JPH08260097A - Extremely ultrahigh strength steel wire for reinforcing rubber and steel code - Google Patents

Extremely ultrahigh strength steel wire for reinforcing rubber and steel code

Info

Publication number
JPH08260097A
JPH08260097A JP7084570A JP8457095A JPH08260097A JP H08260097 A JPH08260097 A JP H08260097A JP 7084570 A JP7084570 A JP 7084570A JP 8457095 A JP8457095 A JP 8457095A JP H08260097 A JPH08260097 A JP H08260097A
Authority
JP
Japan
Prior art keywords
wire
steel wire
steel
die
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7084570A
Other languages
Japanese (ja)
Other versions
JP3005743B2 (en
Inventor
Seizai Katayama
政材 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seiko Co Ltd
Original Assignee
Tokyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seiko Co Ltd filed Critical Tokyo Seiko Co Ltd
Priority to JP7084570A priority Critical patent/JP3005743B2/en
Publication of JPH08260097A publication Critical patent/JPH08260097A/en
Application granted granted Critical
Publication of JP3005743B2 publication Critical patent/JP3005743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/3057Steel characterised by the carbon content having a high carbon content, e.g. greater than 0,8 percent respectively SHT or UHT wires

Landscapes

  • Ropes Or Cables (AREA)
  • Tires In General (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE: To produce extremely ultrahigh strength steel wire and code by subjecting a high carbon wire rod having specified carbon content to wire drawing and imparting certain strength and twisting characteristics thereto. CONSTITUTION: A high carbon steel wire rod having 0.80 to 0.85wt.% carbon content is used and is subjected to heat treatment, plating and wire drawing, which has the characteristics of tensile strength Ykg/mm<2> >=-2000d+450 (d) denotes wire diameter} and <=7% torque lowering ratio in a repeated twisting test. Moreover, these characteristics can be imparted thereto in such a manner that (1) as drawing dies, the ones in which an approach angle is regulated to 8 to 10 deg. and bearing length is regulated to 0.25 to 0.35 times the drawing pore diameter and composed of diamond ribs are used, (2) the temp. of a lubricating soln. is regulated to a low one, the wire is once coiled at the place in which the reduction rate of area reaches 70 to 99.8% of the total reduction rate of area, and reverse drawing is executed for one or more times, (3) final drawing is executed by double dies in which two dies are arranged in a series, and skin pass is executed at 1.2 to 3.9% reduction rate of area by an outlet die and (4) the temp. of the wire immediately after the skin pass is regulated to <=150 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は車両用タイヤや高圧ホー
ス等のゴム製品の補強に用いられる靭性の良好な実用極
超高強度スチールワイヤ及びスチールコードに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a practical ultrahigh strength steel wire and steel cord having good toughness, which is used for reinforcing rubber products such as vehicle tires and high pressure hoses.

【0002】[0002]

【従来の技術及びその技術的課題】車両用ラジアルタイ
ヤや高圧ホース等のゴム製品の補強用として、一般に真
鍮めっきを施したスチールワイヤやこれを複数本撚合わ
せてなるスチールコードが使われている。このようなワ
イヤやコードは高い引張強さに加えて良好な靭性をも
ち、耐疲労性にも優れた特性を有することが要求され
る。しかも最近、ワイヤやコードによって補強されたゴ
ム製品は燃費や取り扱い性等の改善のため軽量化が強く
要望され、その対策として、スチールコードの高強度化
を行なってその使用量を減らすともにゴムにおいてもそ
のの使用量を減らすことが研究されている。
2. Description of the Related Art Conventionally, brass-plated steel wires and steel cords formed by twisting a plurality of these wires are used to reinforce rubber products such as radial tires for vehicles and high-pressure hoses. . Such wires and cords are required to have not only high tensile strength but also good toughness and excellent fatigue resistance. Moreover, recently, rubber products reinforced with wires and cords have been strongly demanded to be lighter in weight in order to improve fuel efficiency and handleability. Has also been studied to reduce its usage.

【0003】従来一般に、この種のスチールワイヤとし
ては、炭素含有量0.70〜0.75重量%の鋼線材が
使用され、これにより製造されたスチールワイヤは図1
に示すようにその強度(Y)と直径(d)との関係にお
いてY≧−200d+335(kgf/mm2)程度で
あった。そしてその後高強度化が進められ、現在では炭
素含有量0.80〜0.85重量%の線材を使ってY≧
−200d+365(kgf/mm2)程度の高強度ス
チールワイヤが実用化され、それなりの効果が得られて
いる。しかし軽量化の要求はさらに一段と増しており、
これに応えるには、スチールワイヤの更に大幅な高強度
化を行い、従来の高強度材より25〜30%程度も強度
アップした強度Y≧−200d+450(kgf/mm
2)の極超高強度スチールワイヤやこれを用いたスチー
ルコードが得られれば効果が格段なものになることは明
らかである。
Conventionally, a steel wire rod having a carbon content of 0.70 to 0.75% by weight has been generally used as a steel wire of this type.
As shown in, the relation between the strength (Y) and the diameter (d) was about Y ≧ −200d + 335 (kgf / mm 2 ). After that, high strength was promoted, and at present, using a wire having a carbon content of 0.80 to 0.85% by weight, Y ≧
A high-strength steel wire of about −200d + 365 (kgf / mm 2 ) has been put to practical use, and a certain effect has been obtained. However, the demand for weight reduction is increasing further,
In order to meet this requirement, the strength of steel wire has been significantly increased, and the strength has been increased by 25 to 30% compared to the conventional high strength material Y ≧ −200d + 450 (kgf / mm
It is clear that the effect will be remarkable if the ultra-high strength steel wire of 2 ) and the steel cord using this are obtained.

【0004】この対策としては、炭素含有量の多い鋼線
材を使用することが考えられるが、原料コストのかなり
のアップを招くと共に、またスチールワイヤ製造時にお
ける熱処理なども難しくなるという問題がある。したが
って、原料線材の炭素含有量を増さないで強度向上を達
成することが好ましいが、次の問題があるため、従来で
は強度Y≧−200d+450(kgf/mm2)の極
超高強度スチールワイヤやこれを用いたスチールコード
は実際上存在しなかった。すなわち、原料線材の炭素含
有量を増さないで極超高強度化を実現するためには、ワ
イヤ製造時において伸線加工度を大幅に上げてその加工
硬化により目的強度を得る必要があるが、こうすると一
般に加工限度を越えてしまい、靭性が急激に劣化してし
まい、伸線加工や撚り線加工で断線が多発して実用的に
生産できなくなったり耐疲労性も低下してしまう。これ
らはワイヤ強度が特に高くなると著しくなる。また、加
工限界を越えるとワイヤ内部に生じた欠陥によりワイヤ
強度が逆に低下してしまうこともある。さらに従来で
は、加工限度(靭性の良否限界)を超えているか否か適
切な判定基準がなく、極超高強度でしかも靭性を兼ね備
えているスチールワイヤはどういうものかそれ自体が不
明であった。
As a countermeasure for this, it is conceivable to use a steel wire rod having a high carbon content, but there is a problem in that the raw material cost is considerably increased, and heat treatment during the production of the steel wire becomes difficult. Therefore, it is preferable to achieve the strength improvement without increasing the carbon content of the raw material wire rod, but the following problems occur, and therefore, in the past, an ultra-high strength steel wire having a strength Y ≧ −200d + 450 (kgf / mm 2 ) was used. There was virtually no steel cord using this or this. That is, in order to realize ultra-high strength without increasing the carbon content of the raw wire, it is necessary to significantly increase the wire drawing workability during wire production and obtain the desired strength by work hardening. In this case, generally, the workability limit is exceeded, the toughness is rapidly deteriorated, wire breakage frequently occurs in the wire drawing process and the stranded wire process, and the product cannot be practically produced or the fatigue resistance is deteriorated. These become remarkable when the wire strength becomes particularly high. In addition, if the working limit is exceeded, the wire strength may decrease due to defects generated inside the wire. Further, in the past, there was no appropriate criterion for determining whether or not the working limit (the toughness limit) was exceeded, and it was unclear in itself what the steel wire had ultrahigh strength and toughness.

【0005】すなわち、従来では、スチールワイヤをそ
の軸線と直角面において中心軸の周りにねじり、スチー
ルワイヤが破断するまでの回数(捻回値)をもって靭性
の良否を判断してきたが、同じ捻回値のスチールワイヤ
であってもその後のスチールワイヤの成形加工性や耐疲
労性が異なることが多く、このため捻回値では厳密かく
実用的な靭性良否の臨界を意義付けることは不可能で、
加工限度の尺度として信頼性がなく、現実問題としては
実際にできたスチールワイヤを実際に使ってみないと判
らないという状況であった。ここでいう成形加工性と
は、例えば高圧ホース製造においては、スチールワイヤ
をスパイラル状にくせ付けを行なったり、ブレードに編
み込むような加工を言い、また複数のワイヤを撚り合わ
せてコードにする加工などを指す。即ち、このような加
工においてこれに使うスチールワイヤの靭性が劣化して
いると断線が多発して実用的生産ができなかったり、
又、撚ることによるワイヤ強度の低下が大きくなった
り、その耐疲労性も低下してしまうのである。
That is, in the past, a steel wire was twisted around a central axis in a plane perpendicular to its axis, and the toughness was judged by the number of times (twist value) until the steel wire was broken. Even if it is a value of steel wire, the forming workability and fatigue resistance of the steel wire after that are often different, so it is impossible to meaningfully define the criticality of toughness practically with twist value,
There was no reliability as a measure of the working limit, and in reality, the situation was that it would not be understood unless the steel wire actually made was actually used. Molding workability here means, for example, in the manufacture of high-pressure hoses, a process in which a steel wire is bent in a spiral shape, a process in which it is braided into a blade, or a process in which a plurality of wires are twisted to form a cord, etc. Refers to. That is, if the toughness of the steel wire used for such processing is deteriorated in such processing, disconnection frequently occurs and practical production cannot be performed,
Further, the wire strength is greatly reduced due to the twisting, and the fatigue resistance thereof is also decreased.

【0006】[0006]

【課題を解決するための手段】本発明は前記のような問
題点を解消するために創案されたもので、その目的とす
るところは、Cを0.80〜0.85重量%含有する炭
素鋼線材のままこれよりも約25〜30%強度の高い極
超高強度でかつ高靭性を備え、耐疲労性にもすぐれ、ゴ
ム製品の適切な軽量化を実現できるゴム補強用スチール
ワイヤとスチールコードを提供することにある。
SUMMARY OF THE INVENTION The present invention was devised to solve the above-mentioned problems, and its object is to make carbon containing 0.80 to 0.85% by weight of carbon. A steel wire for steel reinforcement and a steel wire for rubber reinforcement that has an ultra-high strength that is approximately 25-30% stronger than that of steel wire, has high toughness, has excellent fatigue resistance, and can realize appropriate weight reduction of rubber products. To provide the code.

【0007】上記目的を達成するため本発明は、炭素を
0.80〜0.85重量%含有する炭素鋼線材を使用
し、熱処理とめっき及び伸線を行って得られるスチール
ワイヤにおいて、該スチールワイヤの強度が下記式を満
足し、しかも一方向捻り後、逆方向捻りを与える捻回試
験においてトルク低下率が7%以下の特性を備えている
構成としたものである。 Y≧−200d+450[Y:引張強さ(kg/m
2)、d:直径(mm)] また、本発明の他の特徴は、前記スチールワイヤを複数
本撚合したスチールコードとしたことにある。
In order to achieve the above object, the present invention provides a steel wire obtained by subjecting a carbon steel wire rod containing carbon in an amount of 0.80 to 0.85% by weight to heat treatment, plating and wire drawing. The strength of the wire satisfies the following expression, and further, the torque reduction rate is 7% or less in a twisting test in which the wire is twisted in one direction and then twisted in the opposite direction. Y ≧ −200d + 450 [Y: Tensile strength (kg / m
m 2 ), d: diameter (mm)] Another feature of the present invention is a steel cord in which a plurality of the steel wires are twisted together.

【0008】[0008]

【作用】本発明は現在使われている炭素含有量が0.8
0〜0.85重量%の炭素鋼線材を用いるため、この面
で製造コストの増大をもたらさない。また引っ張り強さ
がY≧−200d+450kgf/mm2の超高強度を
有するため、少ない本数で良好な補強効果を実現するこ
とができる。なお、ワイヤの強度レベルの上限について
は、炭素含有量が0.80〜0.85重量%である関係
から、−200d+490kgf/mm2程度まで可能
である。しかも、本発明は靭性の良否判断の手段として
一方向ねじりと逆方向ねじりによるねじり試験を採用
し、この試験での捻回−トルク曲線においてトルク低下
率を0〜7%の範囲にあるものを靭性良好としている。
このため、極超高強度と靭性を兼ね備え、撚り効率が良
好で耐疲労性も良好なゴム補強用の超高強度スチールワ
イヤとなり、これを複数本撚り合わせたスチールコード
は高強度、高靭性および耐疲労性にすぐれ、ゴム製品の
補強材として使用することにより、コスト低減や軽量化
を実現することができる。
The present invention has a carbon content of 0.8 currently used.
Since a carbon steel wire rod of 0 to 0.85% by weight is used, no increase in manufacturing cost is brought about in this aspect. Moreover, since the tensile strength is Y ≧ −200d + 450 kgf / mm 2 and has an extremely high strength, a good reinforcing effect can be realized with a small number. The upper limit of the strength level of the wire can be up to about −200d + 490 kgf / mm 2 because the carbon content is 0.80 to 0.85% by weight. Moreover, the present invention employs a torsion test by one-direction torsion and reverse-direction torsion as a means for judging the toughness, and the torque decrease rate in the torsion-torque curve in this test is in the range of 0 to 7%. Good toughness.
For this reason, it is an ultra-high strength steel wire for rubber reinforcement that has both ultra-high strength and toughness, good twisting efficiency and good fatigue resistance.Steel cords made by twisting multiple strands of this have high strength, high toughness and It has excellent fatigue resistance, and by using it as a reinforcing material for rubber products, cost reduction and weight reduction can be realized.

【0009】本発明の靭性良否判断法は、所定のつかみ
間隔としてワイヤ軸線方向に軽く張力を掛けながら一定
速度で一定方向(たとえば時計方向)に所定回数ねじ
り、ここで一旦回転を止め、その後逆方向(たとえば反
時計方向)にねじり返してワイヤが破断するまでの捻回
−トルク曲線をとるものである。かかる一方向−逆方向
ねじり方式による捻回−トルク試験を採用したのは次の
ような理由による。すなわち、図2(a)のように一方
向にねじって捻回−トルク曲線を測定した場合、トルク
が連続して右上がりとなる正常な曲線を描いて破断に到
るものと、破断に到る間でトルク低下が生ずるものとが
現われる。かかるトルクの低下は伸線強加工によりワイ
ヤ内部に生じた微細欠陥から割れが入ることにより起こ
るものと考えられる。しかし、この試験でトルク低下が
見られないワイヤを実際に使用しこれを撚合してスチー
ルコードを作ってみると、断線が発生したり、疲労特性
が不十分なものが多数現われ、したがって、この試験に
よるトルク減少判断では靭性可否の判別は不十分かつ不
正確である。
In the toughness judging method of the present invention, a predetermined gripping interval is applied while lightly applying tension in the wire axis direction, and twisting at a constant speed in a constant direction (for example, clockwise direction) a predetermined number of times. This is a twist-torque curve until the wire is broken by twisting back in the direction (for example, counterclockwise direction). The reason why the torsion-torque test by the one-direction-reverse-direction torsion method is adopted is as follows. That is, when the twist-torque curve is measured by twisting in one direction as shown in FIG. 2A, a normal curve in which the torque continuously rises to the right is drawn and the breakage is reached. It appears that the torque decreases during the operation. It is considered that such a decrease in torque is caused by cracking due to fine defects generated inside the wire due to the wire drawing strong working. However, when we actually used a wire that did not show a decrease in torque in this test and twisted it to make a steel cord, many wire breakages and insufficient fatigue characteristics appeared. Judgment of toughness is insufficient and inaccurate in the torque reduction judgment by this test.

【0010】そこで、本発明者は、図2(b)のように一
方向−逆方向にねじってその逆方向の捻回−トルク過程
におけるトルク低下を実測して見た。その結果、かかる
一方向−逆方向捻回トルク試験においてトルク低下率が
0〜7%の範囲にあるワイヤはそれ自体強度も高く、靭
性も良好で、スチールコードへの撚り合わせ工程におい
ても問題なく撚り線とすることができ、撚ることによる
破断力の低下も少なく、また耐疲労性も良好であること
がわかった。これに対して、一方向ねじり過程でトルク
不良が現われないものの逆方向ねじり過程で8%以上の
トルク低下が生じたワイヤは、靭性が明らかに劣化して
おり、疲労性の改善がいまだ不十分となっていた。そし
て撚り合わせ工程においても断線の発生があり、しかも
撚り効率が悪く、得られたスチールコードはワイヤの強
度が十分に発揮されず、耐疲労性の改善も十分でなかっ
た。
Therefore, the present inventor actually measured and observed the torque decrease in the twisting-torque process of twisting in one direction-reverse direction as shown in FIG. 2 (b). As a result, the wire whose torque reduction rate is in the range of 0 to 7% in the unidirectional-reverse twisting torque test itself has high strength and good toughness, and there is no problem in the twisting process to the steel cord. It was found that a stranded wire can be used, the breaking force is less reduced by twisting, and the fatigue resistance is good. On the other hand, in a wire in which no torque failure appears in the one-way twisting process, but a torque decrease of 8% or more occurs in the reverse twisting process, the toughness is obviously deteriorated, and the improvement of the fatigue property is still insufficient. It was. Further, wire breakage occurred in the twisting process, and the twisting efficiency was poor. The obtained steel cord did not exhibit the wire strength sufficiently and the fatigue resistance was not sufficiently improved.

【0011】なお、前記トルク低下は直径や材質を異に
する多数のワイヤについて一方向−逆方向ねじり方式に
よる捻回−トルク試験を行い、捻回−トルクの低下率を
測定してみた結果に基づくもので、いかなる場合でもト
ルク低下率が8%以上では前記した良好な特性が得られ
ないことを突き止めた。すなわち、トルク低下率△T
は、図2(b)の捻回−トルク曲線において、最初の一
方向捻りでのねじり弾性限すなわち図における右上がり
直線部分の上限でのトルク値をTとし、逆方向ねじりで
の低下部トルク値の最小値をtとすると、トルク低下率
△Tは次式で表される。但し、トルク低下のない場合は
t=Tとする。 △T=[(T−|t|)/T]×100(%) このトルク低下率△Tが8%以上では前記した不具合が
生じていた。したがって、一般的にトルク低下率△T=
7%がトルク異常低下の分水嶺であり、7%以内の特性
を示すスチールワイヤのみを靭性が正常と考えることが
できる。
The torque decrease is obtained by conducting a twist-torque test by a unidirectional-reverse-direction twisting method on a large number of wires having different diameters and materials, and measuring the decrease rate of the twist-torque. Based on this, it was found that, in any case, if the torque reduction rate is 8% or more, the above-mentioned good characteristics cannot be obtained. That is, the torque decrease rate ΔT
In the torsion-torque curve of FIG. 2B, T is the torsional elastic limit in the first unidirectional twist, that is, the torque value at the upper limit of the straight line rising to the right in the figure is T, and the lowering part torque in the reverse torsion. When the minimum value is t, the torque decrease rate ΔT is expressed by the following equation. However, when there is no torque decrease, t = T. ΔT = [(T− | t |) / T] × 100 (%) If the torque decrease rate ΔT is 8% or more, the above-mentioned problems occur. Therefore, generally, the torque decrease rate ΔT =
7% is the watershed with abnormal torque drop, and it can be considered that the toughness is normal only for the steel wire showing the characteristic within 7%.

【0012】本発明は前記スチールワイヤを複数本撚合
したスチールコードを含むものであり、該スチールコー
ドの構造は1×n構造さらにはこれの外周に複数本のス
チールワイヤを配して撚り合われたものや、2+2,3
+3を始めとするn+m構造のものなど任意である。こ
のスチールコードも、前記した特殊な靭性限界判定法に
おいてクリヤしたスチールワイヤ用ているため極超高強
度で耐疲労性に優れた特性を発揮できる。
The present invention includes a steel cord in which a plurality of the steel wires are twisted, and the structure of the steel cord is a 1 × n structure, and further, a plurality of steel wires are arranged on the outer periphery of the steel cord and twisted. The ones that were broken, 2 + 2,3
It is arbitrary such as an n + m structure including +3. Since this steel cord is also used for the steel wire that has been cleared by the above-mentioned special toughness limit judgment method, it can exhibit characteristics of extremely high strength and excellent fatigue resistance.

【0013】以下本発明を添付図面に基いて説明する。
まず本発明で対象とするものは、C量が0.80〜0.
85重量%の炭素鋼線材を使用し、これを所定中間径に
伸線し、熱処理・めっき・めっき拡散を施した後乾式伸
線を行い、次いで目的線径まで湿式伸線を行なって得ら
れるスチールワイヤである。炭素鋼線材の炭素含有量の
下限を0.80%としたのは、これを下回る炭素量で
は、後述する好適な最終伸線条件を採用しても、引っ張
り強さがY≧−200d+450(kgf/mm2)が
得られないからである。上限を0.85%としたのは、
これを上回る炭素量では、コストが高くなるなどの問題
があるからである。具体的な化学的成分組成としては、
C:0.80〜0.85%、Si:0.15〜0.35
%、Mn:0.3〜0.9%、残部鉄および不可避的不
純物からなるものであるが、前記基本成分組成にCrや
Niなどを合金元素として所定量添加していてもよい。
The present invention will be described below with reference to the accompanying drawings.
First, the target of the present invention has a C content of 0.80 to 0.
It is obtained by using 85% by weight of carbon steel wire rod, drawing it to a predetermined intermediate diameter, subjecting it to heat treatment, plating and plating diffusion, then performing dry wire drawing, and then performing wet wire drawing to the target wire diameter. It is a steel wire. The lower limit of the carbon content of the carbon steel wire rod is set to 0.80% because the tensile strength is Y ≧ −200d + 450 (kgf) even if a suitable final wire drawing condition described below is adopted at a carbon amount lower than this. / Mm 2 ) cannot be obtained. The upper limit is 0.85%,
This is because if the amount of carbon exceeds this amount, there is a problem such as an increase in cost. The specific chemical composition is as follows:
C: 0.80 to 0.85%, Si: 0.15 to 0.35
%, Mn: 0.3 to 0.9%, the balance being iron and unavoidable impurities, but a predetermined amount of Cr, Ni or the like as an alloying element may be added to the basic composition.

【0014】前記炭素鋼線材は直径が4.0〜5.5m
mのものが使用される。これを通常のように酸洗、コー
ティングを行い、連続乾式一次伸線してたとえば直径
3.00〜3.50mmの中間線材を得る。この段階で
必要に応じてパテンティング熱処理を行い、コーティン
グ処理を行って4〜5回程度の連続乾式二次伸線を行
う。これにより線径2.00〜2.60mm程度の中間
線を得る。そして、この中間線の熱処理工程に移る。こ
の熱処理は例えばガス直火式などの加熱炉を用いて行
い、ここで、中間線は900〜960℃に所定時間加熱
し、オーステナイト化される。次いで、加熱流動砂又は
溶融鉛で冷却するパテンティング炉中に送入され、ここ
で480〜560℃程度に焼入れされ、パーライト変態
される。最終熱処理(パテンテイング処理)において
は、ベイナイト組織等の異組織を含まない均一な微細パ
ーライト組織とする。この時の線の強度は128〜13
5kgf/mm2程度にすることが好ましい。次いでこ
の線はめっき前処理槽内で電解酸洗され、表面の酸化皮
膜を除去する。そして次に電気めっき槽に通され、所定
量の銅めっきと亜鉛めっきが順次施され、2層めっきと
なる。次に、この線は加熱流動砂を使った拡散炉中に通
すか、又は線に直接通電して加熱し、めっきの銅と亜鉛
を相互に拡散させて真鍮にする。その後、冷却されてめ
っき付きの中間線となる。この拡散処理においては約6
00℃程度で所定時間加熱を行なうが、β真鍮が多いと
その後の伸線加工性が悪くなるため、線の引張り強度を
低下させない範囲内でα真鍮ができるだけ多くなるよう
な加熱温度と時間を選ぶことが好ましい。
The carbon steel wire rod has a diameter of 4.0 to 5.5 m.
m is used. This is subjected to pickling and coating as usual, and continuous dry primary drawing is performed to obtain an intermediate wire having a diameter of 3.00 to 3.50 mm, for example. At this stage, if necessary, patenting heat treatment is performed, coating treatment is performed, and continuous dry secondary wire drawing is performed about 4 to 5 times. Thereby, an intermediate wire having a wire diameter of about 2.00 to 2.60 mm is obtained. Then, the intermediate line heat treatment step is performed. This heat treatment is performed using, for example, a gas direct-fired heating furnace, in which the intermediate wire is heated to 900 to 960 ° C. for a predetermined time to be austenitized. Then, it is fed into a patenting furnace which is cooled with heated fluidized sand or molten lead, where it is quenched to about 480 to 560 ° C. and transformed into pearlite. In the final heat treatment (patenting treatment), a uniform fine pearlite structure containing no different structure such as bainite structure is formed. The strength of the line at this time is 128-13
It is preferably about 5 kgf / mm 2 . Next, this wire is electrolytically pickled in the plating pretreatment bath to remove the oxide film on the surface. Then, it is passed through an electroplating bath, and a predetermined amount of copper plating and zinc plating are sequentially applied to form a two-layer plating. Then, the wire is passed through a diffusion furnace using heated fluidized sand, or the wire is directly energized and heated so that the plated copper and zinc are mutually diffused into brass. Then, it cools and it becomes an intermediate line with a plating. About 6 in this diffusion process
Although heating is performed at about 00 ° C for a predetermined time, if there is too much β brass, the subsequent wire drawing workability will deteriorate. Therefore, set the heating temperature and time so that α brass is increased as much as possible within the range that does not reduce the tensile strength of the wire. It is preferable to choose.

【0015】ついで、前記中間径スチールワイヤを10
〜14回引きにより目的径の減面率88〜93%程度ま
で乾式伸線して最終原料ワイヤを得る。拡散めっきした
中間線を直ちに目的径まで湿式伸線せず上記減面率の範
囲で乾式伸線するのは、この伸線が湿式伸線に比べて摩
擦係数が低く、最終仕上がり線径での靭性の劣化を抑制
できるからである。この乾式伸線の引抜きダイスとして
は合金ダイスでもよく、ダイスはアプローチ角(2α)
が8〜10°、ベアリング長さが0.25〜0.35d
1(d1は引抜き孔径)が好適である。この理由はワイヤ
の引張強さが上昇し、靭性も維持されるためであり、ア
プローチ角が8°未満では引抜き抵抗が高くなりすぎ、
10°を超える大きなものではワイヤの引張強さが低
く、靭性も悪くなるため不可である。ワイヤのダイス出
口温度は170℃以下が好ましい。それは歪時効を抑え
るためであり、これは引抜きブロックの内部にスプレー
ノズルを配して大量の冷却水をブロック内面に作用させ
る方法などで実現できる。
Then, the intermediate diameter steel wire is
The final raw material wire is obtained by performing dry drawing until the reduction rate of the target diameter is about 88 to 93% by drawing 14 times. Dry-drawing the diffusion-plated intermediate wire without wet drawing to the target diameter within the above-mentioned area reduction ratio is because this drawing has a lower friction coefficient than wet drawing and the final finished wire diameter This is because deterioration of toughness can be suppressed. An alloy die may be used as the drawing die for this dry wire drawing, and the die has an approach angle (2α).
Is 8-10 °, bearing length is 0.25-0.35d
1 (d 1 is the drawing hole diameter) is suitable. The reason for this is that the tensile strength of the wire increases and the toughness is also maintained. If the approach angle is less than 8 °, the pullout resistance becomes too high,
If it is larger than 10 °, the tensile strength of the wire will be low and the toughness will be poor, which is not possible. The wire die outlet temperature is preferably 170 ° C. or lower. This is to suppress strain aging, and this can be realized by a method of arranging a spray nozzle inside the drawing block so that a large amount of cooling water acts on the inner surface of the block.

【0016】そして前記最終原料ワイヤを液体潤滑剤を
使用して特定条件で湿式伸線して目的径例えば直径0.
1〜0.4mmのめっき付きスチールワイヤを得るので
あり、かかるスチールワイヤにおいて、目標強度を満た
しかつ前記したように一方向−逆方向ねじり方式による
捻回−トルク試験でトルク異常低下が生じないもの(ト
ルク低下率△Tが7%以内のもの)が得られるのであ
る。
Then, the final raw material wire is wet drawn under a specific condition using a liquid lubricant to obtain a target diameter, for example, a diameter of 0.
A steel wire with plating of 1 to 0.4 mm is obtained, and such steel wire satisfies the target strength and does not cause abnormal torque reduction in the twisting-torque test by the one-way / reverse-direction twisting method as described above. (Torque reduction rate ΔT within 7%) is obtained.

【0017】この湿式伸線工程においては、一方向−逆
方向ねじり方式による捻回−トルク試験でトルク低下率
が0〜7%にするため、次の条件を採用することが好適
である。 引抜き用ダイスとしてアプローチ角度(2α)が8〜
10°、ベアリング長さが0.25〜0.35d1(d1
=引抜き孔径)の焼結ダイヤモンドニブを使用する。 潤滑液温度を低温に制御し、湿式伸線の総減面率の7
0〜99.8%の部分の間でワイヤを一旦巻取り、巻き
取ったワイヤの尻の方から伸線を行う逆引きを一回以上
行う。 最終引抜きにおいては2枚のダイスを直列に並べたダ
ブルダイスを使用し、出口側ダイスでの引抜き減面率を
1.2〜3.9%の範囲でスキンパスを行う。 スキンパス直後のスチールワイヤ温度を150℃以下
に制御する。
In this wet wire drawing step, the following conditions are preferably adopted in order to obtain a torque reduction rate of 0 to 7% in the twist-torque test by the one-way / reverse-direction twist method. The approach angle (2α) is 8 ~ as a drawing die.
10 °, the bearing length 0.25~0.35d 1 (d 1
= Sintered diamond nib with a drawing hole diameter) is used. By controlling the lubricating liquid temperature to a low temperature, the total area reduction rate of wet drawing is 7
The wire is once wound between 0 to 99.8%, and the reverse drawing is performed once or more by performing wire drawing from the tail of the wound wire. In the final drawing, a double die in which two dies are arranged in series is used, and skin pass is performed in the range of 1.2 to 3.9% in the drawing area reduction rate at the exit side die. The temperature of the steel wire immediately after the skin pass is controlled to 150 ° C or lower.

【0018】詳述すると、図3と図4はこの湿式伸線工
程を模式的に示しており、Aは前引き用湿式伸線部、B
は逆引き用伸線部であり、各伸線部A,Bには潤滑液槽
10,10’が設けられ、これに通常のスチールコード
用潤滑剤を水に濃度10〜30%溶解した潤滑液11が
収容されている。前記各潤滑液槽10,10’内には、
それぞれ潤滑液11に浸漬されるように平行状に一対の
キャプスタン12,12’が回転自在に横架され、下流
側のキャプスタン12’は図示しない可変速モータによ
り駆動されるようになっている。そして前引き用伸線部
Aの一対のキャプスタン12,12’の間には複数個の
前引き用ダイスDが、また逆引き用伸線部Bの一対のキ
ャプスタン12,12’の間には少なくとも1個以上で
かつ前引き用伸線部のダイス数よりも少ない数の逆引き
用ダイスD,D’が配置され、キャプスタン12,1
2’の溝に掛けられたワイヤが順次ダイスを通ることに
より引き抜かれるようになっている。D’は最終ダイス
ないし仕上げダイスである。前記前引き用湿式伸線部A
の上流には拡散めっき付きの最終原料ワイヤWのリール
13が配され、前引き用湿式伸線部の下流にはトラバー
サ140を介して巻取りリール14が配されている。逆
引き用伸線部Bの上流側には前引き用湿式伸線部Aの巻
取りリール14がペイオフ側リールとして装備され、下
流側には最終製品としてのめっき付き極超高強力ワイヤ
W’の巻取りリール17がトラバーサ170を介して装
備されている。
More specifically, FIGS. 3 and 4 schematically show the wet drawing process, where A is a wet drawing part for front drawing and B is a drawing process.
Is a wire drawing portion for reverse drawing, and each wire drawing portion A, B is provided with a lubricating liquid tank 10, 10 ', in which a normal steel cord lubricant is dissolved in water at a concentration of 10 to 30%. Liquid 11 is contained. In each of the lubricating liquid tanks 10 and 10 ',
A pair of capstans 12 and 12 'are rotatably mounted horizontally so as to be immersed in the lubricating liquid 11, and the capstan 12' on the downstream side is driven by a variable speed motor (not shown). There is. A plurality of front drawing dies D are provided between the pair of capstans 12, 12 'of the front drawing portion A, and a pair of capstans 12, 12' of the reverse drawing portion B are provided. Is provided with at least one reverse drawing die D, D ′, which is smaller in number than the number of dies for the drawing wire portion for front drawing.
The wire hung in the 2'groove is pulled out by sequentially passing through the die. D'is the final die or finishing die. The wet drawing part A for the front drawing
A reel 13 for the final raw material wire W with diffusion plating is arranged upstream of the above, and a take-up reel 14 is arranged downstream of the wet drawing portion for front drawing via a traverser 140. The take-up reel 14 for the wet drawing portion A for front drawing is equipped as a pay-off side reel on the upstream side of the drawing portion B for reverse drawing, and the plated ultra-high strength wire W'as a final product is provided on the downstream side. The take-up reel 17 is mounted via a traverser 170.

【0019】図5は前記前引き用湿式伸線部Aと逆引き
用伸線部Bの引抜き用ダイスDを示しており、1はダイ
ス本体、2はダイス本体1に内蔵された焼結ダイヤモン
ド製のニブであり、該ニブ2はアプローチ部20の角度
2αが8〜10°となっており、また、べアリング部2
1の長さlが0.25〜0.35d1となっている。図
6は仕上げないし最終の引抜きダイスD’を示してお
り、ケーシング4,4にノーマルダイス5aとスキンパ
ス用ダイス5bを近接して直列状に配置し、所定減面率
を2分割して得るようにしたダブルスキンパスダイスか
らなっている。ノーマルダイス5aとスキンパス用ダイ
ス5bはそれぞれ焼結ダイヤモンド製のニブ2a,2b
を内蔵しており、各ニブ2a,2bはアプローチ部20
の角度(2α)が8〜10°、ベアリング部21の寸法は
0.25〜0.35d1となっている。
FIG. 5 shows a drawing die D for the wet drawing part A for front drawing and the drawing part B for reverse drawing, where 1 is a die body and 2 is a sintered diamond incorporated in the die body 1. The nib 2 has an angle 2α of the approach portion 20 of 8 to 10 ° and the bearing portion 2
The length 1 of 1 is 0.25 to 0.35d 1 . FIG. 6 shows a finishing or final drawing die D ', in which the normal dies 5a and the skin pass dies 5b are arranged in close proximity to each other in the casings 4 and 4 so as to obtain a predetermined surface reduction rate by dividing into two. It consists of a double skin pass dice. The normal die 5a and the skin pass die 5b are nibs 2a and 2b made of sintered diamond, respectively.
Each nib 2a, 2b has a built-in
Angle (2α) is 8 to 10 °, and the dimension of the bearing portion 21 is 0.25 to 0.35d 1 .

【0020】まず本発明は引抜きダイスとしてアプロー
チ角度2αが8〜10°とする理由は次のとおりであ
る。伸線での引抜き力は12°程度が最も低いことから
従来これを採用しているが、本発明はこれよりもアプロ
ーチ角度を小さくする。これは加工硬化度を大きくする
とともに伸線加工限界を高め、かつ表面残留応力を低く
して耐疲労性を向上させるためである。加工硬化度を高
くする理由は、C量0.80〜0.85%材で極超高強
度を出すためには加工度を非常に高くとらなければなら
ず、そのままでは加工限界を越えてしまうからであり、
そこで8〜10°の低アプローチ角度ダイスを用いて伸
線加工限界を高め、しかも1パス毎の加工硬化度を高く
して相対的に総加工度を低く抑えるものである。しか
し、その角度が8°より小さくなるとスチールワイヤの
引抜き抵抗が高すぎてしまうので不適当である。また、
ダイスのベアリング長さ1は孔径d1に対して0.25
〜0.35d1とするのは、従来のように0.5d1程度
のベアリング長さとすると引き抜き抵抗が大きくなるた
め発熱が著しくなる。そこでスチールワイヤとの接触面
積を小さくしてスチールワイヤの発熱を少なく抑えるべ
く、ベアリング長さを短くしたのであり、これと前記ア
プローチ角度とのバランスにより伸線加工限界を高めつ
つ引き抜き抵抗を緩和することができる。
The reason why the approach angle 2α of the drawing die of the present invention is 8 to 10 ° is as follows. Since the pulling-out force in wire drawing is the lowest at about 12 °, this is conventionally adopted, but the present invention makes the approach angle smaller than this. This is because the work hardening degree is increased, the wire drawing limit is increased, and the surface residual stress is reduced to improve fatigue resistance. The reason for increasing the work hardening degree is that the workability must be extremely high in order to obtain ultrahigh strength with a C content of 0.80 to 0.85%, and the workability limit will be exceeded as it is. From
Therefore, a low approach angle die of 8 to 10 ° is used to increase the wire drawing working limit, and also to increase the work hardening degree for each pass to relatively reduce the total working degree. However, if the angle is smaller than 8 °, the pull-out resistance of the steel wire becomes too high, which is unsuitable. Also,
The bearing length 1 of the die is 0.25 with respect to the hole diameter d 1 .
To the ~0.35D 1 are fever for pulling resistance when conventional to about one bearing length 0.5d as increase becomes remarkable. Therefore, in order to reduce the contact area with the steel wire and suppress the heat generation of the steel wire, the bearing length was shortened. By balancing this and the approach angle, the drawing resistance is relaxed while raising the wire drawing limit. be able to.

【0021】さらに、前引き用湿式伸線部Aと逆引き用
伸線部Bの引抜き用ダイスD,D,D’に焼結ダイヤモ
ンドニブを使用する理由は、ダイス1枚当りの加工硬化
度が大きくなることによるダイス寿命の低下問題がある
からである。すなわち、従来のタングステン・カーバイ
ドの焼結合金ニブではその表面が粗くて引抜き抵抗が大
きいうえにスチールワイヤの表面も粗くなり、耐疲労性
にも悪影響を与える。これに対して、焼結ダイヤモンド
ニブは焼結合金ニブに比べてその表面が平滑であるた
め、これで伸線すると引抜き抵抗も低くまたスチールワ
イヤの表面も平滑にすることができる。また、ダイヤモ
ンドニブはそれ自体の価格はかなり高いが、引き抜きに
よる孔径の太りが殆ど起こらず、寿命も非常に長く、交
換の手間と時間や生産停止時間が節減できるため、総合
的には安価となるからである。
Further, the reason why the sintered diamond nibs are used for the drawing dies D, D, D'of the wet drawing part A for front drawing and the wire drawing part B for reverse drawing is the work hardening degree per die. This is because there is a problem of shortening the die life due to the increase of That is, in a conventional tungsten carbide sintered alloy nib, the surface is rough and the pull-out resistance is large, and the surface of the steel wire is also rough, which adversely affects the fatigue resistance. On the other hand, since the surface of the sintered diamond nib is smoother than that of the sintered alloy nib, the drawing resistance is low and the surface of the steel wire can be smoothed by wire drawing. Although diamond nibs themselves are fairly expensive, they do not thicken the hole diameter due to pulling out, have a very long life, and can save time and time for replacement and production stop time, so it is generally cheap. Because it will be.

【0022】ダイスによる毎回の減面率は後段ほど低い
減面率になるようにすることが好ましいが、最終パスは
前記のごとくダブルダイスによるスキンパス伸線とす
る。このようなダブルダイスによるスキンパス伸線を採
用するのは、伸線加工中に蓄積されるワイヤ表面の引張
りの残留応力を緩和させることができるとともに仕上げ
ダイス通過直後のワイヤ温度を低く抑えることができる
からである。さらに潤滑液温度を低く抑えることもワイ
ヤ温度の上昇を抑える効果があり、ワイヤの時効硬化に
よる靭性劣化を防止することができる。しかし、スキン
パス用ダイス5bによるスキンバス減面比は、これが
4.0%以上とあまり大きすぎては残留応力の緩和作用
が少なく、逆に1.1%以下とあまり小さくても、加工
量が小さすぎて残留応力の緩和作用が少ないため1.2
〜3.9%とする。これによりスチールワイヤの発熱を
低く抑えるとともに、伸線したスチールワイヤの表面残
留応力を低減し、靭性の回復を図ることができるのであ
る。
It is preferable that the surface reduction rate for each die is set to be lower in the subsequent stage, but the final pass is the skin pass wire drawing by the double die as described above. Employing skin pass wire drawing with such a double die can alleviate residual tensile stress of the wire surface tension accumulated during wire drawing and keep the wire temperature low immediately after passing through the finishing die. Because. Further, suppressing the temperature of the lubricating liquid to a low level also has the effect of suppressing an increase in the wire temperature, and it is possible to prevent deterioration of toughness due to age hardening of the wire. However, the skin bath surface reduction ratio by the skin pass die 5b is 4.0% or more, which is too large, the residual stress relaxation effect is small, and conversely, 1.1% or less, the processing amount is small. 1.2 because it is too small to reduce residual stress
~ 3.9%. This makes it possible to suppress the heat generation of the steel wire to a low level, reduce the surface residual stress of the drawn steel wire, and recover the toughness.

【0023】湿式伸線の引き回数は通常8〜14回程度
が採用される。これはワイヤの靭性を考慮したためであ
り、下限を下回る回数では、1パス当りの減面率が大き
くなりすぎワイヤの靭性が劣化する。また、上限を超え
る回数では引き回数が多くなりすぎ、製造コストの面で
不利である。さらに本発明の特徴は、湿式伸線工程を2
工程に分け、後半の工程で総湿式伸線回数の半数未満の
回数で前半の工程とは逆方向に伸線を行うことである。
この理由は、前引きだけではワイヤ表面の残留応力が引
っ張り側に大きくなりすぎるため、逆引きを行うことで
ワイヤ表面の残留応力を緩和でき、また逆引きは伸線加
工で低下した靭性を再度高めることができるからであ
る。この逆引きは湿式伸線の後半の工程で、かつ1回以
上半数未満で行われる。逆引き法としては前記減面率に
達した段階で図3のように巻取りリール14に一旦巻取
り、その巻取りリール14を逆引き用伸線部Bに取り付
けて巻き取った尻の部分から伸線を行えばよい。
The number of times of wet wire drawing is usually 8 to 14 times. This is because the toughness of the wire is taken into consideration. If the number of times is less than the lower limit, the area reduction rate per pass becomes too large and the toughness of the wire deteriorates. Further, if the number of times exceeds the upper limit, the number of times of drawing becomes too large, which is disadvantageous in terms of manufacturing cost. Furthermore, a feature of the present invention is that the wet wire drawing step is
The process is divided into two steps, and in the latter half step, wire drawing is performed in the opposite direction to the first half step with less than half of the total number of wet wire drawing.
The reason for this is that the residual stress on the wire surface becomes too large on the pulling side only by pre-drawing, so that the residual stress on the wire surface can be relaxed by performing reverse drawing, and reverse drawing can reduce the toughness reduced by wire drawing again. This is because it can be increased. This reverse drawing is performed in the latter half of the wet drawing process and once or more and less than half. As the reverse drawing method, when the area reduction ratio is reached, the take-up reel 14 is temporarily taken up as shown in FIG. 3, and the take-up reel 14 is attached to the reverse drawing wire portion B and taken up. You can draw wire from.

【0024】なお潤滑液温度を制御する方法は、図4に
示すように槽外には循環ポンプ15と冷却機16を設
け、潤滑液11,11を潤滑液槽10,10’から強制
的に抜きこれを冷却して槽に戻す循環系とし、温度計測
器によって潤滑液11,11を連続測温し、これによっ
て冷却機16の能力を調整すればすればよく、潤滑液は
操業中35℃以下好適には30〜35℃程度に温度制御
される。これにより、上がりワイヤ温度を確実に熱流束
式温度測定器での測温温度で150℃以下にすることが
可能である。
The method for controlling the temperature of the lubricating liquid is as shown in FIG. 4, in which a circulation pump 15 and a cooler 16 are provided outside the tank to force the lubricating liquid 11, 11 from the lubricating liquid tank 10, 10 '. The cooling system is cooled and returned to the tank as a circulation system. The temperature of the lubricating liquids 11 and 11 is continuously measured by a temperature measuring device, and the capacity of the cooling device 16 is adjusted by this, and the lubricating liquid is 35 ° C during operation. Hereafter, the temperature is preferably controlled to about 30 to 35 ° C. As a result, the rising wire temperature can be reliably reduced to 150 ° C. or lower as the temperature measured by the heat flux type temperature measuring device.

【0025】[0025]

【実施例】次に本発明の実施例を説明する。 [具体例1] (実施例1について) 1)原料としてJIS G 3502の82A相当の直径
5.5mmのピアノ線材を用いた。その成分は、C:
0.84%、Si:0.20%、Mn:0.50%残部
鉄及び不可避的不純物であった。この線材を一次,二次
乾式伸線して直径2.35mmの中間線にした。この中
間原料スチールワイヤを直火式加熱炉及び流動床式冷却
炉で熱処理して微細パーライトの金属組織とした。この
時の線の引張強さは132kgf/mm2であった。次
いでこの線を前処理した後、銅めっき及び亜鉛めっきを
施して2層めっきとし、更にこれを加熱拡散させて真鍮
めっきとした。続いて、拡散炉において再加熱してめっ
きの拡散を十分行い、引抜き加工性向上を図った。 2)次いで連続乾式伸線機により直径0.70mm(減
面率:91.1%)まで伸線した。ダイスはアプローチ
角度10°、ベアリング長さ0.30d1の合金ダイス
を使用し、11回引きで行い最終原料スチールワイヤを
得た。 3)さらに最終原料スチールワイヤを連続湿式伸線機に
より伸線し、仕上げ直径0.28mmの真鍮めっきワイ
ヤを得た。この時の潤滑液は通常の湿式潤滑剤を使用
し、冷却循環系により液温を制御して上リワイヤ温度を
150℃以下に保った。この工程でのダイスはアプロー
チ角度10°、ベアリング長さ0.30d1の焼結ダイ
ヤモンドニブからなっており、11回引きで伸線したが
そのうち6回を前引きで行い(湿式伸線部分の総減面率
の74.7%)、この前引きを終えたワイヤをリールに
巻取り、そのリールを他の湿式伸線機にかけて、ここで
5回の逆引きを行なった。最後にダブルのスキンパスダ
イスに導入し、減面率11%で伸線したがスキンパス減
面率を2.0%とした。最終ダイス通過直後のワイヤの
温度は熱流束温度計で測定したところ135℃であっ
た。
EXAMPLES Examples of the present invention will be described below. [Specific Example 1] (Regarding Example 1) 1) As a raw material, a piano wire having a diameter of 5.5 mm corresponding to 82 G of JIS G 3502 was used. Its component is C:
0.84%, Si: 0.20%, Mn: 0.50% The balance was iron and inevitable impurities. This wire was subjected to primary and secondary dry drawing to form an intermediate wire having a diameter of 2.35 mm. This intermediate raw material steel wire was heat-treated in a direct-fired heating furnace and a fluidized bed cooling furnace to obtain a fine pearlite metallographic structure. The tensile strength of the wire at this time was 132 kgf / mm 2 . Next, after pre-treating this wire, it was subjected to copper plating and zinc plating to form a two-layer plating, which was further heat-diffused to form brass plating. Then, it was reheated in a diffusion furnace to sufficiently diffuse the plating to improve the drawing workability. 2) Then, the wire was drawn by a continuous dry wire drawing machine to a diameter of 0.70 mm (area reduction ratio: 91.1%). The die used was an alloy die having an approach angle of 10 ° and a bearing length of 0.30 d 1 , and the drawing was performed 11 times to obtain the final raw material steel wire. 3) Further, the final raw material steel wire was drawn by a continuous wet drawing machine to obtain a brass-plated wire having a finished diameter of 0.28 mm. As the lubricating liquid at this time, a normal wet lubricant was used, and the liquid temperature was controlled by a cooling circulation system to keep the upper rewire temperature at 150 ° C. or lower. The die used in this process consisted of a sintered diamond nib with an approach angle of 10 ° and a bearing length of 0.30d 1. It was drawn 11 times, but 6 times of it was drawn by pre-drawing (wet drawing part The total area reduction ratio was 74.7%), and the wire that had been subjected to the pre-drawing was wound on a reel, and the reel was put on another wet wire drawing machine, where reverse drawing was performed 5 times. Finally, it was introduced into a double skin pass die and drawn with a surface reduction rate of 11%, but the skin pass reduction rate was 2.0%. The temperature of the wire immediately after passing through the final die was 135 ° C. as measured by a heat flux thermometer.

【0026】(比較例1について)ダイスアプローチ角
度12°とし、湿式伸線の前引き回数を5回、後引き回
数を6回とし、他は実施例1と同条件にした。 (比較例2について)ダイスアプローチ角度を12°と
し、他は実施例1と同条件とした。 (比較例3について)スキンパス減面率を1.0%と
し、他は実施例1と同条件にした。 (比較例4について)湿式伸線において2段階に分けず
に1段階で他は実施例1と同条件とした。 (実施例2について)直径2.45mmの中間線に熱処
理、めっき、拡散を行い、他を実施例1に準じた条件で
伸線した。
(Regarding Comparative Example 1) The die approach angle was 12 °, the number of times of wet drawing was pre-drawing was 5 and the number of post-drawing was 6 and the other conditions were the same as in Example 1. (Regarding Comparative Example 2) The die approach angle was 12 °, and the other conditions were the same as in Example 1. (Regarding Comparative Example 3) The skin pass area reduction rate was set to 1.0%, and the other conditions were the same as in Example 1. (Regarding Comparative Example 4) In wet drawing, the conditions were the same as in Example 1 except that the wet drawing was performed in two steps. (Regarding Example 2) The intermediate wire having a diameter of 2.45 mm was subjected to heat treatment, plating and diffusion, and the others were drawn under the same conditions as in Example 1.

【0027】[具体例2]前記実施例と比較例に示すス
チールワイヤを使用してスチールコードとした。 (実施例1Aについて)実施例1の直径0.28mmの
ワイヤ4本を用いて、バンチャー式撚り線機で撚り合わ
せて2+2構造(撚り方向:S、撚りピッチ:16m
m)のスチールコードを製作した。 (実施例2Aについて)実施例2のワイヤ4本を用いて
同様に2+2構造のスチールコードを得た。(比較例1
Aについて)比較例1のワイヤ4本を用いて同じく2+
2構造のスチールコードを得た。(比較例2Aについ
て)比較例2のワイヤ4本を用いて同じく2+2構造の
スチールコードを得た。 (比較例3Aについて)比較例3のワイヤ4本を用いて
同じく2+2構造のスチールコードを得た。(従来例に
ついて)従来の高強度ワイヤ4本を用いて同じく2+2
構造のスチールコードを得た。
[Specific Example 2] A steel cord was formed by using the steel wires shown in the above-mentioned Examples and Comparative Examples. (Regarding Example 1A) Four wires each having a diameter of 0.28 mm of Example 1 were used and twisted together by a buncher type twisting machine to obtain a 2 + 2 structure (twisting direction: S, twisting pitch: 16 m).
m) steel cord was manufactured. (Regarding Example 2A) A steel cord having a 2 + 2 structure was similarly obtained by using the four wires of Example 2. (Comparative Example 1
(For A) Using the four wires of Comparative Example 1, the same 2+
A steel cord with two structures was obtained. (Regarding Comparative Example 2A) Using the four wires of Comparative Example 2, a steel cord having the same 2 + 2 structure was obtained. (Regarding Comparative Example 3A) Using the four wires of Comparative Example 3, a steel cord having the same 2 + 2 structure was obtained. (Regarding the conventional example) The same 2 + 2 using four conventional high-strength wires
The steel cord of the structure was obtained.

【0028】以上の実施例、比較例、従来例についての
特性を表1,2に示す。なお、表1と表2および後述す
る表3,4において、「捻回値」は図7に示す固定側の
掴み具6と可動側の掴み具7の掴み間隔L=100d
(dはスチールワイヤ直径)で製品スチールワイヤ8を
掴み、固定側の掴み具6から延出したスチールワイヤ軸
方向に軽く張力を掛けながら可動側の掴み具7を可変速
モータ9により回転数=30rpmで一方向に捻ってス
チールワイヤが破断するまでの回数を測定したものであ
る。一方向のみの捻回試験は、図7において固定側の掴
み具6と可動側の掴み具7の掴み間隔Lを300d(d
はスチールワイヤ直径)とし、固定側の掴み具6から延
出したスチールワイヤ軸方向に一定の重りを吊り下げて
軽く張力を掛けながら、可動側の掴み具7を可変速モー
タ9により捻り速度=30rpmでワイヤが破断するま
で捻回−トルク曲線を読み取ることで行った。また一方
向+逆方向捻回試験は、図7に示すように固定側の掴み
具6と可動側の掴み具7の掴み間隔Lを300d(dは
スチールワイヤ直径)とし、固定側の掴み具6から延出
したスチールワイヤ軸方向に一定の重りを吊り下げて軽
く張力を掛けながら、可動側の掴み具7を可変速モータ
9により捻り速度=30rpmで一方向に10回ねじっ
た後一旦、回転を止め、その後、更に逆方向にワイヤが
破断するまでねじり返しを行って捻回−トルク曲線を読
み取ることで行った。
Tables 1 and 2 show the characteristics of the above examples, comparative examples and conventional examples. In Tables 1 and 2 and Tables 3 and 4 described later, the “twist value” is the gripping distance L = 100d between the fixed-side grip 6 and the movable-side grip 7 shown in FIG.
(D is a steel wire diameter), the product steel wire 8 is gripped, and the movable grip 7 is rotated by the variable speed motor 9 while lightly tensioning the steel wire extending from the fixed grip 6 in the axial direction of the steel wire = The number of times until the steel wire was broken by twisting in one direction at 30 rpm was measured. In the twisting test in only one direction, in FIG. 7, the gripping interval L between the fixed-side gripping tool 6 and the movable-side gripping tool 7 is 300d (d).
Is a steel wire diameter), and a constant weight is hung in the steel wire axial direction extending from the fixed-side grip 6 to apply a light tension, while the movable-side grip 7 is twisted by a variable speed motor 9 It was done by reading the twist-torque curve until the wire broke at 30 rpm. Further, in the one-direction + reverse-direction twist test, as shown in FIG. 7, the gripping interval L between the fixed-side gripping tool 6 and the movable-side gripping tool 7 was set to 300 d (d is a steel wire diameter), and the fixed-side gripping tool was used. The steel wire extended from 6 is hung with a constant weight in the axial direction and lightly tensioned, while the movable-side grip 7 is twisted 10 times in one direction by the variable speed motor 9 at a twisting speed = 30 rpm, and then temporarily. The rotation was stopped, and then twisting was performed in the opposite direction until the wire was broken, and the twist-torque curve was read.

【0029】表中の「一方向捻り試験結果」の○はトル
ク低下率△Tが7%以下のものを指し、×はトルク低下
率△Tが8%以上が生じたものを示す。「一方向+逆方
向捩り試験結果」の○は逆方向ねじり過程でトルク低下
率△Tが0〜7%のものを指し、×は逆方向ねじり過程
でトルク低下率△Tが8%以上が生じたものを示す。疲
労限はハンター式回転曲げ疲労試験により測定した値で
ある。「撚り線性」の○は問題なし、△は断線あり、×
は断線多数を示している。「耐疲労性」は、所定の径を
もつ回転自在の3ヶのロールを千鳥状に配して、これに
沿わせてコードをその破断荷重の10%の負荷の下に張
り渡し、このロールを左右に繰り返し移動させてコード
に繰り返し曲げを与えるもので、コードが破断するまで
の回数を測定したもので、表中の数値は従来例を100
として指数表示したものである。
In the table, "○" in the "one-way twist test result" indicates that the torque reduction rate ΔT is 7% or less, and x indicates that the torque reduction rate ΔT is 8% or more. ○ in the “One-way + Reverse direction torsion test result” indicates that the torque decrease rate ΔT is 0 to 7% in the reverse direction twisting process, and × is the torque decrease rate ΔT is 8% or more in the reverse direction twisting process. Show what happened. The fatigue limit is a value measured by the Hunter type rotary bending fatigue test. “Stranded wire”: No problem, △: Broken wire, ×
Indicates many broken wires. “Fatigue resistance” means that three freely rotatable rolls with a predetermined diameter are arranged in a zigzag pattern, and along this, the cord is stretched under a load of 10% of the breaking load. Is repeatedly moved to the left and right to repeatedly bend the cord, and the number of times until the cord breaks is measured.
Is displayed as an index.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】これら表1と表2から、捻回値や一方向捻
回−トルク試験でなく、本発明による一方向+逆方向捻
回−トルク試験が靭性のパラメータとして適切であり、
これによる結果の良好な実施例1,2のスチールワイヤ
は引張り強さと疲労限をバランスよくクリアしており、
これらを使用した実施例1A、実施例2Aのスチールコ
ードは、撚り線特性、破断荷重、疲労特性が比較例より
すぐれていることがわかる。ことにC含有量0.80〜
0.85重量%の従来例と比べた場合、約30%強度が
高く、しかも靭性にすぐれ、耐疲労性にも非常に優れて
いることがわかる。また、このようなすぐれた特性は最
終伸線工程でのダイス条件、逆引き、スキンパス減面
率、上りワイヤ温度を満足する場合に得られることがわ
かる。
From these Tables 1 and 2, the unidirectional + reverse-direction twist-torque test according to the present invention is suitable as the toughness parameter, not the twist value or the unidirectional twist-torque test.
The steel wires of Examples 1 and 2 with good results by this have cleared tensile strength and fatigue limit in a well-balanced manner,
It can be seen that the steel cords of Examples 1A and 2A using these are superior to the comparative example in the twisted wire characteristics, breaking load, and fatigue characteristics. Especially the C content 0.80
It is found that the strength is about 30% higher than that of the conventional example of 0.85% by weight, the toughness is excellent, and the fatigue resistance is also very excellent. It is also understood that such excellent properties are obtained when the die conditions, reverse drawing, skin pass area reduction rate, and upstream wire temperature in the final wire drawing step are satisfied.

【0033】[具体例3] (実施例5について) 1)原料としてJIS G 3502の82A相当の直径
5.5mmの線材(成分:C=0.82%、Si=0.
18%、Mn=0.52%、残部鉄及び不可避的不純
物)を用いた。この線材を乾式伸線して直径1.75m
mの中間線にした。この中間線を熱処理し、引張強さ=
135kgf/mm2の線とし、次いで銅めっきと亜鉛
めっき及び拡散を施して真鍮めっきとした。 2)次に、連続乾式伸線機により、直径0.51mmま
で伸線した。ダイスはアプローチ角度10°ベアリング
長さ0.30dの合金ダイスを使用した。更に湿式伸線
により仕上げ直径0.20mmのワイヤを得た。この工
程でのダイスはアプローチ角度8°、ベアリング長さ
0.30d1の焼結ダイヤモンドニブを用い、11回引
きで伸線した。そのうちの6回を前引きで終えたワイヤ
を更に5回の逆引き伸線を行なった。この時、最後にダ
ブルダイスでのスキンパス(減面率=2%)を実施し
た。最終ダイス通過直後のワイヤ温度は128℃であっ
た。
[Specific Example 3] (Regarding Example 5) 1) As a raw material, a wire rod having a diameter of 5.5 mm corresponding to 82 G of JIS G 3502 (component: C = 0.82%, Si = 0.
18%, Mn = 0.52%, balance iron and unavoidable impurities) were used. This wire is dry drawn and the diameter is 1.75m.
It was the middle line of m. This intermediate wire is heat treated to obtain tensile strength =
A wire of 135 kgf / mm 2 was formed , and then copper plating, zinc plating, and diffusion were performed to obtain brass plating. 2) Next, the wire was drawn to a diameter of 0.51 mm by a continuous dry wire drawing machine. As the die, an alloy die having an approach angle of 10 ° and a bearing length of 0.30 d was used. Further, by wet drawing, a wire having a finished diameter of 0.20 mm was obtained. The die used in this step was a sintered diamond nib having an approach angle of 8 ° and a bearing length of 0.30d 1 , and was drawn by drawing 11 times. The wire, which was finished 6 times by the pre-drawing, was subjected to reverse drawing for 5 times. At this time, finally, a skin pass with a double die (area reduction = 2%) was performed. The wire temperature immediately after passing through the final die was 128 ° C.

【0034】(比較例8について)ダイスアプローチ角
度を10°、ダイスベアリング長さを0.5d1とし、
又、スキンパス減面率を1.0%とし、他は実施例5と
同一条件とした。 (実施例6について)実施例5と同一線材を用いて乾式
伸線を行なって直径2.75mmの中間線とした。更に
前記実施例と同様にして中間線に熱処理とめっき及び拡
散を行なって真鍮めっきとした。この線の引張強さは1
30kgf/mm2であった。次いで、乾式伸線機によ
り、仕上げ直径0.84mmのワイヤとした。更に湿式
伸線機により直径0.35mmの目的線径に伸線した。
この湿式伸線においても前引きは6回、後の逆引きは5
回行い、後引き最後はダブルダイスでスキンパス(減面
率=2%)を行なった。最終ダイス通過直後のワイヤ温
度は148℃であった。なお、いずれのダイス条件も前
記実施例と同様である。 (比較例9について)ダイスアプローチ角度8°、ベア
リング長さ0.5d1スキンパス減面率4.5%他は実
施例6と同一条件にした。 (比較例10について)ダイスアプローチ角度8°と
し、他は実施例6と同一とした。
(Regarding Comparative Example 8) The die approach angle was 10 °, the die bearing length was 0.5d 1, and
The skin pass area reduction rate was 1.0%, and the other conditions were the same as in Example 5. (About Example 6) Dry wire drawing was performed using the same wire rod as in Example 5 to obtain an intermediate wire having a diameter of 2.75 mm. Further, the intermediate wire was subjected to heat treatment, plating and diffusion in the same manner as in the above-mentioned embodiment to obtain brass plating. The tensile strength of this wire is 1
It was 30 kgf / mm 2 . Then, a wire having a finished diameter of 0.84 mm was made by a dry wire drawing machine. Further, the wire was drawn by a wet wire drawing machine to a target wire diameter of 0.35 mm.
Even in this wet drawing, the front drawing is 6 times and the reverse drawing is 5
Repeatedly, and after the final pulling, skin pass (area reduction = 2%) was performed with a double die. The wire temperature immediately after passing through the final die was 148 ° C. The dice conditions are the same as those in the above-mentioned embodiment. (Regarding Comparative Example 9) The conditions were the same as in Example 6 except that the die approach angle was 8 °, the bearing length was 0.5d 1 and the skin pass area reduction rate was 4.5%. (Regarding Comparative Example 10) The die approach angle was set to 8 °, and the other conditions were the same as in Example 6.

【0035】(実施例7について)実施例5の直径0.
20mmのワイヤ及び実施例6の0.35mmのワイヤ
を用いてスチールコードを製作した。即ち、0.20m
mのワイヤ3本をピッチ10mmでS方向に撚り合わせ
て1×3構造の芯ストランドとし、更にこの芯ストラン
ドの周りに0.35mmのワイヤ6本を撚りピッチ18
mmでS方向に撚り合わせて1×3+6構造のスチール
コードとした。 (比較例11について)比較例8のワイヤ及び比較例9
のワイヤを用いて同じく1×3+6構造のスチールコー
ドとした。 (従来例について)従来使われている高強度の1×3
(0.20)+6(0.35)構造のスチールコードで
ある。 以上の実施例、比較例、従来例についての特性を表3と
表4に示す。
(About Example 7) The diameter of the Example 5 was 0.
A steel cord was manufactured using a 20 mm wire and the 0.35 mm wire of Example 6. That is, 0.20m
3 wires of m are twisted in the S direction at a pitch of 10 mm to form a core strand of 1 × 3 structure, and 6 wires of 0.35 mm are twisted around the core strand to make a pitch of 18
The steel cord having a size of 1 × 3 + 6 was twisted in the S direction in mm. (Regarding Comparative Example 11) The wire of Comparative Example 8 and Comparative Example 9
A steel cord having the same 1 × 3 + 6 structure was also formed by using the above wire. (Regarding the conventional example) 1 × 3 with high strength used conventionally
A steel cord with a (0.20) +6 (0.35) structure. The characteristics of the above examples, comparative examples, and conventional examples are shown in Tables 3 and 4.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】この表3から明らかなように、一方向+逆
方向捻回−トルク試験を靭性のパラメータとしその結果
の良好な実施例5,6のスチールワイヤは、引張り強さ
と疲労限をバランスよく実現できており、これを使用し
た実施例7のスチールコードは、C含有量0.80〜
0.85重量%の従来例と比べた場合、約30%強度が
高く、しかも靭性にすぐれ、耐疲労性にも非常に優れ、
また撚り線特性、破断荷重、疲労特性が比較例よりすぐ
れていることがわかる。また、このようなすぐれた特性
は上記の最終伸線工程でのダイス条件、逆引き、スキン
パス減面率、上りワイヤ温度を満足する場合に得られる
ことがわかる。
As is clear from Table 3, the steel wires of Examples 5 and 6 in which the unidirectional + reverse-twisting-torque test was used as a toughness parameter and the results were good were well balanced in tensile strength and fatigue limit. The steel cord of Example 7, which has been realized, has a C content of 0.80 to
Compared with the conventional example of 0.85% by weight, the strength is about 30% higher, the toughness is excellent, and the fatigue resistance is also very excellent.
Also, it can be seen that the twisted wire characteristics, the breaking load, and the fatigue characteristics are superior to those of the comparative example. It is also understood that such excellent properties are obtained when the die conditions, reverse drawing, skin pass area reduction rate, and upstream wire temperature in the final wire drawing step are satisfied.

【0039】[0039]

【発明の効果】以上説明した本発明の請求項1によると
きには、C含有量0.80〜0.85重量%の線材を用
いて従来の高強度材よりも約25〜30%強度の高い極
超高強度を備えしかもそれでいて靭性にすぐれ、加工性
のよい実用的なゴム補強用スチールワイヤとすることが
できるというすぐれた効果が得られる。また請求項2に
よれば、ゴム製品に対する補強効果が高く、耐疲労性に
すぐれ、ゴム製品の軽量化の実現にきわめて有効なスチ
ールコードとすることができるというすぐれた効果が得
られる。
According to claim 1 of the present invention described above, a wire having a C content of 0.80 to 0.85% by weight is used, and a pole having a strength of about 25 to 30% higher than that of a conventional high strength material is used. It has an excellent effect that it can be a practical steel wire for rubber reinforcement, which has super high strength and yet has excellent toughness and good workability. Further, according to the second aspect, it is possible to obtain an excellent effect that the steel cord is highly effective in reinforcing the rubber product, has excellent fatigue resistance, and can be a very effective steel cord for realizing the weight reduction of the rubber product.

【図面の簡単な説明】[Brief description of drawings]

【図1】使用線材と実用ワイヤ強度の関係を示す線図で
ある。
FIG. 1 is a diagram showing a relationship between a used wire rod and a practical wire strength.

【図2】(a)は一方向捻り-トルク試験における捻回-ト
ルク曲線を示す線図であり、(b)は本発明による一方向
+逆方向捻り-トルク試験における捻回-トルク曲線を示
す線図である。
FIG. 2 (a) is a diagram showing a twist-torque curve in a one-way twist-torque test, and (b) shows a twist-torque curve in a one-way + reverse-direction twist-torque test according to the present invention. It is a diagram showing.

【図3】本発明における湿式伸線工程を模式的に示す平
面図である。
FIG. 3 is a plan view schematically showing a wet wire drawing step in the present invention.

【図4】本発明における湿式伸線工程を模式的に示す断
面図である。
FIG. 4 is a cross-sectional view schematically showing a wet wire drawing step in the present invention.

【図5】本発明に使用する引抜きダイスの断面図であ
る。
FIG. 5 is a sectional view of a drawing die used in the present invention.

【図6】本発明で使用する最終引抜きダイス断面図であ
る。
FIG. 6 is a sectional view of a final drawing die used in the present invention.

【図7】スチールワイヤのねじり−トルク試験の概要を
示す説明図である。
FIG. 7 is an explanatory diagram showing an outline of a torsion-torque test of a steel wire.

【符号の説明】[Explanation of symbols]

Y 引張り強度 T ねじり弾性限でのトルク値 t 低下部でのトルク値の最小値 D 引抜きダイス D’ 最終の引抜きダイス 2 ニブ 20 アプローチ部 21 ベアリング部 5a ノーマルダイス 5b スキンパス用ダイス Y Tensile strength T Torque value at torsional elastic limit t Minimum value of torque value at lowered part D Drawing die D'Final drawing die 2 Nib 20 Approaching portion 21 Bearing portion 5a Normal die 5b Skin pass die

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】炭素を0.80〜0.85重量%含有する
炭素鋼線材を使用し、熱処理とめっき及び伸線を行って
得られるワイヤにおいて、その強度が下記式を満足し、
しかも一方向捻り後、逆方向捻りを与える捻回試験にお
いてトルク低下率が7%以下の特性を備えていることを
特徴とするゴム補強用極超高強度スチールワイヤ。 Y≧−200d+450 [Y:引張強さ(kg/mm2)、d:直径(mm)]
1. A wire obtained by subjecting a carbon steel wire rod containing carbon in an amount of 0.80 to 0.85% by weight to heat treatment, plating and wire drawing, the strength of which satisfies the following formula:
Moreover, an ultra-high strength steel wire for rubber reinforcement, which is characterized by having a torque reduction rate of 7% or less in a twisting test in which it is twisted in one direction and then twisted in the opposite direction. Y ≧ −200d + 450 [Y: Tensile strength (kg / mm 2 ), d: Diameter (mm)]
【請求項2】請求項1記載のワイヤを複数本撚り合せて
なるゴム補強用極超高強度スチールコード。
2. An ultra high strength steel cord for rubber reinforcement, which is formed by twisting a plurality of the wires according to claim 1.
JP7084570A 1995-03-17 1995-03-17 Ultra-high strength steel wire and steel cord for rubber reinforcement Expired - Fee Related JP3005743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7084570A JP3005743B2 (en) 1995-03-17 1995-03-17 Ultra-high strength steel wire and steel cord for rubber reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7084570A JP3005743B2 (en) 1995-03-17 1995-03-17 Ultra-high strength steel wire and steel cord for rubber reinforcement

Publications (2)

Publication Number Publication Date
JPH08260097A true JPH08260097A (en) 1996-10-08
JP3005743B2 JP3005743B2 (en) 2000-02-07

Family

ID=13834336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7084570A Expired - Fee Related JP3005743B2 (en) 1995-03-17 1995-03-17 Ultra-high strength steel wire and steel cord for rubber reinforcement

Country Status (1)

Country Link
JP (1) JP3005743B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528115A1 (en) * 2003-10-23 2005-05-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Very thin, high carbon steel wire and method of producing same
US7255758B2 (en) * 1997-08-28 2007-08-14 Sumitomo Electric Industries, Ltd. Steel wire and method of manufacturing the same
JP2008208450A (en) * 2007-01-30 2008-09-11 Nippon Steel Corp Method for manufacturing high strength extra-fine steel wire excellent in strength-ductility balance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255758B2 (en) * 1997-08-28 2007-08-14 Sumitomo Electric Industries, Ltd. Steel wire and method of manufacturing the same
EP1528115A1 (en) * 2003-10-23 2005-05-04 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Very thin, high carbon steel wire and method of producing same
JP2008208450A (en) * 2007-01-30 2008-09-11 Nippon Steel Corp Method for manufacturing high strength extra-fine steel wire excellent in strength-ductility balance

Also Published As

Publication number Publication date
JP3005743B2 (en) 2000-02-07

Similar Documents

Publication Publication Date Title
US5956935A (en) High tensile steel filament member for rubber product reinforcement
JP2772627B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
JP2627373B2 (en) High strength extra fine metal wire
JP2920478B2 (en) Steel wire and steel cord for rubber reinforcement
JPH05200428A (en) Method and device for wire drawing
JPH08132128A (en) Manufacture of high tensile strength steel wire for reinforcing rubber
JP2920474B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
JP2906025B2 (en) High strength steel wire and steel cord for reinforcing rubber products and method for producing high strength steel
JP3844267B2 (en) Steel wire manufacturing method
WO2020173759A1 (en) A steel cord for rubber reinforcement
JP7290640B2 (en) Steel cord for rubber reinforcement
JP3005743B2 (en) Ultra-high strength steel wire and steel cord for rubber reinforcement
JPH1133617A (en) Manufacture of tough steel wire for reinforcing rubber and tough steel code
JP3439329B2 (en) Steel cord for rubber reinforcement
JP2012045580A (en) Method for manufacturing steel wire for reinforcement of rubber article, device for manufacturing the same, steel cord for reinforcement of the rubber article, and pneumatic tire
JPH08284081A (en) Rubber-reinforcing steel cord and radial tire
JPH07268787A (en) Highly strong steel wire excellent in fatigue characteristic and steel cord using the steel wire and rubber product using the steel wire or the steel cord
JPH11241280A (en) Steel wire and its production
JP2000256792A (en) High strength and high ductility extra-fine steel wire and stranded wire and its production
JPH08226085A (en) Ultra-high-strength steel cord and radial tire reinforced therewith
JP2992809B2 (en) Steel cords for rubber reinforcement and radial tires
JP2906035B2 (en) High strength steel cord and rubber tire for rubber reinforcement
JP3101757B2 (en) Steel cord for rubber reinforcement and radial tire
JPH08284082A (en) Rubber-reinforcing steel cord and radial tire
JPH1025676A (en) Steel cord for rubber reinforcement and radial tire

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees