相成長方法。
1. A vapor phase growth method for a single crystal in which a single crystal composed of a plurality of kinds of elements is grown in a sealed tube, the first crystal on one side along the longitudinal direction in the elongated sealed tube.
At a temperature higher than the growth temperature of the single crystal, and at a second position on the other side lower than the growth temperature of the single crystal, and at the first position, the constituent material of the single crystal. And a raw material excessively containing a material having a vapor pressure higher than that of the crystal to be grown is disposed, and the position between the first position and the second position is substantially the same as the growth temperature of the single crystal. A vapor-phase growth method for a single crystal, wherein a substrate or a seed crystal for growing the single crystal is arranged at a third position at which the temperature is 1.
【請求項2】 前記第2の位置の温度を制御することに
より前記第3の位置における前記単結晶の成長速度を制
御することを特徴とする請求項1記載の単結晶の気相成
長方法。
2. The vapor phase growth method for a single crystal according to claim 1, wherein the growth rate of the single crystal at the third position is controlled by controlling the temperature at the second position.
【請求項3】 前記原料は、前記単結晶と同一組成比の
多結晶と前記蒸気圧の高い材料の固形物からなることを
特徴とする請求項1記載の単結晶の気相成長方法。
3. The method for vapor phase growth of a single crystal according to claim 1, wherein the raw material comprises a polycrystal having the same composition ratio as the single crystal and a solid material of the material having a high vapor pressure.
JP16248794A 1994-07-14 1994-07-14 Vapor growth method of single crystal Expired - Fee Related JP3667360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16248794A JP3667360B2 (en) 1994-07-14 1994-07-14 Vapor growth method of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16248794A JP3667360B2 (en) 1994-07-14 1994-07-14 Vapor growth method of single crystal

Publications (2)

Publication Number Publication Date
JPH0826886A true JPH0826886A (en) 1996-01-30
JP3667360B2 JP3667360B2 (en) 2005-07-06

Family

ID=15755553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16248794A Expired - Fee Related JP3667360B2 (en) 1994-07-14 1994-07-14 Vapor growth method of single crystal

Country Status (1)

Country Link
JP (1) JP3667360B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275000A (en) * 2001-03-14 2002-09-25 Res Inst Electric Magnetic Alloys Method of growing high-quality bulk single crystal having highly flat facet
US6708945B2 (en) 2001-07-12 2004-03-23 Smc Kabushiki Kaisha Flow rate control valve
WO2004108593A1 (en) * 2003-06-02 2004-12-16 Japan Science And Technology Agency Nano-fiber or nano-tube comprising v group transition metal dichalcogenide crystals, and method for preparation thereof
US8172375B2 (en) 2004-12-17 2012-05-08 Brother Kogyo Kabushiki Kaisha Valve and actuator employing capillary electrowetting phenomenon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002275000A (en) * 2001-03-14 2002-09-25 Res Inst Electric Magnetic Alloys Method of growing high-quality bulk single crystal having highly flat facet
US6708945B2 (en) 2001-07-12 2004-03-23 Smc Kabushiki Kaisha Flow rate control valve
WO2004108593A1 (en) * 2003-06-02 2004-12-16 Japan Science And Technology Agency Nano-fiber or nano-tube comprising v group transition metal dichalcogenide crystals, and method for preparation thereof
US8172375B2 (en) 2004-12-17 2012-05-08 Brother Kogyo Kabushiki Kaisha Valve and actuator employing capillary electrowetting phenomenon
US8348391B2 (en) 2004-12-17 2013-01-08 Brother Kogyo Kabushiki Kaisha Valve and actuator employing capillary electrowetting phenomenon

Also Published As

Publication number Publication date
JP3667360B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
EP0859879A1 (en) A method for epitaxially growing objects and a device for such a growth
US7524375B1 (en) Growth of uniform crystals
JPS62191493A (en) Gas phase epitaxial growth for semiconductor substance
Korostelin et al. Vapour growth and doping of ZnSe single crystals
JPS6345198A (en) Production of crystal of multiple system
JPH0826886A (en) Method for vapor-phase growth of single crystal
Su et al. Growth of ZnTe by physical vapor transport and traveling heater method
Buck et al. Sublimation growth and x-ray topographic characterization of CdTe single crystals
Kawasaki et al. Uniformity of Fe-doped LiNbO3 single crystal grown by the Czochralski method
US4869776A (en) Method for the growth of a compound semiconductor crystal
US5271795A (en) Method of growing crystals
JPH0557240B2 (en)
JPH0411514B2 (en)
Bernardi Slider LPE growth of MCT using in situ Te-solution preparation
US3563816A (en) Method for the vapor growth of semiconductors
JP3532245B2 (en) Method for producing mixed crystal single crystal
Lan et al. Zone-melting Czochralski pulling growth of Bi12SiO20 single crystals
JPH06125148A (en) Low-resistance semiconductor crystal substrate and manufacture thereof
Peter et al. A new electron beam evaporation source for Si molecular beam epitaxy controlled by a quadrupole mass spectrometer
JP2550870B2 (en) Method for controlling composition and doping concentration in mercury cadmium telluride molecular beam epitaxial growth
JPH05339095A (en) Substrate holder for mercury cadmium tellurium thin film of molecular beam epitaxy device
JP3018763B2 (en) GaAs single crystal, method of manufacturing the same, and method of controlling ion implantation of GaAs wafer
JPH08109094A (en) Production of compound semiconductor single crystal
JP2922039B2 (en) Single crystal growth method
Bakin et al. The Pb1− xSnxTe gas phase epitaxy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050322

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050406

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees