JPH08259493A - Anti-mrsa active substance - Google Patents

Anti-mrsa active substance

Info

Publication number
JPH08259493A
JPH08259493A JP7087384A JP8738495A JPH08259493A JP H08259493 A JPH08259493 A JP H08259493A JP 7087384 A JP7087384 A JP 7087384A JP 8738495 A JP8738495 A JP 8738495A JP H08259493 A JPH08259493 A JP H08259493A
Authority
JP
Japan
Prior art keywords
mrsa
extract
active substance
compound
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7087384A
Other languages
Japanese (ja)
Inventor
Munekazu Iinuma
宗和 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7087384A priority Critical patent/JPH08259493A/en
Publication of JPH08259493A publication Critical patent/JPH08259493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To provide the subject substance consisting of garcinol, having antibacterial activity against methicillin-resistant Staphylococcus aureus(MRSA), effective for suppressing the development of resistant strain, capable of decreasing the amount of antibiotic substance by the combined use with an antibiotic substance and expected to be useful for retarding the development of resistant strain. CONSTITUTION: This anti-MRSA active substance is composed of garcinol of formula. The substance can be produced e.g. by finely cutting the fruit skin of FUKUGI (Garcinia suberiptica Meer), extracting with methanol, distilling off methanol from the extract to obtain a methanol extract, partitioning the extract by adding water and benzene and collecting the benzene extract.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、メチシリン感受黄色
ブドウ球菌(MSSA)のみならず、メチシリン耐性黄
色ブドウ球菌(MRSA)に対して抗菌活性を有し、M
RSAによる院内感染を防止することができる抗MRS
A活性物質に関する。
This invention has antibacterial activity against not only methicillin-sensitive Staphylococcus aureus (MSSA) but also methicillin-resistant Staphylococcus aureus (MRSA).
Anti-MRS that can prevent nosocomial infections due to RSA
A active substance.

【0002】[0002]

【従来の技術】近年、メチシリン耐性黄色ブドウ球菌
(以下、MRSAという)による院内感染は重篤な社会
問題であり、その頻度は特に日本で高い。従来、このM
RSA感染治療には一般に抗生物質が適用されている。
BACKGROUND ART In recent years, nosocomial infection by methicillin-resistant Staphylococcus aureus (hereinafter referred to as MRSA) has been a serious social problem, and its frequency is particularly high in Japan. Conventionally, this M
Antibiotics are commonly applied to treat RSA infections.

【0003】[0003]

【発明が解決しようとする課題】しかし、抗生物質を使
用すると、副作用の問題のほか、新たな耐性菌の出現等
々避けることの困難な問題が生じることは周知の事実で
ある。この発明の目的は、この様なMRSAの耐性の特
徴、抗生物質の乱用を鑑み、抗菌活性を有する物質を微
生物からではなく、高等植物の二次代謝成分に求め、新
規な抗MRSA活性物質を提供するところにある。
However, it is a well-known fact that the use of antibiotics causes not only side effects but also difficult problems to avoid such as the emergence of new resistant bacteria. In view of such characteristics of MRSA resistance and abuse of antibiotics, an object of the present invention is to obtain a novel anti-MRSA active substance by seeking a substance having antibacterial activity not from microorganisms but as a secondary metabolic component of higher plants. It is in the place of providing.

【0004】[0004]

【課題を解決するための手段】一般に、健全な植物体に
は低含量、もしくは全く含有されず、植物が病原菌に感
染したり、物理的な損傷など外部ストレスを加えると、
感染部や羅患部にファイトアレキシンと称する抗菌性を
有する新たな物質が生成される。即ち、ファイトアレキ
シンとは抗菌活性を有する植物由来の二次代謝産物であ
り、病原菌との接触頻度の高い部分、例えば根や、種の
保存の前提として考えた場合、すべての遺伝情報をもつ
種子を保護するため、果皮に高含量で蓄積されている。
従って、植物成分から抗菌活性成分を求めようとする場
合には、ファイトアレキシンの概念を駆使すると共に、
植物器官のうち、根もしくは果皮などの成分を検索する
ことが有効な条件である。
[Means for Solving the Problems] Generally, a healthy plant has a low content or no content at all, and when the plant is infected with a pathogen or is subjected to external stress such as physical damage,
A new substance having an antibacterial property called phytoalexin is produced in the infected area and the affected area. That is, phytoalexin is a secondary metabolite derived from a plant that has antibacterial activity, and has all the genetic information when it is considered as a premise for the preservation of parts with high frequency of contact with pathogens such as roots and species. It is accumulated in high content in the skin to protect the seeds.
Therefore, when trying to obtain an antibacterial active ingredient from plant ingredients, while making full use of the concept of phytoalexin,
It is an effective condition to search for components such as roots or pericarp in plant organs.

【0005】この様な基本的概念に立って、数多くの植
物の根もしくは果皮などを採取して耐性黄色ブドウ球菌
に対する抗菌活性成分を検索・測定した結果、フィリピ
ン原産とされるフクギ (学名:ガルシニア スベリプ
ティカ メール/Garcinia subellip
tica Merr.)から単離された以下の構造式
(1)〜(5)示される特定の物質に抗MRSA活性を有する
ことを見出だした。
Based on such a basic concept, the roots or pericarps of many plants were collected and the antibacterial active ingredient against resistant Staphylococcus aureus was searched and measured. As a result, Fukugi (Scientific name: Garcinia) Subripika mail / Garcinia subellip
tica Merr. The following structural formula isolated from
The specific substances shown in (1) to (5) were found to have anti-MRSA activity.

【0006】すなわち、次の構造式 (1)で示されるガル
シノールからなる抗MRSA活性物質である。
That is, it is an anti-MRSA active substance composed of garcinol represented by the following structural formula (1).

【0007】[0007]

【化6】 [Chemical 6]

【0008】次の構造式 (2)で示されるイソガルシノー
ルからなる抗MRSA活性物質である。
It is an anti-MRSA active substance consisting of isogarcinol represented by the following structural formula (2).

【0009】[0009]

【化7】 [Chemical 7]

【0010】次の構造式 (3)で示されるキサントチモー
ルからなる抗MRSA活性物質である。
It is an anti-MRSA active substance composed of xanthothymol represented by the following structural formula (3).

【0011】[0011]

【化8】 Embedded image

【0012】次の構造式 (4)で示されるイソキサントチ
モールからなる抗MRSA活性物質である。
An anti-MRSA active substance consisting of isoxanthothymol represented by the following structural formula (4).

【0013】[0013]

【化9】 [Chemical 9]

【0014】次の構造式 (5)で示されるシクロキサント
チモールからなる抗MRSA活性物質である。
It is an anti-MRSA active substance consisting of cycloxanthothymol represented by the following structural formula (5).

【0015】[0015]

【化10】 [Chemical 10]

【0016】フクギは常緑の小・中高木で、低地林に散
生するが、沖縄では防風・防火林、街路樹として栽植さ
れる。その樹皮は黄色染料として織物の染色に利用され
る。液果は球形で3〜4個の種子を収めているが、その
果皮は食用にもならず、末利用で廃棄されているのが現
状である。また同属植物のマンゴスチン(学名:ガルシ
ニア マンゴスタナ エル/Garcinia man
gostana L.)の果皮にも上記と同様の抗MR
SA活性成分を含有することを見出だした。このマンゴ
スチンはマラヤ原産といわれ、熱帯〜亜熱帯地方で広く
栽培されている。マンゴスチンの果実の果肉は、食用で
果物の女王とも呼ばれており、その点で有名であるが、
その果肉を除いた果皮は、古くから染剤として利用され
ているが、それ以外の有効利用がなく、前記フクギと同
様、現在のところ、相当量が廃棄されている。
Fukugi are evergreen small / middle / high trees that scatter in lowland forests, but are planted as windbreaks / fireproof forests and street trees in Okinawa. The bark is used as a yellow dye for dyeing textiles. The berries are spherical and contain 3 to 4 seeds, but the rind is not edible and is currently discarded for end use. In addition, mangosteen of the same genus plant (scientific name: Garcinia mangostana el / Garcinia man
gostana L. ) The same anti-MR as above
It was found to contain SA active ingredients. This mangosteen is said to be native to Malaya and is widely cultivated in tropical to subtropical regions. The flesh of mangosteen fruit is edible and is also called the Queen of Fruits, and it is famous in that respect,
The pericarp excluding the flesh has been used as a dyeing agent since ancient times, but it has not been effectively used other than that, and as with the above-mentioned Fukugi, a considerable amount is currently discarded.

【0017】[0017]

【実施例】フクギの果皮から抗MRSA活性物質を抽出
し、活性成分の単離、構造式の同定を試みた。
EXAMPLE An anti-MRSA active substance was extracted from the skin of Fukugi to isolate the active ingredient and to identify its structural formula.

【0018】フクギの果実を果皮と種子に分け、新鮮な
果皮(2.4kg)を細かく切断した後、メタノ−ル(C
3 OH)1.8リットルずつを3回用い室温で抽出し
た。メタノ−を減圧化に留去し、メタノ−ルエキス(2
20g)を得た。
The fruit of Fukugi was divided into a peel and a seed, and fresh peel (2.4 kg) was finely cut, and then methanol (C
H 3 OH) (1.8 liters) was used three times to extract at room temperature. The methanol was distilled off under reduced pressure, and the methanol extract (2
20 g) was obtained.

【0019】メタノ−ルエキスの1部(100g)に水
300mlを加え、ベンゼン(300ml、5回)、酢酸エ
チル(300ml、5回)及びn−ブタノール(300m
l、5回)を加え、分液漏斗で分配し、それぞれのエキ
ス、ベンゼンエキス(3.5g)、酢酸エキス(1.8
g)、およびn−ブタノールエキス(22g)を得た。
300 ml of water was added to 1 part (100 g) of methanol extract, and benzene (300 ml, 5 times), ethyl acetate (300 ml, 5 times) and n-butanol (300 m).
l, 5 times), and distributed with a separating funnel to extract each, benzene extract (3.5 g), and acetic acid extract (1.8 g).
g) and n-butanol extract (22 g) were obtained.

【0020】活性デ−タは示してないが、各エキスにつ
いてMRSA抗菌活性を測定したところ、ベンゼンエキ
ス<低極性分画>にのみ活性が認められた。そこで、ベ
ンゼンエキス中の構成成分を解明し、その抗MRSA活
性物質を同定するために、同エキスのシリカゲルカラム
クロマトグラフィ−による単離を試みた。
Although the activity data is not shown, the MRSA antibacterial activity of each extract was measured, and the activity was found only in the benzene extract <low polarity fraction>. Therefore, in order to elucidate the constituent components in the benzene extract and identify the anti-MRSA active substance, the isolation of the extract was tried by silica gel column chromatography.

【0021】ベンゼンエキス(3g)をシリカゲル(5
0g)に吸着させ、15φ(15cm)×70cmのガラス
製クロマト管を用い、予め充填してあるシリカゲル(5
00g)の上に層積させる。ノルマルヘキサン−酢酸エ
チル系の混合溶媒を用いて濃度勾配をつけながら展開さ
せることにより、化合物1〜5を得た。
Benzene extract (3 g) was added to silica gel (5
0 g) and use a 15φ (15 cm) x 70 cm glass chromatographic tube to pre-fill the silica gel (5
00g). Compounds 1 to 5 were obtained by developing using a mixed solvent of normal hexane-ethyl acetate with a concentration gradient.

【0022】化合物1で示される化合的は、淡黄色針状
晶として得られ、融点123〜124℃、比旋光度
[α]D−138°(c0.1,CHCl3 )、塩化第
2鉄反応陽性であった。電子衝撃イオン化質量分析スペ
クトル(以下EIMS)でm/z602に分子イオンピ
−クが観察されることから、その分子式はC38506
で示される。赤外吸収スペクトル(以下IR)で173
0、1635および3500cm-1に吸収が認められるこ
とから分子内に非共役、共益カルボニル基と水酸基の存
在が示唆された。二次元核磁気共鳴スペクトルの手法に
より、化合物1は次の構造式 (1)で示される文献既知の
ガルシノ−ル(garcinol)と決定した。
The compound 1 is obtained as pale yellow needle crystals, melting point 123-124 ° C., specific rotation [α] D-138 ° (c0.1, CHCl 3 ), ferric chloride. The reaction was positive. Since a molecular ion peak is observed at m / z 602 in electron impact ionization mass spectrometry (hereinafter referred to as EIMS), its molecular formula is C 38 H 50 O 6
Indicated by. 173 in infrared absorption spectrum (IR)
Absorption was observed at 0 , 1635 and 3500 cm -1 , suggesting the presence of non-conjugated, common carbonyl and hydroxyl groups in the molecule. Compound 1 was determined to be a known garcinol represented by the following structural formula (1) by a method of two-dimensional nuclear magnetic resonance spectrum.

【0023】[0023]

【化11】 [Chemical 11]

【0024】スペクトルデータは次の通りである。 EIMS m/z(rel.int.):602(M+ ,42),
533(19),465(100),449(14),
411(15),341(64),231(63),1
37(47),69(65);IRν(cm-1,KB
r):3560,2960,2920,1730,16
35,1605,1530,1450,1295,11
95;UVλ(nm,CH3 OH)(logε):233s
h,278(4.43),348sh.
The spectral data are as follows. EIMS m / z (rel.int.): 602 (M + , 42),
533 (19), 465 (100), 449 (14),
411 (15), 341 (64), 231 (63), 1
37 (47), 69 (65); IRν (cm -1 , KB
r): 3560, 2960, 2920, 1730, 16
35, 1605, 1530, 1450, 1295, 11
95; UV λ (nm, CH 3 OH) (log ε): 233s
h, 278 (4.43), 348sh.

【0025】次に、化合物2は無色不定形晶、融点13
0〜131℃、比旋光度[α]D−224°(c0.
1,CH3 OH)として得られた。化合物1と同様、E
IMSでm/z602に分子イオンピ−クが観察される
ことからC38506 がその分子式であり、構造的には
化合物1の異性体である。ただし、化合物2ではプロト
ン核磁気共鳴スペクトル(以下 1H−NMR)でキレ−
ト性水酸基が認められない。紫外線吸収スペクトル(以
下UV)では233及び277nmに極大吸収が認められ
ることから、文献記載のイソガルシノ−ルと予想され
た。炭素−13核磁気共鳴スペクトル(以下 13C−N
MR)の炭素の帰属も文献と一致するため、化合物2を
次の構造式 (1)で示されるイソガルシノール(isog
alcinol)と同定した。化合物2の構造はガルシ
ノ−ルの一部が環化したものである。
Next, compound 2 is a colorless amorphous crystal, melting point 13
0 to 131 ° C., specific rotation [α] D-224 ° (c0.
1, CH 3 OH). Similar to Compound 1, E
Since a molecular ion peak is observed at m / z 602 by IMS, C 38 H 50 O 6 is its molecular formula, and structurally it is an isomer of Compound 1. However, in compound 2, the proton nuclear magnetic resonance spectrum (hereinafter referred to as 1 H-NMR) shows
No hydroxyl groups are found. In the ultraviolet absorption spectrum (hereinafter referred to as UV), maximum absorption was observed at 233 and 277 nm, and therefore it was expected to be isogarcinol described in the literature. Carbon-13 nuclear magnetic resonance spectrum (hereinafter 13 C-N
Since the carbon assignment of (MR) is also in agreement with the literature, the compound 2 is isogarcinol (isog) represented by the following structural formula (1).
alcinol). The structure of compound 2 is a part of garcinol cyclized.

【0026】[0026]

【化12】 [Chemical 12]

【0027】スペクトルデータは次の通りである。 EIMS m/z(rel.int.):602(M+ ,34),
574(41),465(100),449(34),
410(10),397(10),341(80),2
31(46),137(50),69(55);IRν
(cm-1,KBr):3470,3370,2990,2
930,1720,1680,1605,1520,1
445,1365,1300,1185;UVλ(n
m,CH3 OH)(log ε):233(4.34),2
77(4.41),311sh
The spectral data are as follows. EIMS m / z (rel.int.): 602 (M + , 34),
574 (41), 465 (100), 449 (34),
410 (10), 397 (10), 341 (80), 2
31 (46), 137 (50), 69 (55); IRν
(Cm -1 , KBr): 3470, 3370, 2990, 2
930, 1720, 1680, 1605, 1520, 1
445, 1365, 1300, 1185; UVλ (n
m, CH 3 OH) (log ε): 233 (4.34), 2
77 (4.41), 311sh

【0028】化合物3は淡黄色針状晶として得られ、比
旋光度[α]D−138°(c0.1,CHCl3 )、
塩化第二鉄反応陽性を示す。その分子式はEIMSより
38506 であり、IR及びUVの挙動はガルシノー
ル(galcinol)に近似する。ただ、 1H−NM
Rスペクトルにおいて、化合物1の3個のイソプロピル
基の1個のメチン基に基づくシグナルが消失し、新たに
エンド−メチレン基によるシグナルがδ4.63 ppmに
観察された。即ち、化合物2では2個のイソプロピル基
と1個のイソブテニル基が存在することになる。 従っ
て本化合物3は以下の構造式 (3)で示される文献記載の
キサントチモ−ルと予想でき、 1H−および13C−NM
Rスペクトルの結果より同定した。
Compound 3 was obtained as pale yellow needle crystals and had a specific optical rotation [α] D-138 ° (c0.1, CHCl 3 ),
Shows positive ferric chloride reaction. Its molecular formula is C 38 H 50 O 6 by EIMS, and its IR and UV behavior is similar to that of galcinol. However, 1 H-NM
In the R spectrum, the signal based on one methine group of the three isopropyl groups of compound 1 disappeared, and a new signal based on the endo-methylene group was observed at δ 4.63 ppm. That is, the compound 2 has two isopropyl groups and one isobutenyl group. Therefore, this compound 3 can be expected to be the xanthothymol described in the literature represented by the following structural formula (3), and 1 H- and 13 C-NM
It was identified from the result of the R spectrum.

【0029】[0029]

【化13】 [Chemical 13]

【0030】スペクトルデータは次の通りである。 EIMS m/z(rel.int.):602(M+ ,5),5
33(3),465(42),449(8),411
(5),341(34),231(34),137(5
8),69(100);IRν(cm-1,KBr):32
90,2920,1725,1625,1605,15
20,1440,1295,1190;UVλ(nm,
CH3 OH)(log ε):230sh,276(4.3
0),351sh; 1H−NMR(400 MHz,CD
3 OD)δ:1.48(1H,m,H−6),2.05
(1H,m,H−7),2.25(1H,br d,J
=14 Hz,H−7),7.19(1H,d,J=2
Hz,H−12),6.71(1H,d,J=8H
z,H−15),6.98(1H,dd,J=8,2
Hz,H−16),2.58(1H,m,H−17),
2.70(1H,dd,J=14,9Hz,H−1
7),5.03(1H,m,H−18),1.73(3
H,s,H−20),1.69(3H,s,H−2
1),1.16(3H,s,H−22),1.00(3
H,s,H−23),2.03(1H,m,H−2
4),2.11(1H,m,H−24),4.86(1
H,m,H−25),1.65(3H,s,H−2
7),1.50(3H,s,H−28),1.92(1
H,dd,J=14,6Hz,H−29),2.02
(1H,m,H−29),2.55(1H,m,H−3
0),4.51(2H,br s,H−32),1.6
1(3H,s,H−33),1.46(2H,m,H−
34),1.85(2H,m,H−35),4.63
(2H,br d,J=6 Hz,H=37),1.5
8(3H,s,H−38).
The spectral data are as follows. EIMS m / z (rel.int.): 602 (M + , 5), 5
33 (3), 465 (42), 449 (8), 411
(5), 341 (34), 231 (34), 137 (5
8), 69 (100); IRν (cm -1 , KBr): 32
90, 2920, 1725, 1625, 1605, 15
20, 1440, 1295, 1190; UVλ (nm,
CH 3 OH) (log ε): 230sh, 276 (4.3)
0), 351sh; 1 H-NMR (400 MHz, CD
3 OD) δ: 1.48 (1H, m, H-6), 2.05
(1H, m, H-7), 2.25 (1H, br d, J
= 14 Hz, H-7), 7.19 (1H, d, J = 2)
Hz, H-12), 6.71 (1H, d, J = 8H
z, H-15), 6.98 (1H, dd, J = 8, 2)
Hz, H-16), 2.58 (1H, m, H-17),
2.70 (1H, dd, J = 14,9Hz, H-1
7), 5.03 (1H, m, H-18), 1.73 (3
H, s, H-20), 1.69 (3H, s, H-2)
1), 1.16 (3H, s, H-22), 1.00 (3
H, s, H-23), 2.03 (1H, m, H-2
4), 2.11 (1H, m, H-24), 4.86 (1
H, m, H-25), 1.65 (3H, s, H-2
7), 1.50 (3H, s, H-28), 1.92 (1
H, dd, J = 14,6 Hz, H-29), 2.02
(1H, m, H-29), 2.55 (1H, m, H-3
0), 4.51 (2H, brs, H-32), 1.6
1 (3H, s, H-33), 1.46 (2H, m, H-
34), 1.85 (2H, m, H-35), 4.63.
(2H, br d, J = 6 Hz, H = 37), 1.5
8 (3H, s, H-38).

【0031】化合物4及び5もEIMSにおいて、共
に、分子イオンピ−クm/z602が観察されることよ
り、それらの分子式をC38506 と決定した。
Compounds 4 and 5 were also determined to have a molecular formula of C 38 H 50 O 6 by observing the molecular ion peak m / z 602 in EIMS.

【0032】化合物4は無色定形晶であり、比旋光度
[α]D−158°(c0.1,CH3 OH)の次の構
造式 (4)からなる文献記載のイソキサントチモール(i
soxanthochymol)と同定した。
Compound 4 is a colorless fixed crystal and has an optical rotation [α] D-158 ° (c0.1, CH 3 OH) of the following structural formula (4).
Soxanthochymol).

【0033】[0033]

【化14】 Embedded image

【0034】スペクトルデータは次の通りである。 EIMS m/z(rel.int.):602(M+ ,35),
574(37),533(100),449(36),
410(11),397(9),341(73),23
1(37).IRν(cm-1,KBr):3475,33
50,2965,2930,1715,1680,16
40,1605,1520,1445,1375,12
95,1180; 1H−NMR(400MHz,DM
SO−d6 )δ:1.46(1H,m,H−6),2.
03(1H,m,H−7),2.15(1H,br
d,J=15 Hz,H−7),7.13(1H,d,
J=2 Hz,H−12),6.72(1H,d,J=
8 Hz,H−15),6.92(1H,dd,J=
8,2Hz,H−16),2.33(1H,m,H−1
7),4.78(1H,m,H−18),1.59(3
H,s,H−20),1.53(3H,s,H−2
1),1.05(3H,s,H−22),0.90(3
H,s,H−23),2.02(1H,m,H−2
4),2.50(1H,m,H−24),4.92(1
H,m,H−25),1.66(3H,s,H−2
7),1.61(3H,s,H−28),1.00(1
H,br d,J=13 Hz,H−29),2.87
(1H,dd,J=14,3Hz,H−29),1.3
4(1H,m,H−30),0.84(3H,s,H−
21),1.19(3H,s,H−33),1.78
(1H,m,H−34),2.04(1H,m,H−3
4),5.17(1H,m,H−35),1.74(3
H,s,H−37),1.51(3H,s,H38).
The spectral data are as follows. EIMS m / z (rel.int.): 602 (M + , 35),
574 (37), 533 (100), 449 (36),
410 (11), 397 (9), 341 (73), 23
1 (37). IRν (cm -1 , KBr): 3475, 33
50, 2965, 2930, 1715, 1680, 16
40, 1605, 1520, 1445, 1375, 12
95, 1180; 1 H-NMR (400 MHz, DM
SO-d 6) δ: 1.46 (1H, m, H-6), 2.
03 (1H, m, H-7), 2.15 (1H, br
d, J = 15 Hz, H-7), 7.13 (1H, d,
J = 2 Hz, H-12), 6.72 (1H, d, J =
8 Hz, H-15), 6.92 (1H, dd, J =
8, 2 Hz, H-16), 2.33 (1H, m, H-1
7), 4.78 (1H, m, H-18), 1.59 (3
H, s, H-20), 1.53 (3H, s, H-2
1), 1.05 (3H, s, H-22), 0.90 (3
H, s, H-23), 2.02 (1H, m, H-2
4), 2.50 (1H, m, H-24), 4.92 (1
H, m, H-25), 1.66 (3H, s, H-2
7), 1.61 (3H, s, H-28), 1.00 (1
H, br d, J = 13 Hz, H-29), 2.87.
(1H, dd, J = 14, 3Hz, H-29), 1.3
4 (1H, m, H-30), 0.84 (3H, s, H-
21), 1.19 (3H, s, H-33), 1.78.
(1H, m, H-34), 2.04 (1H, m, H-3
4), 5.17 (1H, m, H-35), 1.74 (3
H, s, H-37), 1.51 (3H, s, H38).

【0035】化合物5は無色定形晶であり、比旋光度
[α]D−160°(c0.1,CH3 OH)の文献未
記載の新規化合物であったので、シクロキサントチモ−
ル(cycloxanthochymol)と命名し、
以下のように構造決定した。即ち、5での 1H−NMR
スペクトルについて、末端メチレン基のシグナルδ4.
73ppmが化合物4に比較して表れている。即ち、化合
物4での3個あるイスプレニル基の1個がイソブテニル
基に変換した構造であり、2次元NMRの解析から変換
されたイソブテニル基はC−30位に置換していること
が明らかとなった。化合物5は次の構造式 (5)で示され
るシクロキサントチモールである。
Compound 5 was a colorless fixed crystal and was a novel compound with a specific optical rotation [α] D-160 ° (c0.1, CH 3 OH) not described in the literature.
And named it as cyclosanthochymol,
The structure was determined as follows. That is, 1 H-NMR at 5
Regarding the spectrum, the signal of the terminal methylene group δ4.
73 ppm appears in comparison to compound 4. That is, one of the three isprenyl groups in compound 4 was converted to an isobutenyl group, and it was revealed from the analysis of two-dimensional NMR that the converted isobutenyl group was substituted at the C-30 position. It was Compound 5 is cycloxanthothymol represented by the following structural formula (5).

【0036】[0036]

【化15】 [Chemical 15]

【0037】スペクトルデータは次の通りである。 高分離型EIMS m/z 602.3588(cal
cd.602.3607for C38506 );UV
λ(nm,CH3 OH)(log ε):2334.3
5),278(4.432),310sh;1H−NMR
(DMSO−d6)δ:1.46(1H,m,H−
6),1.97(1H,m,H−7),2.13(1
H,br d,J=15 Hz,H−7),7.17
(1H,d,J=2 Hz,H−12),6.68(1
H,d,J=8 Hz,H−15),6.84(1H,
dd,J=8,2Hz,H−16),2.33(1H,
m,H−17),2.49(1H,m,H−17),
4.78(1H,m,H−18),1.60(3H,
s,H−20),1.52(3H,s,H−21),
1.05(3H,s,H−22),0.91(3H,
s,H−23),2.04(1H,m,H−24),
2.56(1H,m,H−24),4.90(1H,
m,H−25),1.65(3H,s,H−27),
1.60(3H,s,H−28),1.01(1H,b
r d,J=13.1 Hz,H−29),2.90
(1H,dd,J=14,3Hz,H−29),1.2
4(1H,m,H−30),0.78(3H,s,H−
32),1.17(3H,s,H−33),1.02
(1H,m,H−34),1.47(1H,m,H−3
4),2.06(1H,m,H−35),2.20(1
H,m,H−35),4.73(2H,br s,H−
37),1.68(3H,s,H−38).
The spectrum data are as follows. High resolution EIMS m / z 602.3588 (cal
cd. 602.3607for C 38 H 50 O 6) ; UV
λ (nm, CH 3 OH) (log ε): 2334.3
5), 278 (4.432), 310sh; 1 H-NMR.
(DMSO-d 6 ) δ: 1.46 (1H, m, H-
6), 1.97 (1H, m, H-7), 2.13 (1
H, br d, J = 15 Hz, H-7), 7.17.
(1H, d, J = 2 Hz, H-12), 6.68 (1
H, d, J = 8 Hz, H-15), 6.84 (1H,
dd, J = 8, 2 Hz, H-16), 2.33 (1H,
m, H-17), 2.49 (1H, m, H-17),
4.78 (1H, m, H-18), 1.60 (3H,
s, H-20), 1.52 (3H, s, H-21),
1.05 (3H, s, H-22), 0.91 (3H,
s, H-23), 2.04 (1H, m, H-24),
2.56 (1H, m, H-24), 4.90 (1H,
m, H-25), 1.65 (3H, s, H-27),
1.60 (3H, s, H-28), 1.01 (1H, b
rd, J = 13.1 Hz, H-29), 2.90.
(1H, dd, J = 14, 3Hz, H-29), 1.2
4 (1H, m, H-30), 0.78 (3H, s, H-
32), 1.17 (3H, s, H-33), 1.02
(1H, m, H-34), 1.47 (1H, m, H-3
4), 2.06 (1H, m, H-35), 2.20 (1
H, m, H-35), 4.73 (2H, br s, H-
37), 1.68 (3H, s, H-38).

【0038】次に、それぞれの単離化合物についてMR
SA及びメチシリン感受黄色ブドウ球菌(MSSA)を
用いて最小発育阻止濃度(MIC)を測定した。最小発
育阻止濃度(MIC)は化学療法学会標準法に準じて寒
天平板法で行った。MRSA及びMSSAは、実際に院
内感染した各病棟から得られた単離株a〜cを使用し
た。対照株菌としては、スタフィロコッカス アウレウ
ス(Staphylococcus aureus N
IHJ209P)及び大腸菌(Eschelichia
coli NIHJ K12)を用いた。なお培地は
ミュ−ラ−・ヒントン培地(Muler−Hinto
n)に0.5%グルコ−スを添加したものを用いた。培
養は37℃嫌気的(気相、Nz80%、H2 10%、C
2 10%、Anaerobic glovebox、
AZ型平沢)に3日培養液、発育の認められない最小濃
度をMIC(μg/ml)とした。なお、現在使用中の抗
生物質であるバンコマイシン(vancomycin)
及びゲンタミシン(商標名)をコントロ−ルとして用い
た。
Next, for each isolated compound, MR
The minimum inhibitory concentration (MIC) was measured using SA and methicillin-sensitive Staphylococcus aureus (MSSA). The minimum inhibitory concentration (MIC) was determined by the agar plate method according to the standard method of the Society of Chemotherapy. MRSA and MSSA used isolates ac obtained from each hospital ward that was actually hospital-acquired. As a control strain, Staphylococcus aureus N was used.
IHJ209P) and Escherichia coli (Escherichia)
E. coli NIHJ K12) was used. The medium is Muller-Hinton medium.
n) to which 0.5% glucose was added was used. Culture was anaerobic at 37 ° C (gas phase, Nz 80%, H 2 10%, C
O 2 10%, Anaerobic globebox,
AZ type Hirasawa) was used as a MIC (μg / ml) for 3 days and the minimum concentration at which no growth was observed. In addition, vancomycin (vancomycin), which is an antibiotic currently in use
And Gentamicin (trade name) were used as controls.

【0039】表1は抗MRSA活性及び抗MSSA活性
の結果を示す。
Table 1 shows the results of anti-MRSA activity and anti-MSSA activity.

【0040】[0040]

【表1】 [Table 1]

【0041】上記表1の様に、本発明の化合物1〜5は
いずれも従来よりMRSA治療に用いられているバンコ
マイシンと同程度の活性を示し、特に構造式 (3)で示さ
れる化合物3の効果は格別顕著であった。更には、植物
由来のこれらの抗菌活性物質と微生物由来の抗生物質と
は抗菌、殺菌に対する作用機序が自ずと異なることが容
易に予想できるため、本化合物を単独で使用するほか、
現在使用されている抗MRSA剤との併用により、強力
な相乗作用が期待できる。次に、ガルシニア属植物のマ
ンゴスチンの果皮(2kg)を前記実施例に準じて細かく
裁断した後、メタノ−ル2.2リットルずつを3回用い
室温にて抽出し、メタノ−ルエキス(420g)を得
た。
As shown in Table 1 above, all of the compounds 1 to 5 of the present invention show the same activity as vancomycin which has been conventionally used for the treatment of MRSA, and particularly the compound 3 represented by the structural formula (3). The effect was particularly remarkable. Furthermore, since these antibacterial active substances derived from plants and antibiotics derived from microorganisms can be easily expected to have different antibacterial and bactericidal mechanisms of action, in addition to using this compound alone,
A strong synergistic effect can be expected when used in combination with currently used anti-MRSA agents. Next, the skin of mangosteen of the genus Garcinia (2 kg) was finely cut according to the above-mentioned example, and then 2.2 liters of methanol were extracted three times at room temperature to extract methanol extract (420 g). Obtained.

【0042】その一部(75g)をフクギと同様、ベン
ゼンと水で分配し、ベンゼン可溶部をシリカゲルカラム
クロマトグラフィーにて分離精製し、ガルシノ−ル(g
a−rcinol)(3g)とイソガルシノール(is
ogalcinol)(860mg)及びキサントチモー
ル(xanthochymol)をそれぞれ得た。これ
らの化合物は前記フクギから得られた化合物と同様であ
り、同様の抗MRSA活性及び抗MSSA活性が得られ
た。
A part (75 g) was partitioned with benzene and water in the same manner as Fukugi, and the benzene-soluble portion was separated and purified by silica gel column chromatography to obtain garcinol (g
a-rcinol) (3 g) and isogarcinol (is
Ogalcinol) (860 mg) and xanthothymol were obtained respectively. These compounds were the same as the compounds obtained from Fukugi, and similar anti-MRSA and anti-MSSA activities were obtained.

【0043】本化合物1〜5はフクギ(G.subel
liptica)果実に特徴的に含まれるものでは決し
てなく、同属Garunia属果実に広く分布するもの
である。またGarunia属果実は食用とされるもの
でその果肉に毒性の報告例が皆無であることから、本化
合物の急性毒性は認められない。
The present compounds 1 to 5 are G. subel
It is not characteristically contained in fruits, but is widely distributed in fruits of the same genus Garunia. Further, Garunia fruits are edible, and since there is no report of toxicity in the pulp, no acute toxicity of this compound is observed.

【0044】[0044]

【発明の効果】この発明は、既述した構造式 (1)〜(4)
で示される抗MRSA活性物質であることから、MSS
Aに対しては勿論のこと、MRSAに対して有効であ
り、薬剤として用いた場合、従来の抗生物質にみられる
様な耐性菌出現を抑制することができ、また抗生物質と
の併用効果によって抗生物質使用量を軽減することがで
きることから耐性菌出現の遅延が見込まれる格別顕著な
効果を奏する。
The present invention is based on the structural formulas (1) to (4) described above.
Since it is an anti-MRSA active substance represented by
It is effective not only against A but also against MRSA, and when used as a drug, it is possible to suppress the emergence of resistant bacteria as seen in conventional antibiotics. Since the amount of antibiotics used can be reduced, a particularly remarkable effect is expected in which the emergence of resistant bacteria is expected to be delayed.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 次の構造式 (1)で示されるガルシノール
からなる抗MRSA活性物質。 【化1】
1. An anti-MRSA active substance comprising garcinol represented by the following structural formula (1). Embedded image
【請求項2】 次の構造式 (2)で示されるイソガルシノ
ールからなる抗MRSA活性物質。 【化2】
2. An anti-MRSA active substance comprising isogarcinol represented by the following structural formula (2). Embedded image
【請求項3】 次の構造式 (3)で示されるキサントチモ
ールからなる抗MRSA活性物質。 【化3】
3. An anti-MRSA active substance consisting of xanthothymol represented by the following structural formula (3). Embedded image
【請求項4】 次の構造式 (4)で示されるイソキサント
チモールからなる抗MRSA活性物質。 【化4】
4. An anti-MRSA active substance comprising isoxanthothymol represented by the following structural formula (4). [Chemical 4]
【請求項5】 次の構造式 (5)で示されるシクロキサン
トチモールからなる抗MRSA活性物質。 【化5】
5. An anti-MRSA active substance comprising cycloxanthothymol represented by the following structural formula (5). Embedded image
JP7087384A 1995-03-20 1995-03-20 Anti-mrsa active substance Pending JPH08259493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7087384A JPH08259493A (en) 1995-03-20 1995-03-20 Anti-mrsa active substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7087384A JPH08259493A (en) 1995-03-20 1995-03-20 Anti-mrsa active substance

Publications (1)

Publication Number Publication Date
JPH08259493A true JPH08259493A (en) 1996-10-08

Family

ID=13913409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7087384A Pending JPH08259493A (en) 1995-03-20 1995-03-20 Anti-mrsa active substance

Country Status (1)

Country Link
JP (1) JPH08259493A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047457A3 (en) * 2003-11-13 2005-08-04 Jawaharlal Nehru Ct For Advanc Polyisoprenyl benzophenones as inhibitors of histone acetyl transferases and uses thereof
KR101005173B1 (en) * 2008-02-18 2011-01-04 인제대학교 산학협력단 Fraction from stem bark of Vietnamese medicinal plant Garcinia oblongifoliaClusiaceae and compounds isolated therefrom having antioxidant and cytotoxic activities
CN108191662A (en) * 2018-01-17 2018-06-22 石家庄学院 A kind of mangosteen 01 derivatives and application
GB2623571A (en) * 2022-10-21 2024-04-24 Mootral Innovations Ltd Compositions for reducing methane emission

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005047457A3 (en) * 2003-11-13 2005-08-04 Jawaharlal Nehru Ct For Advanc Polyisoprenyl benzophenones as inhibitors of histone acetyl transferases and uses thereof
KR101005173B1 (en) * 2008-02-18 2011-01-04 인제대학교 산학협력단 Fraction from stem bark of Vietnamese medicinal plant Garcinia oblongifoliaClusiaceae and compounds isolated therefrom having antioxidant and cytotoxic activities
CN108191662A (en) * 2018-01-17 2018-06-22 石家庄学院 A kind of mangosteen 01 derivatives and application
CN108191662B (en) * 2018-01-17 2020-10-23 石家庄学院 Mangosteen alcohol derivative and application thereof
GB2623571A (en) * 2022-10-21 2024-04-24 Mootral Innovations Ltd Compositions for reducing methane emission

Similar Documents

Publication Publication Date Title
Schulz et al. Biologically active secondary metabolites of endophytic Pezicula species
Woldemichael et al. Constituents of antibacterial extract of Caesalpinia paraguariensis Burk.
Wicklow et al. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize
Stierle et al. The phytotoxins of Mycosphaerella fijiensis, the causative agent of black Sigatoka disease of bananas and plantains
Olguin-Uribe et al. 6-bromoindole-3-carbaldehyde, from an Acinetobacter sp. bacterium associated with the ascidian Stomozoa murrayi
Kastanias et al. Herbicidal potential of pyrenophorol isolated from a Drechslera avenae pathotype
Vargas-Arispuro et al. Antifungal lignans from the creosotebush (Larrea tridentata)
US20090257984A1 (en) Antifungal compositions containing the endophyte fungus alternaria alternata and or its metabolites, as antagonist agents of plasmopara viticola
Menegatti et al. Paenibacillus polymyxa associated with the stingless bee Melipona scutellaris produces antimicrobial compounds against entomopathogens
US4731366A (en) Discorhabdin compositions and their methods of use
Tesaki et al. 4-Hydroxy-3-nitrophenylacetic and sinapic acids as antibacterial compounds from mustard seeds
Pergomet et al. Activity of the pterophyllins 2 and 4 against postharvest fruit pathogenic fungi. Comparison with a synthetic analog and related intermediates
Ango et al. Chemical constituents of Trilepisium madagascariense (Moraceae) and their antimicrobial activity
Savi et al. Secondary metabolites produced by Microbacterium sp. LGMB471 with antifungal activity against the phytopathogen Phyllosticta citricarpa
Chen et al. Isobenzofuranones and isocoumarins from kiwi endophytic fungus Paraphaeosphaeria sporulosa and their antibacterial activity against Pseudomonas syringae pv. actinidiae
El-Sawy et al. Secondary metabolites of the entomopathogenic fungus, Cladosporium cladosporioides and its relation to toxicity of cotton aphid, Aphis gossypii (Glov.)
Mejdoub et al. Chemical variability of Atractylis gummifera essential oils at three developmental stages and investigation of their antioxidant, antifungal and insecticidal activities
Alurappa et al. Antimicrobial activity and phytochemical analysis of endophytic fungal extracts isolated from ethno-pharmaceutical plant Rauwolfia tetraphylla L.
Evidente et al. Sphaeropsidone and episphaeropsidone, phytotoxic dimedone methylethers produced by Sphaeropsis sapinea f. sp. cupressi grown in liquid culture
Nkanwen et al. Antibacterial agents from the leaves of Crinum purpurascens herb (Amaryllidaceae)
Evidente et al. Chemical and biological characterisation of sapinopyridione, a phytotoxic 3, 3, 6-trisubstituted-2, 4-pyridione produced by Sphaeropsis sapinea, a toxigenic pathogen of native and exotic conifers, and its derivatives
Dosumu et al. Isolation of 3-(4-hydroxyphenyl) methylpropenoate and bioactivity evaluation of Gomphrena celosioides extracts
Chen et al. Antimicrobial activity of Araucaria cunninghamii Sweet and the chemical constituents of its twigs and leaves
Enyi et al. Secondary metabolites from endophytic fungi of Moringa oleifera: Antimicrobial and antioxidant properties
JPH08259493A (en) Anti-mrsa active substance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees