JPH0826732A - Production of soft ferrite - Google Patents

Production of soft ferrite

Info

Publication number
JPH0826732A
JPH0826732A JP6187791A JP18779194A JPH0826732A JP H0826732 A JPH0826732 A JP H0826732A JP 6187791 A JP6187791 A JP 6187791A JP 18779194 A JP18779194 A JP 18779194A JP H0826732 A JPH0826732 A JP H0826732A
Authority
JP
Japan
Prior art keywords
less
phosphorus
amount
terms
including zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6187791A
Other languages
Japanese (ja)
Other versions
JP3747234B2 (en
Inventor
Katsushi Yasuhara
克志 安原
Takashi Ito
伊藤  隆
Tadakatsu Sano
忠勝 佐野
Akira Morita
章 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP18779194A priority Critical patent/JP3747234B2/en
Publication of JPH0826732A publication Critical patent/JPH0826732A/en
Application granted granted Critical
Publication of JP3747234B2 publication Critical patent/JP3747234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain soft ferrite for a high-frequency power source reduced in core loss and capable of reduction in size by producing a ferrite material contg. prescribed amts. of P and B derived from starting material and entered in a producing process and firing the ferrite material under specified conditions. CONSTITUTION:A ferrite material contg. >0 to 0.004wt.%, in total of >0 to 0.002wt.% B and >0 to 0.002wt.% P derived from starting material and entered in a producing process is produced by regulating the amts. of B and P by addition or refining. The ferrite material is fired at 1,250-1,400 deg.C after heating from 900 deg.C to the firing temp. in an atmosphere under >0 to 15% partial pressure of O2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】近年、エレクトロニクス機器の普
及に伴って益々機器の小型化,軽量化の要求が激しくな
って来ている。特に重量的にも、容積的にも主要部分を
占める電源の小型化が標的となっているが、この対応の
ため、電力変換部の周波数を上げて処理する所謂「高周
波電源方式」が急激に増加して来ている。この用途に使
われるフェライト磁性体は高周波且つ強磁場中で動作さ
せるので、一般の用途のものに比べて電力損失が著しく
大きくなってしまう。
[Industrial application] In recent years, with the spread of electronic equipment, demands for smaller and lighter equipment have become more and more intense. In particular, the target is to reduce the size of the power supply, which occupies the main part both in terms of weight and volume, but in order to handle this, the so-called "high frequency power supply system" that raises the frequency of the power conversion unit to process is rapidly It is increasing. Since the ferrite magnetic body used for this purpose is operated in a high frequency and a strong magnetic field, the power loss becomes significantly larger than that in general applications.

【0002】本発明は、この高周波電力損失を低減し、
小型化可能な高周波電源用ソフトフェライトの製造方法
に関するものである。
The present invention reduces this high frequency power loss,
The present invention relates to a method for manufacturing a soft ferrite for a high frequency power supply that can be miniaturized.

【0003】[0003]

【従来の技術】従来、この種の高透磁率,低損失磁性材
料の製造にあっては漠然と出発原料物質の中に含まれる
不純物が極めて低いものを使用しなければならないとさ
れている。特に、添加微量成分によって特性改善を計る
場合には、これら微量添加成分に比べて十分低い不純物
の原材料を選択しなければならない状況になってきてい
る。然し、この純度の高い原料の選択のみで所要の特性
改善を計ると当然コスト高を招き、場合によっては製品
の実用性を失わせることにもなる。
2. Description of the Related Art Heretofore, it has been said that in the production of a magnetic material of high magnetic permeability and low loss of this kind, it is necessary to vaguely use a starting material containing extremely low impurities. In particular, in the case of improving the characteristics by adding a trace amount of components, it is becoming a situation that raw materials having impurities sufficiently lower than those of the trace adding components must be selected. However, if the required characteristics are improved only by selecting the raw material having high purity, the cost will naturally increase, and the practicability of the product may be lost in some cases.

【0004】その対策として、例えばマンガン亜鉛系フ
ェライトにとってCaOやSiO2は代表的不純物であ
ると同時に、後述の通り低損失化の添加物としても有効
でよく活用されるので、補正可能量であれば許容される
ことが知られている。又、燐の相当量の添加・含有,若
しくは工程での混入が「組成成分のみの原因」でフェラ
イトの特性に漠然と影響することも知られている。
As a countermeasure, for example, CaO and SiO2 are typical impurities for manganese-zinc type ferrite, and at the same time, they are effective and well used as additives for reducing loss as described later. Known to be acceptable. It is also known that the addition or inclusion of a considerable amount of phosphorus, or the incorporation in the process, vaguely affects the characteristics of ferrite due to "the cause of only the composition components".

【0005】例えば、特開平2−30660号公報には
副成分の燐の量が0.001wt% より少ない場合結晶粒
径が小さく、また、0.007wt% より多い場合には大
きくなるため、電力損失が大きくなって不適当であると
記述され、その特許請求の範囲にも明確に「燐を0.0
01〜0.007wt% 」と記載されている。即ち、燐の
含有量の範囲が低損失酸化物磁性材料の必須要件として
明示されている。なお、この燐を含む添加物の量等は予
め原料に含まれているものを分析し考慮していると付記
されている。
For example, in JP-A-2-30660, when the amount of phosphorus as an accessory component is less than 0.001 wt%, the crystal grain size is small, and when it is more than 0.007 wt%, the crystal grain size becomes large, so that the electric power is increased. It is described as unsuitable because of the large loss, and the claim clearly states "0.0
01-0.007 wt% ". That is, the range of the phosphorus content is clarified as an essential requirement for the low loss oxide magnetic material. In addition, it is additionally noted that the amount of the additive containing phosphorus is taken into consideration by analyzing what is contained in the raw material in advance.

【0006】特開平4−92822号公報によれば、燐
の添加量は従来0.008wt% 〜0.015wt% を添加
すると、最終焼結温度を20℃下げる効果があって、産
業に与える影響としては炉の寿命と熱エネルギーの改善
に貢献してきたが、「燐の添加量を制限」する事によっ
て損失も小さくする事ができたと記載されている。その
実施例中では、燐を0.0033wt% 含ませる事によっ
てコアー損失を小さくする事ができると説明している。
又、燐の含有率と損失の関係を確認するための実施例で
は燐の添加量の水準が0.0012〜0.01wt% (効
果を示すグラフは第1図)の範囲で行われ効果の損失測
定は16KHz で行なわれている。
According to Japanese Unexamined Patent Publication (Kokai) No. 4-92222, when the amount of phosphorus added is conventionally 0.008 wt% to 0.015 wt%, the final sintering temperature is lowered by 20 ° C., which has an effect on industry. It has been described that although it has contributed to the improvement of the life of the furnace and the thermal energy, the loss could be reduced by "limiting the amount of phosphorus added". In the examples, it is explained that the core loss can be reduced by adding 0.0033 wt% of phosphorus.
Further, in the example for confirming the relation between the phosphorus content and the loss, the amount of phosphorus added is 0.0012 to 0.01 wt% (the graph showing the effect is shown in FIG. 1). Loss measurements are made at 16KHz.

【0007】従って、これらの先行技術の思想は焼結温
度を下げるため相当量の燐(0.0012wt% 以上)を
含ませることにあるが、0.005wt% 以下に押えれば
コア損失も低く押えられる範囲であり、本願出願前に公
開されている前述の特開平2−30660号公報の特許
請求の範囲でも燐の量を0.001〜0.007wt%と
制限したと同質の論理に基づくもので、燐の量が0.0
02wt% 以下という添加量又は存在量の少い事と焼成条
件との相互作用による効果については「認識されていな
い」と理解される。原料中の硼素・燐について何等の吟
味又は説明のない事も「相当量含ませ得る事」を前提と
していることを示唆している。
Therefore, the idea of these prior arts is to contain a considerable amount of phosphorus (0.0012 wt% or more) in order to lower the sintering temperature, but if it is kept to 0.005 wt% or less, the core loss is low. This is based on the same logic as that the range of pressing is limited, and the amount of phosphorus is limited to 0.001 to 0.007 wt% in the claims of the above-mentioned Japanese Patent Application Laid-Open No. 2-30660 disclosed before the present application. The amount of phosphorus is 0.0
It is understood that the effect of the interaction between the addition amount or the existing amount of 02 wt% or less and the firing conditions is “not recognized”. The fact that boron or phosphorus in the raw material is not examined or explained in any way suggests that it is premised that "a considerable amount can be contained".

【0008】特開平5−217733号公報には、(2
5KHz-200mt−100℃)に於ける磁心損失を55KW
/m3 以下とするには燐の量を原料中に含有するものを含
めて0.001wt% 以下にすることが必要であると記載
されている。然しながら、成分,副成分以外の製造條件
(焼結温度が低く過ぎると)が不適切であれば燐が0.
001wt% 以下のものでも、燐が0.001wt% 以上の
ものより悪くなる場合もある事も示唆されており、再現
性の條件が欠けている事を自認している。
Japanese Unexamined Patent Publication No. 5-217733 discloses (2
Magnetic core loss at 5KHz-200mt-100 ℃ 55KW
It is described that the amount of phosphorus needs to be 0.001 wt% or less including the amount contained in the raw material in order to reduce the amount to / m3 or less. However, if the manufacturing conditions other than the components and sub-components (when the sintering temperature is too low) are inappropriate, phosphorus content will be 0.
It has been suggested that even if the content is 001 wt% or less, the phosphorus content may be worse than that of 0.001 wt% or more, and we acknowledge that the reproducibility is lacking.

【0009】更に、特開平6−140231号公報では
ソフトフェライト中の燐の含有量が0.003wt% 以
下、即ち0〜0.003wt% に規制する事が望ましく、
同実施例1ではサンプルNo1中の燐の総計は0.003
wt% 未満であったとし、サンプルNo2〜49も同様であ
ったと記述されている。この先行技術に於ては燐のみ且
その存在のみが量には関係なく、漠然と焼結フェライト
に影響がある事を示唆しているのに過ぎない。従って燐
が0〜0.003wt% の範囲で副成分と影響し合う事は
ないと理解されている。
Further, in JP-A-6-140231, it is desirable to control the content of phosphorus in the soft ferrite to 0.003 wt% or less, that is, 0 to 0.003 wt%,
In Example 1, the total amount of phosphorus in Sample No. 1 is 0.003.
It is described that it was less than wt% and that Sample Nos. 2 to 49 were also the same. This prior art merely suggests that phosphorus alone and its presence, regardless of amount, vaguely affects the sintered ferrite. Therefore, it is understood that phosphorus does not interact with subcomponents in the range of 0 to 0.003 wt%.

【0010】発明が解決しようとする課題として先行技
術を比較把握するには低損失材料の測定周波数は極めて
重要であり、20KHz 前後と100KHz 前後では同一の
材料でも全て逆の損失値を示す場合があるからである。
即ち、同一の成分組成であっても結晶成長状態,粒界・
結晶内の酸化度合によって電気的特性が異るという事で
ある。
As a problem to be solved by the invention, the measurement frequency of a low-loss material is extremely important for comparing and grasping the prior art, and the same material may show opposite loss values at around 20 KHz and around 100 KHz. Because there is.
That is, even with the same composition, the crystal growth state, grain boundaries,
This means that the electrical characteristics differ depending on the degree of oxidation in the crystal.

【0011】また、マンガン亜鉛系フェライトの特性改
善とコスト改善のために、従来の一般的課題とされてい
た不純物の混入防止、組成成分の均一化,粒子の微細化
焼結等の効果を期待した主成分・副成分の溶液混合・噴
霧焙焼法等も数多く開示されている。例えば、特開平3
−116803号では従来の酸化物混合法の既知の添加
物Si,Ca,Hfを噴霧法で行えばHfが粒界のみな
らず、フェライト中に固溶するためにより高抵抗の粒子
ができて電力損失が低下するとしている。
Further, in order to improve the characteristics of manganese-zinc-based ferrite and to improve the cost, it is expected that the effects of preventing the incorporation of impurities, homogenizing the composition components, and refining and sintering the particles, which have been the general problems in the past, are expected. Many methods of mixing solutions of the above-mentioned main components and subcomponents, spray roasting, etc. are disclosed. For example, JP-A-3
In No. 116803, if the known additives Si, Ca, and Hf of the conventional oxide mixing method are sprayed, Hf not only forms a grain boundary but also forms a solid solution in ferrite to form particles with higher resistance, which results in power consumption. The loss is said to decrease.

【0012】特開平4−12504号では、Mn−Zn
フェライトの噴霧焙焼前にSi,Caの副成分を同時に
溶解添加すると、工程全体が簡略化されて特性が若干改
善されるとしている。
In Japanese Patent Laid-Open No. 12504/1992, Mn-Zn is used.
It is said that if the auxiliary components of Si and Ca are simultaneously dissolved and added before the spray roasting of ferrite, the entire process is simplified and the characteristics are slightly improved.

【0013】特開平4−192310号では、Mn−Z
n系フェライトにBiを0.05wt% 以下を添加してH
ighμ材を得るのに際し、BiまたはBi塩の化合物
を溶解混合して噴霧焙焼すると組成が均一で且つ結晶粒
が均一で粒径が大きくなり、空孔も少ないものが得られ
てμi特性が大幅に改善されるとしている。
In Japanese Patent Laid-Open No. 4-192310, Mn-Z
Add 0.05 wt% or less of Bi to n-type ferrite and add H
In obtaining a high μ material, when a compound of Bi or Bi salt is dissolved and mixed and spray roasted, a composition having a uniform composition, a uniform crystal grain and a large grain size, and few pores are obtained, and the μi characteristic is obtained. It is said to be greatly improved.

【0014】更に、特開平4−307903号ではソフ
トフェライトにSi,Ca,Zrの添加を噴霧焙焼法で
行うと損失特性の大幅な改善がされるとしている。然
し、何れの先行技術も添加成分を噴霧焙焼で主成分と同
時に行えば組成が均一で且組織が均一な微細粒子となる
が、添加物の効果は同傾向で従来法に比べて稍改善され
るか、焼結條件が若干ズレる程度で全く予想されないよ
うな結果は少い。
Further, in Japanese Patent Laid-Open No. 4-307903, it is stated that the addition of Si, Ca, and Zr to soft ferrite by the spray roasting method can significantly improve the loss characteristics. However, in any of the prior arts, if the additive components were sprayed and roasted at the same time as the main component, fine particles with a uniform composition and a uniform structure were obtained, but the effect of the additive tended to be the same and improved slightly compared to the conventional method. However, there are few results where the sintering condition is slightly different and unexpected.

【0015】特開平3−163802には酸化燐/又は
酸化硼素0.01wt% 以下(好ましくは0.00005
wt% 以上)の範囲、特開平3−223119には酸化燐
/又は酸化硼素0.003wt% 以下(好ましくは0.0
001wt% 以上)とされているが何れも微量の添加によ
って鉄損の低減をもたらす有用成分と明示されているが
添加量の増加によって鉄損が減少する傾向は殆ど見受け
られないのみならず上限値に比べ好ましいとする燐の添
加量,0.00005wt% 、0.0001wt%は検出精
度に照らしても殆ど含まれてないと表現してよい値であ
り燐の添加量が直に鉄損の減少に影響しているとは判断
し得ず、他の必須主要因も存在している事を示唆してい
る先行技術であり、本出願はまさにこの必須要件を見出
したものである。
JP-A-3-163802 discloses that phosphorus oxide / or boron oxide is 0.01 wt% or less (preferably 0.00005).
in the range of 0.003 wt% or less (preferably 0.03 wt% or less) in JP-A-3-223119.
001 wt% or more), but all of them are clearly indicated as useful components that reduce iron loss by adding a trace amount.
There is almost no tendency that the iron loss decreases with the increase of the addition amount, and the addition of phosphorus , which is preferable compared with the upper limit, is preferable.
The addition amounts of 0.00005 wt% and 0.0001 wt% are values that can be expressed as being almost not included even in view of detection accuracy, and it can be said that the addition amount of phosphorus directly affects the reduction of iron loss. This is the prior art that cannot be judged and suggests that there are other essential main factors, and the present application finds exactly this essential requirement.

【0016】以上に述べた先行技術をまとめるとMn−
Zn系フェライトのコア損失を低減させるためには特開
平2−3060号,特開平4−92822号,特開平5
−217733号で燐の含有量を適切な範囲に添加する
ことが提案され、更に燐と同様の効果を示す硼素の添加
について特開平3−163802及び特開平3−223
119で単独又は複合で微量添加する事も提案されてい
るが、本発明は、フェライトコアの損失を確実に再現性
良く低減させるためには、燐・硼素の含有量を制御する
だけでは足りず、フェライトと原材料中及び製造工程で
混入する燐及び硼素の各々の量と合計量を一定量以下の
特定量に制御し、さらに昇温時より酸素量の制御を含め
た焼成條件の調整を行う事が必須である事を究明したも
のである。又特開平3−116803号,特開平4−1
2504号,特開平4−192310号では主成分,副
成分,添加物の溶液混合,噴霧焙焼法等が試みられてい
るが従来法に比べ添加物,不純物制御効果は同傾向を示
し、改善効果が稍強調されるに過ぎないか、又は製造條
件が若干ズレる程度である。
Summarizing the above-mentioned prior arts, Mn-
In order to reduce the core loss of Zn-based ferrite, JP-A-2-3060, JP-A-4-92822, and JP-A-5-58200
No. 217733 proposes that the content of phosphorus be added in an appropriate range, and further about addition of boron showing the same effect as phosphorus, JP-A-3-163802 and JP-A-3-223.
Although it has been proposed in 119 to add a single amount or a combination thereof in a small amount, in the present invention, in order to surely reduce the loss of the ferrite core with good reproducibility, it is not enough to control the content of phosphorus and boron. , Control the amount of each of phosphorus and boron mixed in ferrite and raw materials and in the manufacturing process to a specific amount below a certain amount, and adjust the firing conditions including the control of oxygen amount from the time of temperature rise. It is a clarification that things are essential. In addition, JP-A-3-116803 and JP-A-4-1-1
No. 2504 and Japanese Patent Application Laid-Open No. 4-192310 attempt solution mixing of main components, subcomponents and additives, spray roasting method, etc., but the additive and impurity control effects show the same tendency as compared with the conventional method and are improved. The effect is merely emphasized, or the manufacturing condition is slightly deviated.

【0017】[0017]

【発明が解決しようとする課題】一般に、電源装置を小
型軽量化するには前述の如く処理周波数を上げた方が有
利である。しかし、実際にはいろいろな制約があって5
00KHz 程度が実現できる範囲と考えられている。従
来、この種のフェライトとしてマンガン,亜鉛と酸化鉄
等を主体とするものが好適とされている。また、副成
分,添加物,製造條件等を検討改善することから、この
要望に対応してきているが、弱磁界の損失と異って比較
的強い磁界中で動作するものであるため、一般の用途に
比べて高周波で且磁気損失が著しく増大するところに最
大の問題があり、此の視点に合せたアプローチが必要に
なって来る。
Generally, in order to reduce the size and weight of the power supply device, it is advantageous to increase the processing frequency as described above. However, in reality there are various restrictions.
It is considered that the range of around 00 KHz can be realized. Heretofore, as this type of ferrite, those mainly containing manganese, zinc and iron oxide have been preferred. In addition, we have responded to this request by studying and improving secondary components, additives, manufacturing conditions, etc., but unlike the loss of a weak magnetic field, it operates in a relatively strong magnetic field, so The greatest problem is that the magnetic loss increases remarkably at high frequencies as compared with the application, and an approach tailored to this viewpoint is needed.

【0018】従って、主成分は従来既知のマンガン亜鉛
系であってもヒステリシス損に関係する飽和磁束密度B
s,及びBsと残留磁束密度Brとの差であるΔBが大
きく、且渦電流損に関係する比抵抗が大きい事が必要で
ある。更に、電力消費を考えると動作温度範囲で一番変
化量が少い,即ち、常温附近ではパワーロスの温度係数
が負である方が望ましいというフェライトとしては特殊
な特性が要求されているのである。
Therefore, even if the main component is the conventionally known manganese-zinc system, the saturation magnetic flux density B related to the hysteresis loss.
It is necessary that ΔB, which is the difference between s and Bs and the residual magnetic flux density Br, is large and that the specific resistance related to the eddy current loss is large. Further, considering the power consumption, a special characteristic is required for ferrite that the amount of change is the smallest in the operating temperature range, that is, it is desirable that the temperature coefficient of power loss be negative near room temperature.

【0019】この様に高性能化を追求しなければならな
くなればなる程、製品バラツキを小さくする要求は当然
高まるにも拘らず、産業上の要請はコストの上昇を最小
限しか許さず、均一で安定した製造手段の究明により要
求を満足しなければならなくなる。従って、従来のよう
に主として組成成分の特定だけで調整バランシングする
だけでは到底十分な目標特性,コストの製品が得られな
いため、視点を変えると同時に多面的に交絡的要件の研
究解明が必要となった。
As the higher performance has to be pursued as described above, the demand for reducing the product variation is naturally increased, but the industrial demand is that the cost increase is minimal and the uniform demand is maintained. Therefore, it becomes necessary to satisfy the requirements by investigating stable manufacturing means. Therefore, it is not possible to obtain a product with sufficient target characteristics and cost simply by adjusting and balancing only by specifying the composition components as in the past, so it is necessary to change the viewpoint and study and elucidate the multifaceted confounding requirements. became.

【0020】本発明は、フェライトの原材料中及び製造
工程で混入する燐及び硼素を特定量に制御し、更に、焼
成を適正な條件で行うことによりフェライトのコア損失
を低減させるソフトフェライトの製造方法を提供するこ
とを目的とする。
The present invention is a method for producing soft ferrite in which the core loss of ferrite is reduced by controlling the specific amount of phosphorus and boron mixed in the raw material of ferrite and in the production process, and by further performing firing under appropriate conditions. The purpose is to provide.

【0021】[0021]

【課題を解決するための手段】本発明の請求項1に係る
ソフトフェライトの製造方法においては、原材料中及び
製造工程で混入する燐及び硼素の量の和を0.004wt
% 以下(零を含まず)で、且つ硼素の量を0.002wt
% 以下(零を含まず)、燐の量を0.002wt% 以下の
特定量に補正添加、又は精製して製造したフェライト材
料を用い、該材料の焼成に際し、900℃から焼成温度
までの昇温部の雰囲気の酸素分圧を15% 以下(零を含
まず)にし、且つ、焼成温度を1250℃以上,140
0℃以下にするようにされている。又好ましくは上記の
硼素と燐の和を0.0035wt%以下(零を含まず)
で、且つ硼素の量を0.002wt% 以下(零を含ま
ず)、燐の量を0.0015wt% 以下、更に好ましくは
硼素と燐の量の和を0.0025wt% 以下(零を含ま
ず)で、且つ硼素の量を0.0015wt% 以下(零を含
まず)、燐の量を0.001wt% 以下とするのが望まし
い。
In the method for producing soft ferrite according to the first aspect of the present invention, the sum of the amounts of phosphorus and boron mixed in the raw materials and in the production process is 0.004 wt.
% Or less (not including zero) and the amount of boron is 0.002 wt.
% Or less (not including zero), using a ferrite material produced by correcting or refining the amount of phosphorus to a specific amount of 0.002 wt% or less, and burning the material at a temperature of 900 ° C. to a firing temperature. The oxygen partial pressure of the atmosphere in the warm part is set to 15% or less (not including zero), and the firing temperature is 1250 ° C. or higher, 140
The temperature is set to 0 ° C or lower. Preferably, the sum of the above boron and phosphorus is 0.0035 wt% or less (not including zero).
And the amount of boron is 0.002 wt% or less (not including zero), the amount of phosphorus is 0.0015 wt% or less, and more preferably the sum of the amounts of boron and phosphorus is 0.0025 wt% or less (not including zero). ), The amount of boron is 0.0015 wt% or less (not including zero), and the amount of phosphorus is 0.001 wt% or less.

【0022】本発明の請求項2に係るフェライトの製造
方法において原材料中及び製造工程で混入する燐及び硼
素の量の和を0.004wt% 以下(零を含まず)で且
つ、硼素の量を0.002wt% 以下(零を含まず)で、
且つ、燐の量を0.002wt%以下にすると共に、主成
分がMnO換算で30〜41mol%の酸化マンガンと、Z
nO換算で6〜16mol%の酸化亜鉛と、残りが酸化鉄で
あり、SiO2 換算で0.005〜0.025wt% の珪
素とCaO換算で0.02〜0.15wt% のカルシウム
を含み、更に、Nb2 O5 換算で0.06wt% 以下(零
を含まず)のニオブ,V2 O5 換算で0.08wt% 以下
(零を含まず)のバナジウム,ZrO2 換算で0.07
wt% 以下(零を含まず)のジルコニウム,SnO2 換算
で0.4wt% 以下の(零を含まず)のスズ及びTiO2
換算で0.3wt% 以下(零を含まず)のチタンの1種以
上を含み、その成分元素または添加物の一部または全部
を溶液で混合し、噴霧焙焼によってフェライトを製造す
るようにされている。
In the method for producing ferrite according to the second aspect of the present invention, the sum of the amounts of phosphorus and boron mixed in the raw materials and in the production process is 0.004 wt% or less (not including zero) and the amount of boron is Below 0.002wt% (not including zero),
In addition, the amount of phosphorus is 0.002 wt% or less, and the main component is 30 to 41 mol% of manganese oxide in terms of MnO, and Z.
It contains 6 to 16 mol% of zinc oxide in terms of nO and the balance is iron oxide, and contains 0.005 to 0.025 wt% of silicon in terms of SiO2 and 0.02 to 0.15 wt% of calcium in terms of CaO. , Nb2 O5 equivalent 0.06 wt% or less (excluding zero) niobium, V2 O5 equivalent 0.08 wt% or less (excluding zero) vanadium, ZrO2 equivalent 0.07
wt% or less (not including zero) zirconium, 0.4 wt% or less (not including zero) tin and TiO2 in terms of SnO2
It contains one or more kinds of titanium of 0.3 wt% or less (not including zero) in conversion, and a part or all of its constituent elements or additives are mixed with a solution, and ferrite is produced by spray roasting. ing.

【0023】[0023]

【作用】本発明の請求項1に係るソフトフェライトの製
造方法によれば、軟磁性フェライトの高周波高磁束密度
における低磁心損失の得られる製造條件の許容領域が燐
及び硼素の量の増加に従って狭くなるので原材料中及び
製造工程で混入する燐及び硼素の量の和を0.004wt
% 以下(零を含まず)で、且つ硼素の量を0.002wt
% 以下(零を含まず)、燐の量を0.002wt% 以下の
特定量に補正添加、又は精製して製造したフェライト材
料を用い、該材料の焼成に際し、900℃から焼成温度
までの昇温部の雰囲気の酸素分圧を15% 以下(零を含
まず)にし、且つ、焼成温度を1250℃以上,140
0℃以下にすることにより製造工程領域が拡大出来てよ
り再現性良く、高周波,高磁束密度に於て低損失な軟磁
性フェライトが得られる。
According to the method for producing soft ferrite according to the first aspect of the present invention, the allowable range of the production condition in which the low magnetic core loss of the soft magnetic ferrite at high frequency and high magnetic flux density is obtained is narrowed as the amount of phosphorus and boron is increased. Therefore, the sum of the amounts of phosphorus and boron mixed in the raw materials and in the manufacturing process is 0.004 wt.
% Or less (not including zero) and the amount of boron is 0.002 wt.
% Or less (not including zero), using a ferrite material produced by correcting or refining the amount of phosphorus to a specific amount of 0.002 wt% or less, and burning the material at a temperature of 900 ° C. to a firing temperature. The oxygen partial pressure of the atmosphere in the warm part is set to 15% or less (not including zero), and the firing temperature is 1250 ° C. or higher, 140
By setting the temperature to 0 ° C. or lower, the manufacturing process area can be expanded and the reproducibility can be improved, and a soft magnetic ferrite with low loss at high frequency and high magnetic flux density can be obtained.

【0024】本発明の請求項2に係るソフトフェライト
の製造方法によれば、マンガン亜鉛系フェライトの内、
比較的高透磁率で且高周波,高磁束密度に於ける損失が
低い材料が安定に得られる。
According to the method for producing a soft ferrite according to the second aspect of the present invention, among the manganese-zinc-based ferrites,
A stable material with a relatively high magnetic permeability and low loss at high frequencies and high magnetic flux densities can be obtained.

【0025】[0025]

【実施例】本発明は一見すると、従来技術の「微量成分
組成によるフェライト特性の改善」と受取られ易いが、
前述の如く「100KHz 以上に於ける低損失,強磁界に
於ける低損失」という新しく、且つ、難しい課題に対し
て多面的な究明から導き出されたものである。
[Examples] At first glance, the present invention is easily received as "improvement of ferrite characteristics by the composition of trace components" of the prior art,
As mentioned above, it is derived from a multifaceted investigation into a new and difficult problem of "low loss at 100 KHz or higher, low loss at strong magnetic field".

【0026】その具体的手段は「結晶粒子を急激に成長
させる微量不純物の量を低く押える(或る量を超える場
合には精製する)」と共に、「結晶化の初期,即ち、焼
結昇温時から酸素分圧を低くする」というプロセスを採
る事によって実現したものである。特に、重要なことは
100KHz 以上の高周波に於ける損失を低下させるには
結晶成長が終了した後では効果的に作用しない事に着目
したことである。
The specific means is to "reduce the amount of trace impurities that cause crystal grains to grow rapidly (to be purified if the amount exceeds a certain amount)" and "initial stage of crystallization, that is, sintering temperature rise. It was realized by adopting the process of "lowering the oxygen partial pressure from time to time". In particular, it is important to pay attention to the fact that it does not work effectively after the crystal growth is finished in order to reduce the loss at high frequencies of 100 KHz or higher.

【0027】以下、この手段について詳しく説明する
と、一般に高性能フェライトを製造するには高純度主成
分原料を用い微量組成物,添加物により結晶の構造を制
御しているが、出発原料中の不純物が少い方が良いから
といって全ての不純物が少いものを選択すれば、品質コ
ストのバランスが取れないから産業上利用できないもの
になってしまう。此のためには後述するようにSi,C
aの様な粒界酸化調整のための成分は添加量も比較的多
量であり、或程度含まれていても含有量を考慮して添加
し、焼結全体として結晶状態を調整することにより解決
出来る。
In the following, this means will be explained in detail. Generally, in order to produce high-performance ferrite, a high-purity main component raw material is used and the crystal structure is controlled by a trace amount composition and additives. However, if the one with less impurities is selected, the one with less impurities will not be industrially applicable because the quality cost cannot be balanced. For this purpose, as will be described later, Si, C
The component for controlling grain boundary oxidation, such as a, is also added in a relatively large amount, and even if it is contained to some extent, it is added by considering the content, and the crystal state is adjusted as a whole by sintering. I can.

【0028】然し、本発明の如く超高品質の低損失材料
を目標とするには此等の添加物の1/10〜1/100 という極
々微量の燐,硼素の存否が課題を解決出来なくするの
で、此の二成分については特に低含有量の原材料を選択
し且補正する事により課題解決効果のバラツキを抑える
ようにされている。
However, in order to aim at an ultra-high quality low loss material as in the present invention, the existence or nonexistence of extremely small amounts of 1/10 to 1/100 of these additives cannot solve the problem. Therefore, regarding these two components, the dispersion of the problem solving effect is suppressed by selecting and correcting the raw materials having a particularly low content.

【0029】燐,硼素は微量でも焼結特性を急激に変化
させる成分であり、フェライト主成分と反応して液相を
形成するので、一般には不均質な微細結晶構造を形成し
てしまい、磁気特性を劣化させるものと考えられる。従
って、高透磁率で高周波に於て低損失の磁気特性を得る
にはこの二成分の含有量が少い原料ソースを積極的に選
択する事が必要で、特定量を越すと他の副成分・添加成
分・焼結條件との相互作用を利用出来る領域が得られな
くなる。
Phosphorus and boron are components that drastically change the sintering characteristics even in a small amount, and react with the main component of ferrite to form a liquid phase, so that generally an inhomogeneous fine crystal structure is formed and the magnetic properties are It is considered to deteriorate the characteristics. Therefore, in order to obtain magnetic properties with high permeability and low loss at high frequencies, it is necessary to positively select a raw material source with a low content of these two components.・ Areas where the interaction between additive components and sintering conditions can be used cannot be obtained.

【0030】本発明によれば各成分が単独の場合、燐に
ついては0.002wt% ,硼素については0.002wt
% で、二成分が共存する場合は0.004wt% 以上にな
ると相互作用を失う,即ち、添加物を含め他の製造要件
を変化させても磁気特性を調整不可能な程急激な結晶成
長を促す限界量である事が判明した。従って、課題解決
のためには主成分原料を選択するに際し、少くとも硼素
については0.002wt% 以下(零を含まず)、燐につ
いては0.002wt% 以下、共存する場合は合計で0.
004wt% 以下(零を含まず)のものを選び、コンタミ
量を考慮して上記限度量以下の特定量に調整する。又好
ましくは上記の硼素と燐の和を0.0035wt% 以下
(零を含まず)で、且つ硼素の量を0.002wt% 以下
(零を含まず)、燐の量を0.0015wt% 以下、更に
好ましくは硼素と燐の量の和を0.0025wt% 以下
(零を含まず)で、且つ硼素の量を0.0015wt% 以
下(零を含まず)、燐の量を0.001wt% 以下とする
のが望ましい。
According to the present invention, when each component is used alone, 0.002 wt% for phosphorus and 0.002 wt% for boron.
%, When the two components coexist, the interaction is lost when the content is 0.004 wt% or more, that is, the crystal growth is so rapid that the magnetic properties cannot be adjusted even if other manufacturing requirements including additives are changed. It turned out to be a limit amount to promote. Therefore, in order to solve the problem, when selecting the main component raw material, at least 0.002 wt% or less (not including zero) for boron, 0.002 wt% or less for phosphorus, and a total of 0.
Select 004wt% or less (not including zero) and adjust to a specific amount below the above limit considering the amount of contamination. Preferably, the sum of boron and phosphorus is 0.0035 wt% or less (not including zero), the amount of boron is 0.002 wt% or less (not including zero), and the amount of phosphorus is 0.0015 wt% or less. More preferably, the sum of the amounts of boron and phosphorus is 0.0025 wt% or less (not including zero), the amount of boron is 0.0015 wt% or less (not including zero), and the amount of phosphorus is 0.001 wt%. The following is preferable.

【0031】又、前述の通り、この二成分以外にもいろ
いろな不純物が含まれる可能性があり、種類と量によっ
ては微細構造が変化するので特性調整又は改良成分とし
て逆に作用する場合も多い。特に、高性能を得るために
は前述の如く一般に不純物の許容量が少いがマンガン亜
鉛系フェライトにとってCaOやSiO2 は代表的不純
物であると同時に調整添加物としても知られている。
Further, as described above, various impurities may be contained in addition to these two components, and the microstructure changes depending on the type and amount, so that they often act in reverse as properties adjusting or improving components. . In particular, in order to obtain high performance, the allowable amount of impurities is generally small as described above, but CaO and SiO2 are typical impurities for the manganese-zinc ferrite and are also known as adjusting additives.

【0032】一般に、CaOの量が増加すると低周波の
μiは漸次低下し、高周波のμiは上昇するが0.02
5wt% よりは低下するという適当な範囲をもっている。
また、CaOが粒界に偏析して酸化し低損失化に寄与し
て改善されていると考えられる。SiO2 についても同
様に偏析が観測されるが何れも多量に過ぎると異常成長
が起って比抵抗が低くなり改善効果が少くなる。従っ
て、原料中の量を含めCaOが0.25wt% 以下、Si
O2 が0.02wt% 以下の範囲で目標特性に応じ添加量
を調整することが望ましいことが知られているが、此等
の調整効果が得られる領域と度合は前記燐と硼素の含有
量及び焼成條件が前提となっている事が明かとなったの
である。
Generally, when the amount of CaO increases, the low frequency μi gradually decreases and the high frequency μi increases, but 0.02.
It has an appropriate range of lower than 5 wt%.
In addition, it is considered that CaO is segregated at the grain boundaries and oxidized to contribute to the reduction of loss and is improved. Similarly, segregation is observed for SiO2, but if the amount of SiO2 is too large, abnormal growth occurs and the specific resistance becomes low, resulting in a small improvement effect. Therefore, CaO is 0.25 wt% or less including the amount in the raw material, Si
It is known that it is desirable to adjust the added amount in accordance with the target characteristics in the range of O2 0.02 wt% or less. However, the region and the degree to which these adjustment effects can be obtained are the above-mentioned phosphorus and boron contents and It became clear that the firing conditions were premised.

【0033】又、CaO,SiO2 の最低量は原料中の
含有量と調整目的によって定まる。SiO2 ,CaOが
粒界に偏析していると焼成雰囲気,特に酸素量に影響を
受け易いが、粒界のみを酸化させると粒界の比抵抗を高
くする事ができる事が知られている。然し、此の点につ
いても燐と硼素が前記限界値を越すと、云いかえれば急
激に結晶が成長し過ぎると従来技術では到達できない程
低損失を得る手段である「昇温時の酸素量による特性改
善効果を期待出来なくなってしまう」という新しい知見
を得たものである。
Further, the minimum amounts of CaO and SiO2 are determined by the content in the raw material and the purpose of adjustment. It is known that if SiO2 or CaO is segregated at the grain boundaries, it is easily affected by the firing atmosphere, particularly the amount of oxygen, but if only the grain boundaries are oxidized, the specific resistance of the grain boundaries can be increased. However, regarding this point as well, if phosphorus and boron exceed the above-mentioned limit values, in other words, if the crystal grows too rapidly, it is a means of obtaining a low loss that cannot be reached by the conventional technology. It is not possible to expect a characteristic improvement effect. "

【0034】又、粒界自体の厚さ、結晶粒子間の距離も
磁気特性には関係が深いが部分的に大き過ぎても劣化す
るので上記Si,Ca等の粒界形成物質は分散した状態
で加える必要があり、必要によっては主成分と同時に噴
霧焼結する事によってより好ましい成果が得られた。更
に、高周波電源用フェライト分野に必要とされる特性は
基本としてBsが高く、しかもΔBが大きい、つまりB
rが低いものが必要である事は当然で、主体的には高飽
和磁束密度で高透磁率を兼ね得る主成分領域を選択する
必要がある。
Further, the thickness of the grain boundary itself and the distance between the crystal grains are closely related to the magnetic properties, but they deteriorate even if they are partially too large. Therefore, the grain boundary forming substances such as Si and Ca are dispersed. It was necessary to add in the above, and if necessary, more preferable results were obtained by spray sintering at the same time as the main component. Furthermore, the characteristics required in the field of ferrites for high frequency power supplies are basically high Bs and large ΔB, that is, B
Needless to say, a material having a low r is required, and it is necessary to mainly select a main component region capable of having a high saturation magnetic flux density and a high magnetic permeability.

【0035】このことから、MnOの換算で30〜41
mol%の酸化マンガン,ZnO換算で6〜16mol%の酸化
亜鉛、残りが酸化鉄である範囲が好適である。この範囲
外では、コア損失が増大し、さらにコア損失の極小温度
が60℃以下になったり、キュリー温度が200℃以下
になったり、または初透磁率が低下したり、残留磁束密
度(Br)が増大したりする。更に、微調整バランシン
グ添加物として前記SiO2 ,CaOの外Nb2 O5 換
算で0.06wt% 以下のニオブ,V2 O5 換算で0.0
8wt% 以下のバナジウム,ZrO2 換算で0.07wt%
以下のジルコニューム,SnO2 換算で0.4wt% 以下
のスズ,及びTiO2 換算で0.3wt%以下のチタンの
一種以上を添加して調整する。Nb2 O5 が0.06wt
% を越えるとき、コア損失が増大し、初透磁率が低下し
た。V2 O5 が0.08wt% を越えるとき、コア損失が
増大し、初透磁率が低下した。ZrO2 が0.07wt%
を越えるとき、コア損失が増大し、初透磁率が低下し
た。SnO2 が0.4wt% を越えるとき、コア損失の極
小温度が60℃以下となった。TiO2 が0.3wt%を
越えるとき、コア損失の極小温度が60℃以下となっ
た。又此の種の出発原料の選定に当っては、本発明の添
加物を含む組成成分の管理と補正は勿論Sr,Baを始
めとする、その他の不純分も合計で0.05wt% 以下に
押える事が作用効果を減少させないために望ましい。
From this fact, it is 30 to 41 in terms of MnO.
A range where mol% of manganese oxide, 6 to 16 mol% of zinc oxide in terms of ZnO, and the balance of iron oxide is preferable. Outside this range, the core loss increases, the minimum temperature of the core loss becomes 60 ° C. or less, the Curie temperature becomes 200 ° C. or less, the initial magnetic permeability decreases, and the residual magnetic flux density (Br) decreases. Will increase. Further, as fine adjustment balancing additives, 0.06 wt% or less of niobium in terms of Nb2 O5 other than SiO2 and CaO, and 0.0 in terms of V2 O5.
Vanadium less than 8 wt%, 0.07 wt% in terms of ZrO2
It is adjusted by adding one or more of the following zirconium, 0.4 wt% or less of tin in terms of SnO2, and titanium of 0.3 wt% or less in terms of TiO2. Nb2 O5 is 0.06wt
When it exceeded%, the core loss increased and the initial magnetic permeability decreased. When V2 O5 exceeds 0.08 wt%, the core loss increases and the initial permeability decreases. ZrO2 is 0.07wt%
When it exceeded, the core loss increased and the initial permeability decreased. When SnO2 exceeds 0.4 wt%, the minimum temperature of core loss becomes 60 ° C or less. When the content of TiO2 exceeds 0.3 wt%, the minimum temperature of core loss becomes 60 ° C or lower. Further, in selecting the starting materials of this kind, not only the control and correction of the composition components including the additive of the present invention but also other impurities such as Sr and Ba should be 0.05 wt% or less in total. Squeezing is desirable because it does not reduce the effect.

【0036】急激なフェライト結晶化促進成分である
燐,硼素が極めて少い出発原料物質を選定すると共に、
コンタミ量を考慮して補正するか、必要によっては脱
燐,脱硼素工程を設け、完成品の燐の含有量を0.00
2wt% 以下、硼素を0.002wt% 以下(零を含ま
ず)、共存の場合は合計0.004wt% 以下(零を含ま
ず)となる様に調整プロセスを設ける。又好ましくは上
記の硼素と燐の和を0.0035wt% 以下(零を含ま
ず)で、且つ硼素の量を0.002wt% 以下(零を含ま
ず)、燐の量を0.0015wt% 以下、更に好ましくは
硼素と燐の量の和を0.0025wt% 以下(零を含ま
ず)で、且つ硼素の量を0.0015wt% 以下(零を含
まず)、燐の量を0.001wt% 以下とするのが望まし
い。その調整プロセスでフェライト結晶の急成長を押え
た上で、焼結昇温中に低酸素分圧にする事により高周波
損失が少く且所望の特性に調整する微量添加物成分,即
ち、Ca,Si,Nb,V,Sn,Ti等が有効で且安
定に作用する製造條件の領域が広くなる事が判明した。
In addition to selecting a starting material containing extremely small amounts of phosphorus and boron, which are components for rapidly promoting ferrite crystallization,
Correct the amount of contaminants, or if necessary, perform a dephosphorization / boron removal process to reduce the phosphorus content of the finished product to 0.00
An adjustment process is provided so that the content of boron is 2 wt% or less, the content of boron is 0.002 wt% or less (not including zero), and the total amount is 0.004 wt% or less (not including zero) when coexisting. Preferably, the sum of boron and phosphorus is 0.0035 wt% or less (not including zero), the amount of boron is 0.002 wt% or less (not including zero), and the amount of phosphorus is 0.0015 wt% or less. More preferably, the sum of the amounts of boron and phosphorus is 0.0025 wt% or less (not including zero), the amount of boron is 0.0015 wt% or less (not including zero), and the amount of phosphorus is 0.001 wt%. The following is preferable. In the adjustment process, the rapid growth of ferrite crystals is suppressed, and then a low oxygen partial pressure is applied during the sintering temperature rise to reduce the high-frequency loss and adjust to desired characteristics. , Nb, V, Sn, Ti, etc. have been found to be effective, and the range of manufacturing conditions in which they act stably becomes wider.

【0037】此の結晶成長を急激に促進させる硼素と燐
も前述の限界量以下にすれば、一時粒子径の選択によっ
て約30%程度のコア損失のピークを改善出来るし、溶
液混合する等、原料粒子間のコンタクトを大きくする事
による改善効果も期待出来る上、第3図に示す様に特に
昇温部(900℃から焼結温度まで)の低酸素分圧によ
るコアー損失の改善効果、第2図に示す様に焼成温度
(1250℃以上1400℃以下)の範囲で上記添加物
の効果が有効且安定に引出せる事が明かとなった。
If the amounts of boron and phosphorus, which rapidly accelerate the crystal growth, are set to the above-mentioned limit amounts or less, the peak of core loss of about 30% can be improved by selecting the temporary particle size, and solution mixing, etc. In addition to the improvement effect that can be expected by increasing the contact between the raw material particles, as shown in FIG. 3, especially the improvement effect of core loss due to the low oxygen partial pressure in the temperature rising part (from 900 ° C to the sintering temperature), As shown in FIG. 2, it became clear that the effects of the above additives can be effectively and stably brought out within the range of the firing temperature (1250 ° C. or higher and 1400 ° C. or lower).

【0038】此等の作用効果は課題が一見類似している
所から先行技術と同一視され易いが、電力として制御出
来る原子エネルギーと爆弾としての原子エネルギーの如
く、結晶成長の程度を制御する前提條件として燐と硼素
が限界量として作用している。従って、先行技術が開示
しているものとは全て逆の傾向を示す場合、例えば前述
の昇温中の酸素量と燐の関係等、も出て来る。これは組
成成分が定まれば直に電気・磁気的特性が定まるという
一般化学物質と異るのは混合体の一種である固溶体本来
の性質からであろう。基本組成・成分と結晶化促進成
分、特性調整成分の内、特に強力結晶化促進成分である
硼素・燐を低く押えた事が安定で且多量に(工程品質能
力Cpを大きく出来る)供給出来る製造條件が設定し得
る事になったと考えられる。
These functions and effects are likely to be equated with the prior art because the problems are similar at first glance, but it is a prerequisite to control the degree of crystal growth such as atomic energy that can be controlled as electric power and atomic energy as a bomb. As a condition, phosphorus and boron act as limit amounts. Therefore, in the case where all of the tendencies opposite to those disclosed in the prior art are shown, the above-mentioned relationship between the oxygen amount during temperature rise and phosphorus, etc. also appears. This is different from general chemical substances in which the electrical and magnetic properties are directly determined when the composition components are determined, probably because of the inherent properties of a solid solution, which is a kind of mixture. Of the basic composition / ingredients, the crystallization promoting component, and the property adjusting component, particularly the strong crystallization promoting components such as boron and phosphorus can be stably supplied in a large amount (the process quality capability Cp can be increased). It is considered that the conditions could be set.

【0039】従って、これは硼素・燐の「添加(量)に
よる作用効果」に起因する特性改善効果と云う従来の技
術思想とは異り、「急激結晶促進成分の少い領域で安定
化して改善要因間の相互作用を課題に究明」した結果、
一見同様に見えるが固溶体特有の新しい知見が得られた
ものである。前述の先行技術間等で、理解出来ない請求
範囲及び詳細な説明の相違はこの事を裏付けるものであ
る。又、此等の作用は成分組織の一部又は全部を溶液に
て混合し、更に噴霧焙焼して混合の均一化を計っても組
成成分及び添加量による基本的作用効果の傾向は変ら
ず、若干の製造條件の調整によって高周波電源材料とし
ての最適値を得る事が出来る事は変らない。
Therefore, this is different from the conventional technical idea that the characteristic improving effect is caused by the "effect of addition (amount)" of boron / phosphorus, and "stabilizes in a region where abrupt crystallization promoting component is small. As a result of investigating the interaction between improvement factors into issues,
Although it looks similar at first glance, new knowledge peculiar to solid solution was obtained. Differences in the claims and the detailed description that cannot be understood between the above-mentioned prior arts and the like support this fact. In addition, even if a part or all of the constituent tissues are mixed with a solution and further spray roasted to make the mixing uniform, the tendency of the basic function and effect depending on the composition component and the addition amount does not change. By adjusting some manufacturing conditions, it is possible to obtain the optimum value as a high frequency power source material.

【0040】[0040]

【実施例1】燐及び硼素含有量の異なるFeCl2 及び
MnCl2 を混合した溶液を、酸化焙焼して得た酸化鉄
及び酸化マンガンの混合物に、亜鉛フェライト(ZnF
e2O4 )と、SiO2 ,CaCO3 ,Nb2 O5 及び
V2 O5 を添加して混合・粉砕を行いMnZnフェライ
ト材料を作成した。これらのフェライト材料に、バイン
ダーを加えてトロイダル形状に加圧成型し、空気と窒素
ガスを混合した雰囲気中で本焼成した。以上のようにし
て得られたフェライトコアのコア損失を図1,図2及び
図3に示す。燐及び硼素含有量の少ない試料、昇温部の
酸素分圧の低い焼成条件でコア損失が低減した。
EXAMPLE 1 A mixture of FeCl2 and MnCl2 having different phosphorus and boron contents was oxidized and roasted, and a mixture of iron oxide and manganese oxide was added to zinc ferrite (ZnF).
e2O4), SiO2, CaCO3, Nb2O5 and V2O5 were added and mixed and pulverized to prepare a MnZn ferrite material. Binders were added to these ferrite materials, pressure-molded into a toroidal shape, and then main-fired in an atmosphere in which air and nitrogen gas were mixed. The core loss of the ferrite core obtained as described above is shown in FIGS. 1, 2 and 3. The core loss was reduced under the conditions of low phosphorus and boron content and firing conditions with low oxygen partial pressure in the temperature rising part.

【0041】[0041]

【実施例2】FeCl2 及びMnCl2 を混合した溶液
を、酸化焙焼して得た酸化鉄及び酸化マンガンの混合物
に、亜鉛フェライト(ZnFe2 O4 )と、SiO2 ,
CaCO3 ,Nb2 O5 ,V2 O5 ,SnO2 及びTi
O2 を添加して混合・粉砕を行い、表1に示すNo.1
〜9の試料を作成した。これらの試料に、バインダーを
加えてトロイダル形状に加圧成型し、空気と窒素ガスを
混合した雰囲気中で1320℃で4時間本焼成した。以
上のようにして得られたフェライトコアのコア損失を表
1に示す。燐及び硼素含有量が少なくて(燐・硼素各々
が0.0005wt% )、且つNb2 O5 ,V2 O5 ,Z
rO2 ,SnO2 及びTiO2 の1種以上を含有する試
料でコア損失が低減した。
Example 2 A mixture of FeCl2 and MnCl2 was oxidized and roasted to obtain a mixture of iron oxide and manganese oxide, and zinc ferrite (ZnFe2 O4) and SiO2,
CaCO3, Nb2 O5, V2 O5, SnO2 and Ti
O2 was added, and the mixture was mixed and pulverized to obtain No. 1 shown in Table 1. 1
~ 9 samples were made. A binder was added to each of these samples, and the mixture was pressure-molded into a toroidal shape, and subjected to main firing at 1320 ° C. for 4 hours in an atmosphere in which air and nitrogen gas were mixed. Table 1 shows the core loss of the ferrite core obtained as described above. Low phosphorus and boron contents (0.0005wt% of phosphorus and boron, respectively) and Nb2O5, V2O5, Z
Core loss was reduced in samples containing at least one of rO2, SnO2 and TiO2.

【0042】[0042]

【実施例3】FeCl2 及びMnCl2 を混合した溶液
に、Si,Ca,Nb,Zr及びSnを塩化物か、また
は可溶性の形態で添加した後に、酸化焙焼して酸化鉄及
び酸化マンガンの混合物を得た。これに亜鉛フェライト
(ZnFe2 O4 )を混合して粉砕を行い、表1に示す
No.10の試料を作成した。この試料に、バインダー
を加えてトロイダル形状に加圧成型し、空気と窒素ガス
を混合した雰囲気中で1320℃で4時間本焼成した。
EXAMPLE 3 To a mixed solution of FeCl2 and MnCl2, Si, Ca, Nb, Zr and Sn were added in a chloride or soluble form, and then oxidized and roasted to obtain a mixture of iron oxide and manganese oxide. Obtained. Zinc ferrite (ZnFe2 O4) was mixed with this and pulverized to obtain No. 1 shown in Table 1. Ten samples were made. A binder was added to this sample, the mixture was pressure-molded into a toroidal shape, and main firing was performed at 1320 ° C. for 4 hours in an atmosphere in which air and nitrogen gas were mixed.

【0043】以上のようにして得られたフェライトコア
のコア損失を表1に示す。焙焼後に微量成分を添加した
No.9の試料に比べて、No.10の試料でコア損失
がさらに低減した。
Table 1 shows the core loss of the ferrite core obtained as described above. No. which added a minor component after roasting. No. 9 compared with the sample of No. The core loss was further reduced in 10 samples.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【発明の効果】本発明によれば、硼素と燐の含有量及び
コンタミ量を含めて各々0.0020wt% ,0.002
0wt% 以下,和として0.004wt% 以下(零を含ま
ず)に押え、Fe2 O3 ,MnO,及びZnOを主成分
とし副成分としてSiO2 換算で0.005〜0.02
5wt% のSi,CaO換算で0.02〜0.15wt% の
Caを含み、添加物としてNb2 O5 換算で0.05wt
% 以下の ,V2 O5 換算で0.05wt% 以下のV,S
nO2 換算で0.4wt% 以下のSn及びTiO2 換算で
0.3wt% 以下のTiの1種以上を添加することによっ
て小型軽量な高周波電源を実現できる。
According to the present invention, the content of boron and phosphorus and the content of contamination are 0.0020 wt% and 0.002, respectively.
Hold down to 0 wt% or less, or 0.004 wt% or less (not including zero) as a sum, and use Fe2 O3, MnO, and ZnO as the main components and 0.005 to 0.02 in terms of SiO2 as a minor component.
5 wt% of Si and CaO is contained in the range of 0.02 to 0.15 wt% of Ca, and 0.05 wt% of Nb2 O5 is added as an additive.
% Or less, V, S of 0.05 wt% or less in terms of V2 O5
A small and lightweight high-frequency power source can be realized by adding one or more of Sn of 0.4 wt% or less in terms of nO2 and Ti of 0.3 wt% or less in terms of TiO2.

【図面の簡単な説明】[Brief description of drawings]

【図1】フェライト中の燐及び硼素含有量によるコアの
損失の変化を示すグラフである。
FIG. 1 is a graph showing changes in core loss depending on the phosphorus and boron contents in ferrite.

【図2】燐含有量及び焼成温度によるコア損失の変化を
示すグラフである。
FIG. 2 is a graph showing changes in core loss depending on phosphorus content and firing temperature.

【図3】燐含有量及び焼成昇温部の酸素分圧によるコア
損失の変化を示すグラフである。
FIG. 3 is a graph showing changes in core loss depending on the phosphorus content and the oxygen partial pressure in the temperature-rising portion for firing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 守田 章 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Akira Morita 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDC Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原材料中及び製造工程で混入する燐及び
硼素の量の和を0.004wt% 以下(零を含まず)で、
且つ硼素の量を0.002wt% 以下(零を含まず)、燐
の量を0.002wt% 以下の特定量に補正添加、又は精
製して製造したフェライト材料を用い、該材料の焼成に
際し、900℃から焼成温度までの昇温部の雰囲気の酸
素分圧を15% 以下(零を含まず)にし、且つ、焼成温
度を1250℃以上,1400℃以下にすることを特徴
とするソフトフェライトの製造方法。
1. The total amount of phosphorus and boron mixed in the raw materials and in the manufacturing process is 0.004 wt% or less (not including zero),
In addition, when the ferrite material produced by correcting or adding the amount of boron to 0.002 wt% or less (not including zero) and the amount of phosphorus to 0.002 wt% or less is used, The oxygen partial pressure of the atmosphere in the temperature rising portion from 900 ° C. to the firing temperature is set to 15% or less (not including zero), and the firing temperature is set to 1250 ° C. or more and 1400 ° C. or less. Production method.
【請求項2】 請求項1記載のソフトフェライト材料を
製造するに際し、主成分がMnO換算で30〜41mol%
の酸化マンガンとZnO換算で6〜16mol%の酸化亜鉛
と残りが酸化鉄であり、SiO2 換算で0.005〜
0.025wt%の珪素とCaO換算で0.02〜0.1
5wt% のカルシウムを含み、さらにNb2 O5 換算で
0.06wt% 以下(零を含まず)のニオブ,V2 O5 換
算で0.08wt% 以下(零を含まず)のバナジウム,Z
rO2 換算で0.07wt% 以下(零を含まず)のジルコ
ニウム,SnO2 換算で0.4wt% 以下の(零を含ま
ず)のスズ及びTiO2 換算で0.3wt% 以下(零を含
まず)のチタンの1種以上を含み、その成分元素または
添加物の一部または全部を溶液で混合し噴霧焙焼によっ
て製造することを特徴とするソフトフェライトの製造方
法。
2. When manufacturing the soft ferrite material according to claim 1, the main component is 30 to 41 mol% in terms of MnO.
Manganese oxide of 6 to 16 mol% in terms of ZnO and the balance iron oxide, and 0.005 in terms of SiO2.
0.025 wt% silicon and 0.02 to 0.1 in terms of CaO
Niobium containing 5 wt% calcium, 0.06 wt% or less (not including zero) in terms of Nb2 O5, 0.08 wt% or less vanadium (not including zero) in terms of V2 O5, Z
0.07 wt% or less (not including zero) of zirconium in terms of rO2, 0.4 wt% or less (not including zero) of tin in terms of SnO2 and 0.3 wt% or less (not including zero) in terms of TiO2 A method for producing soft ferrite, comprising one or more kinds of titanium, mixing a part or all of its component elements or additives with a solution, and producing the mixture by spray roasting.
JP18779194A 1994-07-18 1994-07-18 Method for producing soft ferrite Expired - Fee Related JP3747234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18779194A JP3747234B2 (en) 1994-07-18 1994-07-18 Method for producing soft ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18779194A JP3747234B2 (en) 1994-07-18 1994-07-18 Method for producing soft ferrite

Publications (2)

Publication Number Publication Date
JPH0826732A true JPH0826732A (en) 1996-01-30
JP3747234B2 JP3747234B2 (en) 2006-02-22

Family

ID=16212293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18779194A Expired - Fee Related JP3747234B2 (en) 1994-07-18 1994-07-18 Method for producing soft ferrite

Country Status (1)

Country Link
JP (1) JP3747234B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032140A1 (en) * 1997-01-21 1998-07-23 Fdk Corporation Ferrite material, method of manufacturing the same and deflection yoke core made from the material
JP2000182816A (en) * 1998-12-16 2000-06-30 Tdk Corp Manganese-based ferrite, transformer using the same and choke coil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032140A1 (en) * 1997-01-21 1998-07-23 Fdk Corporation Ferrite material, method of manufacturing the same and deflection yoke core made from the material
JP2000182816A (en) * 1998-12-16 2000-06-30 Tdk Corp Manganese-based ferrite, transformer using the same and choke coil

Also Published As

Publication number Publication date
JP3747234B2 (en) 2006-02-22

Similar Documents

Publication Publication Date Title
US5980773A (en) Manganese-zinc system ferrite
US5846448A (en) Ferrite and ferrite core for power supply
US6627103B2 (en) Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies
EP1030318A1 (en) Manganese-zinc ferrite and method for producing the same
JP2001064076A (en) Magnetic ferrite material and its production
JP2000331817A (en) Ferrite
JP3635410B2 (en) Method for producing manganese-zinc based ferrite
KR100247516B1 (en) Ferrite core for line filters
JPH113813A (en) Ferrite material
JPH0826732A (en) Production of soft ferrite
JPH081844B2 (en) High frequency low loss ferrite for power supply
JP3233420B2 (en) Manganese-zinc ferrite and magnetic core
JP4299390B2 (en) Manganese ferrite, transformer and choke coil using the same
JP3454472B2 (en) Manganese-zinc ferrite and method for producing the same
JPH10340807A (en) Manganese-cobalt ferrite material
JPH06267726A (en) Low loss manganese-zinc ferrite and manufacture thereof
JPH08236336A (en) Low-loss oxide magnetic material
JPH08236335A (en) Low-loss oxide magnetic material
US4985167A (en) Low-loss oxide magnetic material
EP4342869A1 (en) Mnznco-based ferrite
JPH09180926A (en) Low loss oxide magnetic material
JPH05299230A (en) Manufacturing method for low loss oxide magnetic material
JPH06314608A (en) Low loss oxide magnetic material
JPH065411A (en) Manufacturing method of low loss oxide magnetic material
JPH08162314A (en) Low loss oxide magnetic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees