JPH08262138A - Instrument for measuring distance by light wave and light quantity control method therefor - Google Patents

Instrument for measuring distance by light wave and light quantity control method therefor

Info

Publication number
JPH08262138A
JPH08262138A JP7091659A JP9165995A JPH08262138A JP H08262138 A JPH08262138 A JP H08262138A JP 7091659 A JP7091659 A JP 7091659A JP 9165995 A JP9165995 A JP 9165995A JP H08262138 A JPH08262138 A JP H08262138A
Authority
JP
Japan
Prior art keywords
light
state information
internal
light quantity
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7091659A
Other languages
Japanese (ja)
Other versions
JP3563817B2 (en
Inventor
Kiyoshi Yamamoto
山本  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP09165995A priority Critical patent/JP3563817B2/en
Publication of JPH08262138A publication Critical patent/JPH08262138A/en
Application granted granted Critical
Publication of JP3563817B2 publication Critical patent/JP3563817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE: To easily set the position of a concentration distribution filter by preserving the state information about the position of the filter when the power supply is turned off and using the state information as a reference state for controlling light quantity adjustment when the power supply is turned on next. CONSTITUTION: An instrument 100 for measuring distance by light wave preserves the state information about the last position of a filter in a nonvolatile memory 18 when the power supply is turned off and updates the state information by reading the preserved information from the memory 18 and calculating the moved position of the filter based on the read value and displacement of the filter. Therefore, the instrument 100 can immediately execute distance measurement without requiring initialization. In addition, since the reliability of the filter position control drops due to accumulated errors when the control only relies upon the relative position in such a way, the reliability of the position control of the instrument 100 is secured by eliminating errors by forcing the device 10 to perform origin position detecting processing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、装置内に設けられた内
部光路を通過した内部光と、装置から測点に向かって射
出され測点で反射されて再び装置内に取り込まれた外部
光との位相差に基づいて測点までの距離を求める光波測
距装置に関し、さらに詳しくは、装置内に取り込まれた
外部光及び内部光を、透過光量が可変な光量調整手段を
介して受光し、外部光による受光光と内部光による受光
光との間との位相差から前記測点までの距離を求める光
波測距装置および光波測距装置における光量制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to internal light that has passed through an internal optical path provided in an apparatus and external light that is emitted from the apparatus toward a measuring point, is reflected at the measuring point, and is re-introduced into the apparatus. The present invention relates to an optical distance measuring device that obtains a distance to a measuring point based on a phase difference between the external light and the internal light. More specifically, the external light and the internal light taken in the device are received via a light amount adjusting means whose transmission light amount is variable. The present invention relates to a light wave distance measuring device for obtaining a distance to the measuring point from a phase difference between light received by external light and light received by internal light, and a light quantity control method in the light wave distance measuring device.

【0002】[0002]

【従来の技術】従来より、測点までの距離を測定する装
置として、光波測距装置が知られている。原理的に光波
測距装置は、所定の周波数で変調されたレーザ光などの
光源光を、測点に置かれたコーナーキューブなどの反射
器に向けて出射し、その反射光を受光して、その受光光
と光源光の位相差に基づいて測点までの距離を測定する
装置である。
2. Description of the Related Art Conventionally, an optical wave distance measuring device has been known as a device for measuring a distance to a measuring point. In principle, the optical distance measuring device emits light source light such as laser light modulated at a predetermined frequency toward a reflector such as a corner cube placed at a measuring point, receives the reflected light, It is a device that measures the distance to the measurement point based on the phase difference between the received light and the light from the light source.

【0003】上記のような光波測距装置においては、実
際には、光源を駆動する変調信号またはそれに相当する
電気信号と前述の受光光を光電変換した信号を電気的に
比較して位相差を求めることになるが、この受光光には
光電変換回路や光路中の光学素子に起因する位相誤差が
含まれており、これらが結果的に距離測定誤差をもたら
してしまう。そこでこの位相誤差を相殺するため、通
常、装置本体とコーナーキューブで形成される測距光路
を進んだ光(外部光)と、装置内部に形成される基準用
の参照用光路(内部光路)を進んだ光(内部光)との間
の位相差に基づいて測点までの距離が計算される。上記
の外部光と内部光の位相差の測定は、同一の受光素子を
用い、光路を切り換えて受光素子に入射させて行う。
In the above-mentioned light-wave distance measuring device, in practice, a modulated signal for driving a light source or an electric signal corresponding thereto is electrically compared with a signal obtained by photoelectrically converting the above-mentioned received light to obtain a phase difference. As will be obtained, this received light contains a phase error due to the photoelectric conversion circuit and the optical element in the optical path, and these result in a distance measurement error. Therefore, in order to cancel this phase error, normally, the light (external light) that has traveled through the distance measurement optical path formed by the device body and the corner cube and the reference reference optical path (internal optical path) formed inside the device are used. The distance to the measurement point is calculated based on the phase difference between the light that has advanced (internal light). The measurement of the phase difference between the external light and the internal light is performed by using the same light receiving element and switching the optical path to make the light incident on the light receiving element.

【0004】すなわち、光波測距装置は、モータで駆動
される光路切り換え器によって参照用光路(内部光路)
と測距光路(外部光路)とが切り換えられ、光源から射
出された光が、外部光路または内部光路のいずれか一方
の光路を進んで受光素子に到達するよう構成されてい
る。そして、参照光路を進んだ光(内部光)に対する測
距光路を進んだ光(外部光)の位相遅れを検出すること
によって測点までの距離を精密に測定している。
That is, in the light wave distance measuring apparatus, the reference optical path (internal optical path) is set by the optical path switching device driven by the motor.
And the distance measurement optical path (external optical path) are switched, and the light emitted from the light source travels through either the external optical path or the internal optical path to reach the light receiving element. Then, the distance to the measurement point is precisely measured by detecting the phase delay of the light (external light) that has traveled the distance measuring optical path with respect to the light that has traveled the reference optical path (internal light).

【0005】ところで光波測距装置において距離を正確
に求めるためには、内部光受光時と外部光受光時とでそ
れぞれの受光素子の光電変換出力信号が同レベルである
こと、つまり受光素子直前での内部光と外部光のそれぞ
れの光量が同じでなくてはならない。しかし、参照用光
路および測距光路に向けて出射された光の強度が同じで
あっても、参照用光路を進んで受光素子に達した光と測
距光路を進んで受光素子に達した光とでは受光強度が必
ずしも一致しない。また一方、測距光路を進んで受光素
子に達した光の強度は、測距点から測点までの距離よっ
て変動する。このため、従来より、受光素子の直前に光
量を調整するための濃度分布フィルタを配置し、受光光
量が常に適正な光量となるようフィルタを適時移動させ
る手法が取られてきた。通常この濃度分布フィルタはモ
ータにより回転される円盤上に、回転中心を中心とした
円弧状で且つ回転方向に連続的に光透過率が変化するよ
う形成され、受光素子への入射光量に応じて円盤を(す
なわちフィルタを)回転させて光の透過量を調節し、受
光素子に適正な光量が入射するよう制御される。
In order to accurately obtain the distance in the light wave distance measuring device, the photoelectric conversion output signals of the respective light receiving elements are at the same level when the internal light is received and when the external light is received, that is, immediately before the light receiving element. The amount of internal light and the amount of external light must be the same. However, even if the intensity of the light emitted toward the reference optical path and the light emitted toward the distance measuring optical path are the same, the light traveling along the reference optical path and reaching the light receiving element and the light traveling along the distance measuring optical path and reaching the light receiving element The received light intensities do not necessarily match in and. On the other hand, the intensity of the light traveling along the distance measuring optical path and reaching the light receiving element fluctuates depending on the distance from the distance measuring point to the measuring point. For this reason, conventionally, a method has been taken in which a density distribution filter for adjusting the light amount is arranged immediately before the light receiving element and the filter is moved in a timely manner so that the received light amount is always a proper light amount. Usually, this density distribution filter is formed on a disk rotated by a motor in an arc shape centered on the rotation center and with the light transmittance continuously changing in the rotation direction, depending on the amount of light incident on the light receiving element. The disk (that is, the filter) is rotated to adjust the amount of light transmitted, and the light is controlled so that an appropriate amount of light is incident on the light receiving element.

【0006】[0006]

【発明が解決しようとする課題】濃度分布フィルタの位
置(円盤の回転量)は、基準となる円盤の原点位置と、
その回転量に基づいて求められる。従来、この原点位置
を求めるため、まず光波測距装置の電源が投入される
と、円盤を一旦所定の位置(例えば円弧状に形成された
フィルタの端部と遮光部との境界の一方が検出される位
置)まで円盤を回転する。そして、検出された所定位置
を原点として、フィルタの有効範囲を確定してこれを円
盤の許容回転範囲とすると共に、その後の測距処理時に
おける円盤の回転位置を原点からの回動量に基づいて求
め、円盤の回転を制御していた。ところが一方、測距装
置の電源が切られた時には、濃度分布フィルタは任意の
位置にある。このため、次に電源を投入した時、濃度分
布フィルタの位置を確定するために上述の原点検出処理
を行う必要があり、電源投入時の初期設定に時間がかか
るという問題があった。
The position of the density distribution filter (the amount of rotation of the disk) is the origin of the reference disk, and
It is calculated based on the rotation amount. Conventionally, in order to obtain the origin position, when the power of the optical distance measuring device is first turned on, the disc is once detected at a predetermined position (for example, one of the boundaries between the end of the filter formed in an arc shape and the light shielding part is detected. Rotate the disk to the position). Then, with the detected predetermined position as the origin, the effective range of the filter is determined and this is set as the allowable rotation range of the disk, and the rotation position of the disk during the subsequent distance measurement processing is based on the rotation amount from the origin. I asked and controlled the rotation of the disk. On the other hand, when the power of the distance measuring device is turned off, the density distribution filter is in an arbitrary position. Therefore, the next time the power is turned on, it is necessary to perform the above-mentioned origin detection processing in order to determine the position of the density distribution filter, and there is a problem that it takes time for the initial setting when the power is turned on.

【0007】さらに、ある1台の測距装置において測定
される距離は、通常ほぼ同程度の距離範囲内である場合
が多いと考えられる。従ってこの場合、1台の測距装置
においては、使用する濃度分布フィルタの位置もそれほ
ど大きく変化させる必要はないと考えられる。しかしな
がら、従来の装置においては、結果的には前回の使用終
了時(電源オフ時)におけるフィルタ位置と同じ位置に
フィルタが位置するような場合でも、次の使用時(電源
投入時)には、原点を検出するためにフィルタを一旦初
期位置に戻している。このため、作業効率が悪く、改善
が望まれていた。
Further, it is considered that the distance measured by a certain one of the distance measuring devices is usually within the same range of distance in many cases. Therefore, in this case, in one distance measuring device, it is considered that it is not necessary to change the position of the density distribution filter to be used so much. However, in the conventional device, as a result, even when the filter is located at the same position as the filter position at the end of use (when the power is off) of the previous time, at the time of the next use (when the power is turned on), The filter is once returned to the initial position to detect the origin. Therefore, the work efficiency is poor, and improvement has been desired.

【0008】[0008]

【発明の目的】上記の事情に鑑み、本発明の目的は、従
来と同様、内部光と外部光との間の位相差に基づいて測
点までの距離を測定する装置において、濃度分布フィル
タの位置設定を簡易化する、光波測距装置および光波測
距装置の光量制御方法を提供することである。
SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a density distribution filter for an apparatus for measuring the distance to a measuring point based on the phase difference between internal light and external light, as in the prior art. An object of the present invention is to provide a lightwave distance measuring device and a light quantity control method for the lightwave distance measuring device, which simplify position setting.

【課題を解決するための手段】このため、本発明の光波
測距装置の光量制御方法は、所定の周波数で変調された
光を、所定の内部光路と測点に向けた測距光路に交互に
射出し、内部光路を進んだ光(内部光)と測点に設けら
れた反射器により反射された光(外部光)とを光量調整
手段を介して受光し、前記内部光路を進んだ受光光と前
記測距光路を進んだ受光光との間の位相差に基づいて前
記測点までの距離を求める光波測距装置において、電源
オフ時にその時点での前記光量調整手段の光量調整度を
示す状態情報を保存し、電源オン時には保存されていた
前記状態情報を読み出し、読み出した状態情報を前記光
量調整手段の基準状態として前記光量調整手段の光量調
整度を変化させることを特徴としている。また、本発明
の光波測距装置は、測点までの距離を測定するものであ
って、所定の周波数で変調された光を、所定の内部光路
および前記測点に向けて選択的に射出する光射出手段
と、前記内部光路を進んだ内部光と前記測点に設けられ
た反射器により反射された外部光とを受光する受光手段
と、前記受光手段に入射する前記内部光と前記外部光と
の少なくとも何れか一方の光量を調整する光量調整手段
と前記内部光と前記外部光の間の位相差に基づいて前記
測点までの距離を求める演算手段と、前記光量調整手段
の光量調整度に対応した状態情報を保存するための保存
手段と、電源オフ操作時に前記光量調整手段の光量調整
度に対応した状態情報を前記保存手段に保存し、電源オ
ン時には前記保存手段に保存された前記状態情報を読み
出し、読み出した状態情報を電源オン時の前記光量調整
手段の基準状態として前記光量調整手段の光量調整状態
を制御する制御手段とを有する構成とした。
Therefore, in the light quantity control method for a light wave distance measuring apparatus according to the present invention, light modulated at a predetermined frequency is alternated between a predetermined internal optical path and a distance measuring optical path toward a measuring point. Light that has been emitted to the internal optical path and that has traveled through the internal optical path (internal light) and the light that has been reflected by the reflector provided at the measuring point (external light) are received through the light quantity adjusting means, and received through the internal optical path. In a lightwave distance measuring device that obtains the distance to the measuring point based on the phase difference between the light and the received light that has traveled through the distance measuring optical path, when the power is off, the light amount adjusting degree of the light amount adjusting means at that time is set. The state information shown is stored, the stored state information is read when the power is turned on, and the read state information is used as a reference state of the light amount adjusting unit to change the light amount adjusting degree of the light amount adjusting unit. Further, the optical distance measuring device of the present invention measures a distance to a measuring point, and selectively emits light modulated at a predetermined frequency toward a predetermined internal optical path and the measuring point. Light emitting means, light receiving means for receiving the internal light traveling along the internal optical path and the external light reflected by a reflector provided at the measuring point, and the internal light and the external light entering the light receiving means. And a light quantity adjusting means for adjusting the light quantity of at least one of the above, a calculating means for obtaining the distance to the measuring point based on a phase difference between the internal light and the external light, and a light quantity adjusting degree of the light quantity adjusting means. Storage means for storing the state information corresponding to, and the state information corresponding to the light intensity adjustment degree of the light intensity adjusting means in the storage means at the time of power off operation, and the state information stored in the storage means at the time of power on. Read status information, And configured to have a control means for controlling the light amount adjustment state of said light quantity adjusting means the state information viewed out the relative state of the light amount adjusting means when the power is turned on.

【0009】なお、電源オフ時に状態情報を保存してか
ら次回電源オンまでの間に光量調整手段の状態が僅かに
変化する場合があり、これに対処するために、前記状態
情報の保存が所定回数行われる毎に、前記光量調整手段
を所定の状態にするとともに、前記状態情報を前記所定
の状態に対応した値に初期化するようにしてもよい。こ
のことにより、電源オン時に生じる保存状態情報と実状
態との誤差が、電源のオン・オフを繰り返す毎に蓄積さ
れてしまうのを防止することができる。
In some cases, the state of the light quantity adjusting means may slightly change between the time the power is turned off and the time the power is turned on until the next time the power is turned on. The light amount adjusting means may be set to a predetermined state and the state information may be initialized to a value corresponding to the predetermined state each time the operation is performed a number of times. As a result, it is possible to prevent the error between the storage state information and the actual state generated when the power is turned on from being accumulated every time the power is turned on and off.

【0010】[0010]

【実施例】図1は、本発明の実施例としての光波測距装
置のブロック図である。基準発信器1は、光波測距装置
での測距の基本となる基準周波数信号を発生する発信器
である。この基準周波数信号及びそれを分周した分周信
号によって、強度変調された光が測距に使用される。
1 is a block diagram of a lightwave distance measuring apparatus as an embodiment of the present invention. The reference oscillator 1 is a transmitter that generates a reference frequency signal that is the basis of distance measurement in the lightwave distance measuring device. The intensity-modulated light is used for distance measurement by the reference frequency signal and the divided signal obtained by dividing the reference frequency signal.

【0011】各周波数信号発生器2は、参照光および測
距光を強度変調するための各周波数信号、位相差測定の
際の受信信号に対する比較基準信号など、測距装置内部
で使用される各周波数信号を発生するブロックである。
Each frequency signal generator 2 is used inside the distance measuring device, such as each frequency signal for intensity-modulating the reference light and the distance measuring light, a reference signal for comparison with a received signal at the time of phase difference measurement, and the like. It is a block that generates a frequency signal.

【0012】送光ブロック3は、参照光および測距光に
用いられる光源光を出力するブロックである。光源とし
ては発光ダイオード(LED)が用いられ、各周波数信
号発生器2からの信号に同期して強度変調された光が射
出するよう駆動制御される。
The light transmitting block 3 is a block for outputting the light source light used for the reference light and the distance measuring light. A light emitting diode (LED) is used as a light source, and is drive-controlled so that the intensity-modulated light is emitted in synchronization with the signal from each frequency signal generator 2.

【0013】光路切り換え部4は、送光ブロック3から
射出された光源光を、送光光学系5または内部参照光ブ
ロック9へ選択的に導くことにより光路の切り換えを行
う。
The optical path switching unit 4 switches the optical path by selectively guiding the light source light emitted from the light transmitting block 3 to the light transmitting optical system 5 or the internal reference light block 9.

【0014】送光光学系5は、強度変調された光を、装
置外部へ射出するための光学系である。送光ブロックを
出た測距光は、プリズム、ミラーなどの光学素子を介し
て、送光用レンズにより外部へ平行光として射出され
る。
The light-transmitting optical system 5 is an optical system for emitting intensity-modulated light to the outside of the device. The distance-measuring light emitted from the light-transmitting block is emitted as parallel light to the outside by a light-transmitting lens via an optical element such as a prism or a mirror.

【0015】送光光学系から射出された光は、測点側の
反射鏡200(コーナーキューブ)により反射されて、
受光光学系6により受光される。受光光は、プリズム、
ミラーなどの光学素子を経て、受光ブロック8へと導か
れる。
The light emitted from the light transmitting optical system is reflected by the reflecting mirror 200 (corner cube) on the measuring point side,
The light is received by the light receiving optical system 6. The received light is a prism,
The light is guided to the light receiving block 8 via an optical element such as a mirror.

【0016】自動光量調整ブロック7は、受光光の光量
を調整して適正な光量とするブロックで、光路中に設け
た濃度分布フィルタを、モータを用いて移動させ、光量
の調整を行っている。
The automatic light amount adjustment block 7 is a block for adjusting the light amount of the received light to an appropriate light amount, and the density distribution filter provided in the optical path is moved by a motor to adjust the light amount. .

【0017】受光ブロック8は、受光した測距光を電気
信号に変換するブロックである。通常、フォトダイオー
ドのような光・電流変換素子が用いられる。
The light receiving block 8 is a block for converting the received distance measuring light into an electric signal. Usually, a light / current conversion element such as a photodiode is used.

【0018】内部参照光ブロック9は、送光ブロック3
から受光ブロック8に内部参照光を導くために測距装置
内部に形成された内部光路用の光学系である。
The internal reference light block 9 is the light transmission block 3
An optical system for an internal optical path formed inside the distance measuring device for guiding the internal reference light from the light receiving block 8 to the internal light receiving block 8.

【0019】局部発信器10は、受光ブロック8からの
受信信号を混合器によりビートダウンするために、受信
信号と積算(混合)する信号を発生する発信器である。
The local oscillator 10 is a transmitter that generates a signal that integrates (mixes) with the received signal in order to beat down the received signal from the light receiving block 8 with the mixer.

【0020】混合器11は、受信信号と局部発信器から
の信号を混合し、それらの差の周波数信号を発生する
(ビートダウンする)ブロックである。送光及び受光信
号の位相差の測定は、変調周波数(30MHz程度)の
ままでは行わず、ビートダウンによって、数KHz程度
の扱いやすい周波数に変換された後に行われる。混合器
はそのためのブロックである。
The mixer 11 is a block that mixes the received signal and the signal from the local oscillator and generates (beats down) the frequency signal of the difference between them. The phase difference between the light-transmitting and light-receiving signals is not measured as it is at the modulation frequency (about 30 MHz), but is measured after the frequency is converted into a manageable frequency of about several KHz by beatdown. The mixer is the block for that.

【0021】ゲート回路部13は、各周波数信号発生器
2から出力される比較基準信号と、混合器11によりビ
ートダウンされた受信信号とから、その位相差に応じた
計数回路の開閉信号を生成する回路部である。ここで、
各周波数信号発生器2からゲート回路13に入力される
信号は、測距光の強度変調信号に同期しており、その周
波数はビートダウンされた受信信号の周波数と同じであ
る。
The gate circuit section 13 generates an open / close signal of the counting circuit according to the phase difference from the comparison reference signal output from each frequency signal generator 2 and the received signal beat down by the mixer 11. It is a circuit unit that does. here,
The signal input from each frequency signal generator 2 to the gate circuit 13 is synchronized with the intensity modulated signal of the distance measuring light, and its frequency is the same as the frequency of the beat-down received signal.

【0022】計数回路部14は、ゲート回路部13から
出力される開閉信号に対して、基準発信器1からの出力
信号をカウントパルスとして、計数を行う回路部であ
る。この計数値が位相差に相当する値であり、距離情報
を有する。
The counting circuit unit 14 is a circuit unit for counting the open / close signal output from the gate circuit unit 13 by using the output signal from the reference oscillator 1 as a count pulse. This count value is a value corresponding to the phase difference and has distance information.

【0023】制御演算部12は、ゲート回路部13、計
数回路部14、自動光量調整ブロック7及びその他全体
的な制御を行うと共に、計数回路部14からの計数値よ
り、距離値を計算する部分である。
The control calculation unit 12 controls the gate circuit unit 13, the counting circuit unit 14, the automatic light amount adjusting block 7, and other overall controls, and calculates the distance value from the count value from the counting circuit unit 14. Is.

【0024】操作部15は、測距の指示を与えたり、気
象補正における気温・気圧の数値を入力するなど、光波
測距装置に各種動作を行わせるための指示を与えるキー
操作部である。
The operation unit 15 is a key operation unit that gives instructions for causing the lightwave distance measuring apparatus to perform various operations, such as giving instructions for distance measurement and inputting numerical values of temperature and atmospheric pressure for weather correction.

【0025】表示部16は、液晶ディスプレイを用い
て、測定された距離値及びその他の各種情報を表示する
部分である。
The display section 16 is a section for displaying the measured distance value and other various information using a liquid crystal display.

【0026】濃度分布フィルタ移動量検出手段17は、
自動光量調整前後における濃度分布フィルタの移動量を
検出し、制御演算部12へこの移動量に関する情報を出
力する。制御演算部12は、入力された移動量情報と、
直前の位置情報に基づいて現在の位置情報を計算する。
The density distribution filter movement amount detecting means 17 is
The amount of movement of the density distribution filter before and after the automatic light amount adjustment is detected, and information regarding this amount of movement is output to the control calculation unit 12. The control calculation unit 12 receives the input movement amount information,
The current position information is calculated based on the immediately previous position information.

【0027】不揮発性メモリ18は、光波測距装置10
0の電源がオフされても内容を保持することが可能なメ
モリで、後述する、位置情報保存回数および濃度分布フ
ィルタの位置情報を、電源が切られる際に保存する。メ
モリ18に保存された上記情報は、次の電源投入時に読
み込まれ、その情報に基づいて濃度分布フィルタの位置
制御が行われる。
The non-volatile memory 18 is used for the optical distance measuring device 10.
0 is a memory that can retain the contents even when the power is turned off, and stores the number of times of saving position information and the position information of the density distribution filter, which will be described later, when the power is turned off. The information stored in the memory 18 is read at the next power-on, and the position control of the density distribution filter is performed based on the information.

【0028】図2は、光波測距装置100の光学系の構
成を示す概略斜視図である。図2において、送光ブロッ
ク3における発光ダイオード(LED)31から射出さ
れた光がグラスファイバ32を介して光路切り換え部4
へ導かれる。
FIG. 2 is a schematic perspective view showing the configuration of the optical system of the optical distance measuring apparatus 100. In FIG. 2, the light emitted from the light emitting diode (LED) 31 in the light transmitting block 3 passes through the glass fiber 32 and the optical path switching unit 4
Be led to.

【0029】光路切り換え部4は、図3に拡大して示す
ように、モータ41と、モータのスピンドルに固定され
た反射鏡42を有する。反射鏡42の反射面42Rがグ
ラスファイバ32から射出される発散光の光軸と交わる
位置に挿入されると、光は反射面42Rによりその光路
が切り換えられ、前記発散光の一部が内部参照光ブロッ
ク9としてのグラスファイバ90に入射する。このよう
に光源光から光量を十分減じた光を内部光とすることに
より、遠距離測距時のように外部光の光量が小さい場合
でも内部光と外部光とのそれぞれの受光光量を容易に合
わせることができる。グラスファイバ90に入射した光
は、グラスファイバ90の他端から出射し自動光量調整
ブロックに向かう。ここでさらに、グラスファイバ90
の出射端と自動光量調整ブロックの間に可変減光フィル
タ等を挿入して、内部光の光量を微調整した後固定する
ことにより、自動光量調整ブロック直前の内部光の光量
を厳密に設定できるようにしても良い。
The optical path switching unit 4 has a motor 41 and a reflecting mirror 42 fixed to the spindle of the motor, as shown in an enlarged view in FIG. When the reflecting surface 42R of the reflecting mirror 42 is inserted at a position intersecting the optical axis of the divergent light emitted from the glass fiber 32, the light path is switched by the reflecting surface 42R, and a part of the divergent light is internally referred to. The light enters the glass fiber 90 as the light block 9. In this way, the amount of light that is sufficiently reduced from the light source is used as the internal light, so that even when the amount of external light is small, such as during long-distance distance measurement, the amount of light received for internal light and external light can be easily adjusted. Can be matched. The light that has entered the glass fiber 90 exits from the other end of the glass fiber 90 and goes to the automatic light amount adjustment block. Here, further, glass fiber 90
By inserting a variable neutral density filter, etc. between the output end of and the automatic light amount adjustment block and finely adjusting the light amount of the internal light and then fixing it, the light amount of the internal light immediately before the automatic light amount adjustment block can be set precisely. You may do it.

【0030】一方、反射面42Rが光路に挿入されない
場合には、グラスファイバ32から射出した光は送光光
学系5を構成するコーナープリズム51およびダイクロ
イックミラー52、対物レンズ53を介して測点へと照
射される。測点で反射された光は、受光光学系7として
の対物レンズ63、ダイクロイックミラー62、コーナ
ープリズム61を介して光量調整ブロック7へ導かれ
る。なおコーナープリズム51とコーナープリズム6
1、ダイクロイックミラー52とダイクロイックミラー
62、対物レンズ53と対物レンズ63は説明のために
2つの異なる番号を付してあるが、それぞれ同一の素子
を指す。
On the other hand, when the reflecting surface 42R is not inserted in the optical path, the light emitted from the glass fiber 32 reaches the measuring point via the corner prism 51, the dichroic mirror 52 and the objective lens 53 which constitute the light transmitting optical system 5. Is irradiated. The light reflected at the measuring point is guided to the light amount adjustment block 7 via the objective lens 63 as the light receiving optical system 7, the dichroic mirror 62, and the corner prism 61. The corner prism 51 and the corner prism 6
1, the dichroic mirror 52 and the dichroic mirror 62, and the objective lens 53 and the objective lens 63 are given two different numbers for the sake of description, but they refer to the same element.

【0031】自動光量調整ブロック7は、モータ71の
スピンドルに中心が固定された円盤状の部材72で、図
4に示したように円盤上の内周側に形成された遮光部を
含む環状のスリット72Sと、外周側に形成された環状
でかつ回転方向に連続的に光透過率の変化する濃度分布
フィルタ部72Fとで構成される。グラスファイバ90
から出射した光は円盤の内周側に形成されたスリット7
2Sを全透過して受光ブロック8の導入部となるグラス
ファイバ82の一端に入射する。また、測点で反射され
てダイクロイックミラー62およびコーナープリズム6
1によって導かれた光は、自動光量調整ブロックの濃度
分布フィルタ部72Fを通過してグラスファイバ82の
一端に入射する。
The automatic light amount adjusting block 7 is a disk-shaped member 72 whose center is fixed to the spindle of the motor 71, and has an annular shape including a light-shielding portion formed on the inner peripheral side of the disk as shown in FIG. It is composed of a slit 72S and an annular concentration distribution filter portion 72F formed on the outer peripheral side and having a light transmittance that continuously changes in the rotation direction. Glass fiber 90
The light emitted from the slit 7 is formed on the inner peripheral side of the disk.
The light completely passes through 2S and is incident on one end of the glass fiber 82 serving as an introduction portion of the light receiving block 8. In addition, the dichroic mirror 62 and the corner prism 6 are reflected at the measurement points.
The light guided by 1 passes through the concentration distribution filter portion 72F of the automatic light amount adjustment block and enters one end of the glass fiber 82.

【0032】自動光量調整ブロック7を介してグラスフ
ァイバ82に入射した光は受光素子であるフォトダイオ
ード81へと導かれる。また、対物レンズ53(6
3)、合焦レンズ301、ポロプリズム302、そして
接眼レンズ303からなる視準光学系を介して、測点の
像が観察される。
The light incident on the glass fiber 82 via the automatic light quantity adjusting block 7 is guided to the photodiode 81 which is a light receiving element. In addition, the objective lens 53 (6
3), the image of the measurement point is observed through the collimating optical system including the focusing lens 301, the Porro prism 302, and the eyepiece lens 303.

【0033】図5は、本実施例における、濃度分布フィ
ルタの位置制御方法を示すフローチャートである。な
お、このフローチャートは、濃度分布フィルタの位置制
御に関する制御のみを示しており、光路の切り換え・測
距処理に関するステップは示していない。
FIG. 5 is a flow chart showing a position control method of the density distribution filter in this embodiment. It should be noted that this flowchart shows only the control relating to the position control of the density distribution filter, and does not show the steps relating to the optical path switching / distance measuring processing.

【0034】前述のように、本実施例の光波測距装置1
00においては、電源が切られる際に、最後のフィルタ
位置に関する情報をメモリ18に保存する。そして、次
の電源投入時には、メモリ18に保存されている値を読
み込んで、読み込んだ値と変位量とに基づいて移動後の
位置を計算し、更新している。なお、このように相対位
置にのみ依存した場合、誤差が蓄積すると位置制御の信
頼性が低下するので、これを避けるため、通常の処理
(メモリ18に保存された位置情報に基づいた位置制
御)が所定回数おこなわれる毎に強制的に原点位置を検
出する処理を実行して、誤差をクリアし、位置制御の信
頼性を維持している。さらに、工場出荷後初めて電源を
投入する場合や、前回の電源オフから長期間おいて改め
て電源オンする場合は、電源投入直後に強制的に前記の
原点位置検出処理が行われるようにしても良い。なお、
原点検出処理は、自動光量調整ブロック7の円盤部材7
2上に形成されたスリット72Sに内部光を照射させな
がら円盤部材を回転させていき、受光素子にて入射光の
有無をモニタしながらスリットと遮光部の境界を検出す
ることにより行われる。
As described above, the lightwave distance measuring apparatus 1 of this embodiment
At 00, information about the last filter position is stored in memory 18 when the power is turned off. Then, at the next power-on, the value stored in the memory 18 is read, and the position after movement is calculated and updated based on the read value and the displacement amount. Note that, in the case of relying only on the relative position in this way, the reliability of the position control decreases if an error accumulates, so in order to avoid this, normal processing (position control based on the position information stored in the memory 18) is performed. The process of forcibly detecting the origin position is executed every time a predetermined number of times is performed, the error is cleared, and the reliability of the position control is maintained. Further, when the power is turned on for the first time after shipment from the factory, or when the power is turned on again after a long time from the previous power off, the origin position detection process may be forcibly performed immediately after the power is turned on. . In addition,
The origin detection processing is performed by the disk member 7 of the automatic light amount adjustment block 7.
This is performed by rotating the disk member while irradiating the slit 72S formed on the upper surface 2 with internal light, and detecting the boundary between the slit and the light shielding portion while monitoring the presence or absence of incident light by the light receiving element.

【0035】まず、強制的に原点検出を行うかどうかを
決めるための変数Xをメモリ18から読み込む(S
1)。ここで、変数Xが所定値(10)であれば(Ye
s:S3)、原点検出を行い(S5)、S7で変数Xを
クリアして(0にして)、原点を基準にフィルタ位置を
求める。もしも、変数Xが10未満であれば(No:S
3)、たとえ誤差が蓄積されているとしても無視できる
レベルであると考えられるため、メモリ18からフィル
タの位置情報を読み出し(S9)、これを基準にそれ以
降のフィルタ位置を求める。
First, a variable X for deciding whether or not to perform origin detection forcibly is read from the memory 18 (S
1). Here, if the variable X is a predetermined value (10) (Ye
s: S3), the origin is detected (S5), the variable X is cleared (set to 0) in S7, and the filter position is obtained based on the origin. If the variable X is less than 10 (No: S
3) Even if errors are accumulated, it is considered to be at a level that can be ignored. Therefore, the filter position information is read from the memory 18 (S9), and the subsequent filter positions are obtained based on this.

【0036】測距処理中は、受光素子81直前の内部光
と外部光の光量レベルを合わせるために、自動光量調整
ブロック7の円盤部材72を回転させて濃度分布フィル
タを移動させると共に、濃度フィルタの移動が移動量検
出手段17によって常時モニタされており、濃度分布フ
ィルタが移動する毎に位置情報と変位情報に基づいて位
置情報が更新される(S11)。
During the distance measuring process, the disc member 72 of the automatic light amount adjusting block 7 is rotated to move the concentration distribution filter and the concentration filter in order to match the light amount levels of the internal light and the external light immediately before the light receiving element 81. The movement amount is constantly monitored by the movement amount detecting means 17, and the position information is updated based on the position information and the displacement information every time the density distribution filter moves (S11).

【0037】パワースイッチにより電源オフの操作が行
われると(Yes:S13)、最新の濃度分布フィルタ
の位置情報がメモリ18に保存される(S15)。すな
わち、電源オフ操作を検知したときの時の濃度フィルタ
の位置に対応した位置情報がメモリ18に保存される。
次回の電源投入の時には、濃度フィルタの位置に対応し
た情報がメモリ18から読み出されるため、濃度分布フ
ィルタの位置に関する初期化処理(原点検出処理)を行
うことなく、直ちに測距処理を行うことができる。位置
情報を保存した後、位置情報保存回数を示し、また、強
制原点検出の指標となる、変数Xをインクリメントして
(S17)、メモリ18に保存し(S19)、電源を切
る。
When the power switch is turned off (Yes: S13), the latest position information of the density distribution filter is stored in the memory 18 (S15). That is, the position information corresponding to the position of the density filter when the power-off operation is detected is stored in the memory 18.
When the power is turned on next time, the information corresponding to the position of the density filter is read from the memory 18, so that the distance measurement process can be performed immediately without performing the initialization process (origin detection process) regarding the position of the density distribution filter. it can. After storing the position information, the variable X, which indicates the number of times the position information is stored and which is an index for forced origin detection, is incremented (S17), stored in the memory 18 (S19), and the power is turned off.

【0038】[0038]

【発明の効果】以上述べたように、本発明の光波測距装
置および光波測距装置における光量制御方法によれば、
電源投入時に、濃度分布フィルタの位置を示す情報を取
得することができるため、フィルタ位置に関する初期化
処理を行うことなく、直ちに測距処理を実行することが
できる。さらに、相対位置のみに基づくための誤差の蓄
積を解消するため、所定の周期で強制的に原点検出処理
を実行させることにより、位置情報の信頼性を維持する
ことができる。
As described above, according to the light wave distance measuring apparatus and the light quantity control method in the light wave distance measuring apparatus of the present invention,
Since the information indicating the position of the density distribution filter can be acquired when the power is turned on, the distance measurement process can be immediately executed without performing the initialization process regarding the filter position. Further, the reliability of the position information can be maintained by forcibly executing the origin detection processing at a predetermined cycle in order to eliminate the accumulation of errors due to only the relative position.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例である光波測距装置のブロッ
ク図である。
FIG. 1 is a block diagram of a lightwave distance measuring apparatus according to an embodiment of the present invention.

【図2】 光波測距装置の光学系の構成を示す図であ
る。
FIG. 2 is a diagram showing a configuration of an optical system of a lightwave distance measuring device.

【図3】 光路切り換え部の構成を示す、拡大側面図で
ある。
FIG. 3 is an enlarged side view showing a configuration of an optical path switching unit.

【図4】 自動光量調整ブロックの円盤部材の構成を示
す拡大図である。
FIG. 4 is an enlarged view showing a configuration of a disk member of the automatic light amount adjustment block.

【図5】 濃度分布フィルタの位置制御を説明するフロ
ーチャートである。
FIG. 5 is a flowchart illustrating position control of a density distribution filter.

【符号の説明】[Explanation of symbols]

100 光波測距装置 1 基準発信器 2 各周波数信号発生器 3 送光ブロック 4 光路切り換え部 5 送光光学系 6 受光光学系 7 自動光量調整ブロック 8 受光ブロック 9 内部参照光ブロック 10 局部発信器 11 混合器 12 制御演算部 13 ゲート回路部 14 計数回路部 15 操作部 16 表示部 17 濃度分布フィルタ移動量検出手段 18 不揮発性メモリ 200 反射器 100 light wave distance measuring device 1 reference transmitter 2 each frequency signal generator 3 light transmitting block 4 optical path switching unit 5 light transmitting optical system 6 light receiving optical system 7 automatic light amount adjusting block 8 light receiving block 9 internal reference light block 10 local oscillator 11 Mixer 12 Control calculation unit 13 Gate circuit unit 14 Counting circuit unit 15 Operation unit 16 Display unit 17 Concentration distribution filter movement amount detecting unit 18 Nonvolatile memory 200 Reflector

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】所定の周波数で変調された光を、所定の内
部光路および測点に向けて射出し、前記内部光路を進ん
だ内部光と前記測点に設けられた反射器により反射され
た外部光との間の位相差に基づいて前記測点までの距離
を求めるものであって、前記内部光と前記外部光とを受
光するための受光手段と、前記受光手段に入射する前記
内部光と前記外部光との少なくとも何れか一方の光量を
調整する光量調整手段とを有する光波測距装置におい
て、 電源オフ操作時に前記光量調整手段の光量調整度に対応
した状態情報を保存し、電源オン時には保存された前記
状態情報を読み出し、読み出した状態情報を電源オン時
の前記光量調整手段の基準状態として前記光量調整手段
の光量調整状態を制御することを特徴とする、光波測距
装置における光量制御方法。
1. A light modulated at a predetermined frequency is emitted toward a predetermined internal optical path and a measuring point, and reflected by an internal light traveling along the internal optical path and a reflector provided at the measuring point. A means for obtaining a distance to the measuring point based on a phase difference between the internal light and the external light, the light receiving means for receiving the internal light and the external light, and the internal light incident on the light receiving means. And a light quantity adjusting device for adjusting the light quantity of at least one of the external light and the external light, in which a state information corresponding to the light quantity adjusting degree of the light quantity adjusting means is stored when the power is turned off, and the power is turned on. Sometimes, the stored state information is read, and the read state information is used as a reference state of the light amount adjusting means when the power is turned on to control the light amount adjusting state of the light amount adjusting means. Quantity control method.
【請求項2】前記光量調整手段は前記内部光を全透過さ
せると共に、前記外部光を光量調整して透過させること
を特徴とする、請求項1の光波測距装置における光量制
御方法。
2. The light quantity control method in a light wave distance measuring apparatus according to claim 1, wherein the light quantity adjusting means totally transmits the internal light and adjusts and transmits the external light.
【請求項3】前記光量調整手段の光量調整部分は、光が
透過する位置によって透過光量が異なるよう構成された
濃度分布フィルタであり、前記状態情報は、前記濃度分
布フィルタの位置に対応していることを特徴とする、請
求項1または2のいずれかに記載の光波測距装置におけ
る光量制御方法。
3. The light quantity adjusting portion of the light quantity adjusting means is a density distribution filter configured such that the quantity of transmitted light varies depending on the position where light is transmitted, and the state information corresponds to the position of the density distribution filter. The light quantity control method in the lightwave distance measuring device according to claim 1, wherein
【請求項4】前記光波測定装置は、前記濃度分布フィル
タの移動量を検知する検知手段を有し、前記読み出した
状態情報と前記濃度分布フィルタの移動量に基づき前記
濃度分布フィルタの位置を特定することを特徴とする、
請求項3の光波測距装置における光量制御方法。
4. The light wave measuring device has a detection means for detecting the movement amount of the concentration distribution filter, and specifies the position of the concentration distribution filter based on the read state information and the movement amount of the concentration distribution filter. Characterized by
A light amount control method in the lightwave distance measuring device according to claim 3.
【請求項5】前記状態情報の保存が所定回数行われる毎
に、前記光量調整手段を所定の初期状態にするととも
に、前記状態情報を前記所定の初期状態に対応した値に
初期化することを特徴とする、請求項1から4のいずれ
かに記載の光波測距装置における光量制御方法。
5. Each time the state information is stored a predetermined number of times, the light amount adjusting means is set to a predetermined initial state, and the state information is initialized to a value corresponding to the predetermined initial state. 5. A light quantity control method in a lightwave distance measuring apparatus according to claim 1, wherein the light quantity control method is used.
【請求項6】所定の周波数で変調された光を、所定の内
部光路と測点に向けた外部光路とに交互に射出する、光
路切り換え手段を有する、請求項1から5のいずれかに
記載の、光波測距装置における光量制御方法。
6. An optical path switching means for alternately emitting a light modulated at a predetermined frequency to a predetermined internal optical path and an external optical path directed to a measuring point, according to claim 1. Of a light quantity control method in a light wave distance measuring apparatus.
【請求項7】測点までの距離を測定する光波測距装置で
あって、 所定の周波数で変調された光を、所定の内部光路および
前記測点に向けて選択的に射出する光射出手段と、 前記内部光路を進んだ内部光と前記測点に設けられた反
射器により反射された外部光とを受光する受光手段と、 前記受光手段に入射する前記内部光と前記外部光との少
なくとも何れか一方の光量を調整する光量調整手段と、 前記内部光と前記外部光の間の位相差に基づいて前記測
点までの距離を求める演算手段と、 前記光量調整手段の光量調整度に対応した状態情報を保
存するための保存手段と、 電源オフ操作時に前記光量調整手段の光量調整度に対応
した状態情報を前記保存手段に保存し、電源オン時には
前記保存手段に保存された前記状態情報を読み出し、読
み出した状態情報を電源オン時の前記光量調整手段の基
準状態として前記光量調整手段の光量調整状態を制御す
る制御手段と、を有することを特徴とする、光波測距装
置。
7. A light wave distance measuring device for measuring a distance to a measuring point, wherein the light emitting means selectively emits light modulated at a predetermined frequency toward a predetermined internal optical path and the measuring point. A light receiving unit that receives the internal light that has traveled through the internal optical path and the external light that is reflected by a reflector that is provided at the measuring point; and at least the internal light and the external light that enter the light receiving unit. Corresponding to the light quantity adjusting means for adjusting the light quantity of either one, the calculating means for obtaining the distance to the measuring point based on the phase difference between the internal light and the external light, and the light quantity adjusting degree of the light quantity adjusting means. Storing means for storing the state information, and the state information stored in the storing means when the power is turned off, the state information corresponding to the light amount adjustment degree of the light amount adjusting means is stored in the storing means, and the state information stored in the storing means when the power is turned on. Read and read And having to control means for controlling the light amount adjustment state of said light quantity adjusting means as a reference state of said light quantity adjusting means when the power-on state information, a light wave distance measuring apparatus.
JP09165995A 1995-03-24 1995-03-24 Lightwave distance measuring apparatus and light quantity control method in lightwave distance measuring apparatus Expired - Fee Related JP3563817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09165995A JP3563817B2 (en) 1995-03-24 1995-03-24 Lightwave distance measuring apparatus and light quantity control method in lightwave distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09165995A JP3563817B2 (en) 1995-03-24 1995-03-24 Lightwave distance measuring apparatus and light quantity control method in lightwave distance measuring apparatus

Publications (2)

Publication Number Publication Date
JPH08262138A true JPH08262138A (en) 1996-10-11
JP3563817B2 JP3563817B2 (en) 2004-09-08

Family

ID=14032633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09165995A Expired - Fee Related JP3563817B2 (en) 1995-03-24 1995-03-24 Lightwave distance measuring apparatus and light quantity control method in lightwave distance measuring apparatus

Country Status (1)

Country Link
JP (1) JP3563817B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139534A (en) * 2001-10-30 2003-05-14 Pentax Corp Electronic distance meter
WO2010084700A1 (en) * 2009-01-22 2010-07-29 株式会社トプコン Electronic distance measuring method and electronic distance measuring apparatus
JP2012021822A (en) * 2010-07-12 2012-02-02 Takenaka Electronic Industrial Co Ltd Optical phase difference detecting type object detecting sensor
JP2012103192A (en) * 2010-11-12 2012-05-31 Sokkia Topcon Co Ltd Light wave distance meter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139534A (en) * 2001-10-30 2003-05-14 Pentax Corp Electronic distance meter
WO2010084700A1 (en) * 2009-01-22 2010-07-29 株式会社トプコン Electronic distance measuring method and electronic distance measuring apparatus
JP2010169525A (en) * 2009-01-22 2010-08-05 Topcon Corp Optical distance measuring method and optical distance measuring device
CN102292652A (en) * 2009-01-22 2011-12-21 株式会社拓普康 Electronic distance measuring method and electronic distance measuring apparatus
US8781780B2 (en) 2009-01-22 2014-07-15 Kabushiki Kaisha Topcon Electro-optical distance measuring method and electro-optical distance measuring device
JP2012021822A (en) * 2010-07-12 2012-02-02 Takenaka Electronic Industrial Co Ltd Optical phase difference detecting type object detecting sensor
JP2012103192A (en) * 2010-11-12 2012-05-31 Sokkia Topcon Co Ltd Light wave distance meter

Also Published As

Publication number Publication date
JP3563817B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
US5737068A (en) Electronic distance measuring device using a phase difference detection method
EP0595271A1 (en) Reciprocating surveying laser
JP2004519697A (en) Optical ranging device
JP2004526198A (en) Adjustable mirror for parallel beam laser sensor
JP3892704B2 (en) Light wave rangefinder
TWI385360B (en) A laser distance measuring apparatus and control method thereof.
US7546008B2 (en) Variable optical attenuator and ranging apparatus using the same
EP1054233B1 (en) Distance measuring system
US5831720A (en) Velocimeter, signal processing method, and driving system using the same
JPH08262138A (en) Instrument for measuring distance by light wave and light quantity control method therefor
JP4785116B2 (en) Light wave distance meter
JPH02184788A (en) Range-finding sensor
US20010050764A1 (en) Surveying instrument having an optical distance meter
JP4799502B2 (en) Focusing distance measuring device
US5208642A (en) Electro-optical distance meter
JPH087261B2 (en) Lightwave distance measuring method and lightwave distance meter
JPS61160075A (en) Apparatus for measuring height of liquid level
JP2000147122A (en) Light-wave distance meter
JPH05323029A (en) Distance measuring method by light wave range finder
JPS63225121A (en) Autocollimation type light wave range finder
JP2552325Y2 (en) Lightwave ranging device
JPH1158053A (en) Laser beam machine
SU616852A1 (en) Discrete optical level-flow gauge
JPH0921875A (en) Optical distance measuring device
JP2003344046A (en) Light wave range finder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees