JPH08254439A - Optical rotary encoder - Google Patents

Optical rotary encoder

Info

Publication number
JPH08254439A
JPH08254439A JP5733695A JP5733695A JPH08254439A JP H08254439 A JPH08254439 A JP H08254439A JP 5733695 A JP5733695 A JP 5733695A JP 5733695 A JP5733695 A JP 5733695A JP H08254439 A JPH08254439 A JP H08254439A
Authority
JP
Japan
Prior art keywords
scale
rotary encoder
cylindrical
rotating body
optical rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5733695A
Other languages
Japanese (ja)
Inventor
Katsuhiko Suzuki
克彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5733695A priority Critical patent/JPH08254439A/en
Publication of JPH08254439A publication Critical patent/JPH08254439A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To make an extent of resolution accuracy improvable and also cost reducible, aside from being miniaturizable. CONSTITUTION: Four graduation parts 11a to 11d of each scale 11 installed in a cylindrical rotor 1 are rotatively moved by each rotation of a rotary shaft 2 connected to a measured body performing a rotation and a rectilinear movement and this cylindrical rotor 1 clamped to this rotary shaft 2. At this time, each light out of four light projecting means 15a to 15d is irradiated to these graduation parts 11a to 11d, while each reflected light reflected out of these graduation parts 11a to 11d is led to respective detecting means 16a to 16d as much as the number conformed to a turning angle of the cylindrical rotor 1, and here they are converted into an electrical signal (pulse sick). On the basis of this electric signal, those of tuning angle, rotational direction, rotational speed or the like of the cylindrical rotor 1 and the rotary shaft 2 are operated, and on the basis of the operated results, the turning angle, the rotational direction and the rotational speed or the like of the measured body are measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学式ロータリエンコ
ーダに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical rotary encoder.

【0002】[0002]

【従来の技術】従来の光学式ロータリエンコーダを図6
により説明すると、30が軸で、この軸30には、回転
板31が設けられている。この回転板31は、アクリル
樹脂などの透明基板32を有し、同透明基板32には、
反射率を異ならせるためのピツト33が形成され、同透
明基板32の裏面には、Al膜34と保護膜35とが設
けられて、全体が光ディスクになっている。
2. Description of the Related Art A conventional optical rotary encoder is shown in FIG.
The shaft 30 is provided with a rotary plate 31. The rotating plate 31 has a transparent substrate 32 made of acrylic resin or the like, and the transparent substrate 32 has:
A pit 33 is formed to make the reflectance different, and an Al film 34 and a protective film 35 are provided on the back surface of the transparent substrate 32 to form an optical disc as a whole.

【0003】36が光源の半導体レーザで、その出力光
は、ビームスプリツタ37を通過後、絞り込みレンズ3
8により集束され、上記回転板31上へ照射されて、そ
こから反射する。この反射光は、絞り込みレンズ38を
通過後、ビームスプリツタ37により反射されて、光検
出器39に到達し、この光検出器39により光強度変化
として検出される。
Reference numeral 36 is a semiconductor laser as a light source, and its output light passes through a beam splitter 37 and then a focusing lens 3
It is focused by 8 and is irradiated onto the rotating plate 31 and reflected from there. This reflected light passes through the aperture lens 38, is reflected by the beam splitter 37, reaches the photodetector 39, and is detected by the photodetector 39 as a change in light intensity.

【0004】以上の作用により、光検出器39により検
出した反射光の光強度変化の回数により、ピツト33の
数や形状が検出され、それにより軸30の回転角が検出
される。また光源側の光学系の一部と受光側の光学系の
一部とが共用可能なので、小型が可能になる。
With the above operation, the number and shape of the pits 33 are detected by the number of changes in the light intensity of the reflected light detected by the photodetector 39, thereby detecting the rotation angle of the shaft 30. Further, since a part of the optical system on the light source side and a part of the optical system on the light receiving side can be shared, the size can be reduced.

【0005】また回転板31に光ディスクを使用してい
るので、回転板31上のスリツトの間隔(ピツト間隔)
が従来の回転板のスリツト間隔よりも狭くなって、回転
板の外径を大きくしなくても、高精度の検出が可能にな
る。なお図7に示すように半導体レーザ36に対向して
光フアイバー40を設け、その先端部にセルフオクレン
ズ41を設けて、回転板31のピツト33と対向させる
とともに、光フアイバー40の途中に光フアイバーカツ
プラ42を介して光フアイバー43を設け、この光フア
イバー43に対向して光検出器29を設けても、上記と
同様の作用が行われる。
Further, since an optical disk is used for the rotary plate 31, the slit interval (pit interval) on the rotary plate 31.
Is narrower than the slit interval of the conventional rotary plate, and highly accurate detection is possible without increasing the outer diameter of the rotary plate. As shown in FIG. 7, an optical fiber 40 is provided so as to face the semiconductor laser 36, and a self-ocular lens 41 is provided at the tip end of the optical fiber 40 so as to face the pit 33 of the rotary plate 31. Even if the optical fiber 43 is provided via the fiber cutter 42 and the photodetector 29 is provided so as to face the optical fiber 43, the same operation as described above is performed.

【0006】[0006]

【発明が解決しようとする課題】前記従来の光学式ロー
タリエンコーダでは、回転円板31の側面に、光学的に
異なる応答特性をもつ部分を所定規則に従って設けたス
ケールを放射状に設けており、回転円板31の外周側と
内周側とでは、分解精度が違うので、分解精度を向上さ
せるためには、回転円板31の外径を大きくして対応し
なければならなくて、光学式ロータリエンコーダが大型
化する上に、コスト高になるという問題があった。
In the above-mentioned conventional optical rotary encoder, a scale having a portion having optically different response characteristics according to a predetermined rule is radially provided on the side surface of the rotary disc 31 to rotate the rotary disc 31. Since the disassembling accuracy is different between the outer peripheral side and the inner peripheral side of the disc 31, in order to improve the disassembling precision, it is necessary to increase the outer diameter of the rotating disc 31 to cope with it. There is a problem that the encoder becomes large and the cost becomes high.

【0007】本発明は前記の問題点に鑑み提案するもの
であり、その目的とする処は、分解精度を向上でき、
小型化できる上に、コストを低減できる光学式ロータ
リエンコーダを提供しようとする点にある。
The present invention has been proposed in view of the above problems, and its object is to improve the disassembly accuracy,
An object of the present invention is to provide an optical rotary encoder that can be reduced in size and can be reduced in cost.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の光学式ロータリエンコーダは、光学式ロ
ータリエンコーダの回転体を断面コ字状の円筒構造と
し、スケールを同円筒回転体に円周方向に沿って設け、
ボスを同円筒回転体の軸心部に一体成形により設けてい
る(請求項1)。
In order to achieve the above object, an optical rotary encoder according to the present invention has a rotary body of an optical rotary encoder having a cylindrical structure with a U-shaped cross section, and a scale having the same cylindrical rotary body. Is provided along the circumference of
The boss is integrally formed on the axial center of the cylindrical rotating body (claim 1).

【0009】前記光学式ロータリエンコーダにおいて、
光学的に応答特性の異なる目盛部を所定規則に従って配
列したスケールを前記円筒回転体の外周面に円周方向に
沿って設けるとともに軸方向に複数列に設け、同各スケ
ールに光を照射する投光手段と同各スケールからの反射
光を検出する検出手段とを同各スケールに対向して設け
てよい(請求項2)。
In the optical rotary encoder,
A scale in which graduations having optically different response characteristics are arranged according to a predetermined rule is provided along the circumferential direction on the outer peripheral surface of the cylindrical rotating body and is provided in a plurality of rows in the axial direction, and the scales are irradiated with light. The light means and the detection means for detecting the reflected light from the respective scales may be provided so as to face the respective scales (claim 2).

【0010】前記光学式ロータリエンコーダにおいて、
各スケールを円筒回転体の内外周面に円周方向に沿って
設け、投光手段と検出手段とを円筒回転体の内部と外部
とに設けてもよい(請求項3)。前記光学式ロータリエ
ンコーダにおいて、各スケールを円筒回転体の内周面と
端面とに円周方向に沿って設け、投光手段と検出手段と
を円筒回転体の内部と端面外方とに設けてもよい(請求
項4)。
In the optical rotary encoder,
Each scale may be provided on the inner and outer peripheral surfaces of the cylindrical rotating body along the circumferential direction, and the light projecting means and the detecting means may be provided inside and outside the cylindrical rotating body (claim 3). In the optical rotary encoder, each scale is provided on the inner peripheral surface and the end surface of the cylindrical rotating body along the circumferential direction, and the light projecting means and the detecting means are provided inside the cylindrical rotating body and outside the end surface. (Claim 4)

【0011】前記光学式ロータリエンコーダにおいて、
各スケールの目盛部を開口部にしてもよい(請求項
5)。
In the above optical rotary encoder,
The scale portion of each scale may be an opening (claim 5).

【0012】[0012]

【作用】本発明の光学式ロータリエンコーダは前記のよ
うに構成されており、回転や直線移動を行う被測定体に
連結した回転軸と同回転軸に固定した円筒回転体の回転
により、同円筒回転体に設けた各スケールの目盛部を回
転移動させる。このとき、各投光手段からの光を各目盛
部へ照射する一方、円筒回転体の回転角度に応じた数だ
け各目盛部から反射した反射光を各検出手段へ導いて、
ここで電気信号(パルス信号)に変換し、この電気信号
に基づいて円筒回転体及び回転軸の回転角度、回転方
向、回転速度等を演算し、この演算結果に基づいて被測
定体の回転角度、回転方向、回転速度等を測定する。
The optical rotary encoder of the present invention is configured as described above, and the rotary shaft connected to the object to be measured that rotates and linearly moves and the cylindrical rotary member fixed to the rotary shaft rotate the same. The scale part of each scale provided on the rotating body is rotated. At this time, while irradiating each scale portion with light from each light projecting means, guide the reflected light reflected from each scale portion by the number corresponding to the rotation angle of the cylindrical rotary member to each detecting means,
Here, it is converted into an electric signal (pulse signal), and the rotation angle, rotation direction, rotation speed, etc. of the cylindrical rotating body and the rotating shaft are calculated based on this electric signal, and the rotation angle of the measured object is calculated based on this calculation result. , Rotation direction, rotation speed, etc. are measured.

【0013】[0013]

【実施例】【Example】

(第1実施例)次に本発明の光学式ロータリエンコーダ
を図1に示す第1実施例により説明すると、1が光学式
ロータリエンコーダの回転体で、同回転体1は、断面コ
字状の円筒構造になっている。1aが同円筒回転体1の
軸心部に配設したボスで、円筒回転体1とボス1aとが
アクリル樹脂等を素材とした一体成形品として形成され
ている。このボス1aには、ボス孔1bが設けられてい
る。なお円筒回転体1とボス孔1bとの長さは同じであ
る。
(First Embodiment) Next, an optical rotary encoder of the present invention will be described with reference to a first embodiment shown in FIG. 1. Reference numeral 1 is a rotary member of the optical rotary encoder, and the rotary member 1 has a U-shaped cross section. It has a cylindrical structure. Reference numeral 1a denotes a boss arranged at the axial center of the cylindrical rotary body 1, and the cylindrical rotary body 1 and the boss 1a are formed as an integrally molded product made of acrylic resin or the like. The boss 1a has a boss hole 1b. The cylindrical rotary body 1 and the boss hole 1b have the same length.

【0014】2が上記ボス孔1bに嵌挿される回転軸
で、同回転軸2のボス孔1bに嵌挿される部分には、ロ
ーレットやスパイラル加工を施して、この部分に接着剤
を塗布し、この回転軸2をボス孔1bに嵌挿して、回転
軸2と円筒回転体1のとを一体化している。3が同回転
軸2の両端部をエンコーダ本体(図示せず)に回転可能
に支持する軸受である。なおこの軸受3には、ベアリン
グまたは平面ブッシュの軸受を使用する。
Reference numeral 2 denotes a rotary shaft fitted into the boss hole 1b, and a portion of the rotary shaft 2 fitted into the boss hole 1b is knurled or spiral processed, and an adhesive is applied to this portion. The rotating shaft 2 and the cylindrical rotating body 1 are integrated by inserting the rotating shaft 2 into the boss hole 1b. Reference numeral 3 is a bearing that rotatably supports both ends of the rotary shaft 2 on an encoder body (not shown). As the bearing 3, a bearing or a plain bush bearing is used.

【0015】11が上記円筒回転体1の外周面上に所定
規則に従って設けた複数のスケールで、同各スケール1
1は、光学的に異なる応答特性をもつ部分を有してい
る。例えば各スケール11の目盛部11a〜11dその
ものは、反射率が高くて、光反射部になり、各スケール
11の目盛部11a〜11dの間は、反射率が低くて光
吸収部になっている。
Reference numeral 11 denotes a plurality of scales provided on the outer peripheral surface of the cylindrical rotating body 1 in accordance with a predetermined rule.
Reference numeral 1 has a portion having optically different response characteristics. For example, the scale portions 11a to 11d of each scale 11 themselves have high reflectance and become light reflecting portions, and the scale portions 11a to 11d of each scale 11 have low reflectance and become light absorbing portions. .

【0016】なお各スケール11の目盛部11a〜11
dそのものを光吸収部、各スケール11の目盛部11a
〜11dの間を光反射部にしてもよい。また円筒回転体
1の軸方向長さを変えて、スケール11の数と後記投光
手段及び検出手段の数を増減変更してもよい。15が投
光手段(発光手段)、16が検出手段(受光手段)で、
本実施例では、各スケール11の目盛部11a〜11d
に対応して複数の投光手段15a〜15dと検出手段1
6a〜16dとを相互に干渉しないように関係位置を変
えてエンコーダ本体(図示せず)に設置している。なお
投光手段15、検出手段16には、発光ダイオード、フ
オトダイオード等を使用する。
The scale portions 11a to 11 of each scale 11 are
d itself is the light absorbing portion, and the scale portion 11a of each scale 11
The light reflection part may be provided between 11d. Further, the axial length of the cylindrical rotating body 1 may be changed to increase or decrease the number of scales 11 and the number of light projecting means and detecting means described later. 15 is a light emitting means (light emitting means), 16 is a detecting means (light receiving means),
In this embodiment, the scale portions 11a to 11d of each scale 11 are used.
Corresponding to the plurality of light projecting means 15a to 15d and the detecting means 1
The relational positions of 6a to 16d are changed so as not to interfere with each other, and they are installed in the encoder body (not shown). A light emitting diode, a photodiode, or the like is used for the light projecting unit 15 and the detecting unit 16.

【0017】次に前記図1に示す光学式ロータリエンコ
ーダの作用を具体的に説明する。回転や直線移動を行う
被測定体に直接または他の部材を介して連結した回転軸
2と同回転軸2に固定した円筒回転体1の回転により、
同円筒回転体1の外周面に設けた各スケール11の目盛
部11a〜11dも回転移動する。このとき、同回転系
と、同回転系に対して独立して固定された投光手段15
a〜15d及び検出手段16a〜16dとの関係位置
は、各スケール11の目盛部11a〜11dが回転した
量だけずれる。
Next, the operation of the optical rotary encoder shown in FIG. 1 will be specifically described. By the rotation of the rotary shaft 2 connected to the measured object that rotates or moves linearly or via another member, and the rotation of the cylindrical rotary body 1 fixed to the rotary shaft 2,
The scale portions 11a to 11d of each scale 11 provided on the outer peripheral surface of the cylindrical rotating body 1 also rotate and move. At this time, the rotating system and the light projecting means 15 independently fixed to the rotating system.
The positions of the a to 15d and the detecting means 16a to 16d are displaced by the amount by which the scale portions 11a to 11d of each scale 11 are rotated.

【0018】その際、投光手段15a〜15dは、集光
した光を各スケール11の目盛部11a〜11dへ照射
することにより、円筒回転体1の回転角度に応じた数だ
け目盛部11a〜11dから反射した反射光を検出手段
16a〜16dへ導いて、ここで電気信号(パルス信
号)に変換し、アンプ(図示せず)を介して演算装置
(図示せず)へ導いて、ここで上記電気信号(パルス信
号)に基づいて円筒回転体1及び回転軸2の回転角度、
回転方向、回転速度等を演算し、この演算結果に基づい
て被測定体の回転角度、回転方向、回転速度等を測定す
る。
At this time, the light projecting means 15a to 15d irradiate the graduated portions 11a to 11d of each scale 11 with the condensed light, and the graduated portions 11a to 11d corresponding to the rotation angle of the cylindrical rotating body 1 are irradiated. The reflected light reflected from 11d is guided to the detection means 16a to 16d, where it is converted into an electric signal (pulse signal) and guided to an arithmetic unit (not shown) via an amplifier (not shown), where Rotation angles of the cylindrical rotary body 1 and the rotary shaft 2 based on the electric signal (pulse signal),
The rotation direction, the rotation speed, etc. are calculated, and the rotation angle, the rotation direction, the rotation speed, etc. of the measured object are measured based on the calculation result.

【0019】(第2実施例)図2は、本発明の光学式ロ
ータリエンコーダの第2実施例を示している。この実施
例が前記第1実施例と異なる点を説明すると、この実施
例では、各スケール11の目盛部11a〜11dを円筒
回転体1の内周面に設け、同各スケール11に対応した
投光手段15a〜15d及び検出手段16a〜16dを
ブラケット(図示せず)を介して円筒回転体1の内部に
設置している。
(Second Embodiment) FIG. 2 shows a second embodiment of the optical rotary encoder of the present invention. Explaining the difference of this embodiment from the first embodiment, in this embodiment, the scale parts 11a to 11d of each scale 11 are provided on the inner peripheral surface of the cylindrical rotary member 1, and the scale corresponding to each scale 11 is provided. The light means 15a to 15d and the detection means 16a to 16d are installed inside the cylindrical rotating body 1 via a bracket (not shown).

【0020】この実施例の作用は、前記第1実施例と同
じである。なおこの実施例では、大型化、コスト高を伴
わずに分解精度が向上させる。 (第3実施例)図3は、本発明の光学式ロータリエンコ
ーダの第3実施例を示している。この実施例は、第1、
2実施例のものを組み合わせたものであり、各スケール
11の目盛部11a〜11dを円筒回転体1の外周面及
び内周面に設け、同各スケール11に対応した投光手段
15a〜15d及び検出手段16a〜16dをブラケッ
ト(図示せず)を介して円筒回転体1の外部及び内部に
設置している。
The operation of this embodiment is the same as that of the first embodiment. In addition, in this embodiment, the disassembly accuracy is improved without increasing the size and cost. (Third Embodiment) FIG. 3 shows a third embodiment of the optical rotary encoder of the present invention. In this embodiment,
The scale parts 11a to 11d of each scale 11 are provided on the outer peripheral surface and the inner peripheral surface of the cylindrical rotating body 1, and the light projecting means 15a to 15d corresponding to each scale 11 are provided. The detection means 16a to 16d are installed outside and inside the cylindrical rotary body 1 via brackets (not shown).

【0021】この実施例でも、大型化、コスト高を伴わ
ずに分解精度が向上させる。 (第4実施例)図4は、本発明の光学式ロータリエンコ
ーダの第4実施例を示している。この実施例では、前記
第2実施例と同様に構成する一方、各スケール11の目
盛部11a〜11dを円筒回転体1の側面に設け、同各
スケール11に対応した投光手段15a〜15d及び検
出手段16a〜16dをブラケット(図示せず)を介し
て円筒回転体1の側面外方に設置している。
Also in this embodiment, the disassembly accuracy is improved without increasing the size and cost. (Fourth Embodiment) FIG. 4 shows a fourth embodiment of the optical rotary encoder of the present invention. In this embodiment, while being configured similarly to the second embodiment, the scale portions 11a to 11d of each scale 11 are provided on the side surface of the cylindrical rotary body 1, and the light projecting means 15a to 15d corresponding to each scale 11 and The detecting means 16a to 16d are installed on the outside of the side surface of the cylindrical rotating body 1 via a bracket (not shown).

【0022】(第5実施例)図5は、本発明の光学式ロ
ータリエンコーダの第5実施例を示している。この実施
例では、前記第1実施例の各スケール11の目盛部11
a〜11dを開口部21a〜21dに替えている。そし
て円筒回転体1の外部に投光手段22a〜22dを設置
し、円筒回転体1の内部に検出手段23a〜23dを設
置している。
(Fifth Embodiment) FIG. 5 shows a fifth embodiment of the optical rotary encoder of the present invention. In this embodiment, the scale portion 11 of each scale 11 of the first embodiment is
The openings a to 11d are replaced with openings 21a to 21d. Then, the light projecting means 22a to 22d are installed outside the cylindrical rotating body 1, and the detecting means 23a to 23d are installed inside the cylindrical rotating body 1.

【0023】この光学式ロータリエンコーダでは、開口
部21a〜21dを有する円筒回転体1が回転している
ときに、投光手段22a〜22dからの光を開口部21
a〜21dを介して検出手段23a〜23dへ導き、さ
らにアンプを介して演算装置へ導く。
In this optical rotary encoder, when the cylindrical rotating body 1 having the openings 21a to 21d is rotating, the light from the light projecting means 22a to 22d is opened.
It is led to the detection means 23a to 23d via a to 21d, and further led to the arithmetic unit via an amplifier.

【0024】[0024]

【発明の効果】本発明の光学式ロータリエンコーダは前
記のように回転や直線移動を行う被測定体に連結した回
転軸と同回転軸に固定した円筒回転体の回転により、同
円筒回転体に設けた各スケールの目盛部を回転移動させ
る。このとき、各投光手段からの光を各目盛部へ照射す
る一方、円筒回転体の回転角度に応じた数だけ各目盛部
から反射した反射光を各検出手段へ導いて、ここで電気
信号(パルス信号)に変換し、この電気信号に基づいて
円筒回転体及び回転軸の回転角度、回転方向、回転速度
等を演算し、この演算結果に基づいて被測定体の回転角
度、回転方向、回転速度等を測定するので、次の効果を
達成できる。即ち、 (1)円柱体にスケールを設けた場合、円柱体のねじ
れ、撓み、振れ等の影響を受け易くて、分解精度に悪い
影響を与えるが、本発明では、スケールを設ける部材を
断面コ字状の円筒構造にしており、ねじれ、撓み、振れ
等の影響を無くすことができて、分解精度を向上でき
る。 (2)円板の側面にスケールを設けた場合、外周側は分
解精度がよいが、内周側は分割精度が悪いという問題が
あるが、本発明では、スケールを円筒回転体の円周方向
に直線的に設けており、この点でも分解精度を向上でき
る。 (3)スケールを設ける部材を断面コ字状の円筒構造と
し、ボスを同円筒回転体の軸心部に一体成形により設け
ており、製作が容易で、コストを低減できる。また円筒
回転体の内部を検出手段等の設置に利用できるので、光
学式ロータリエンコーダを小型化できる。
As described above, the optical rotary encoder of the present invention is rotated by the rotary shaft connected to the object to be rotated or moved linearly and the cylindrical rotary member fixed to the rotary shaft to rotate the same. The scale part of each scale provided is rotated. At this time, while irradiating each scale portion with light from each light projecting means, the reflected light reflected from each scale portion by a number corresponding to the rotation angle of the cylindrical rotating body is guided to each detecting means, where an electric signal is generated. (Pulse signal), based on this electrical signal to calculate the rotation angle, rotation direction, rotation speed, etc. of the cylindrical rotating body and the rotating shaft, and based on this calculation result, the rotation angle, rotating direction, Since the rotation speed and the like are measured, the following effects can be achieved. That is, (1) When a scale is provided on a columnar body, it is easily affected by twisting, bending, and deflection of the columnar body, which adversely affects the disassembly accuracy. Since it has a character-shaped cylindrical structure, it is possible to eliminate the effects of twisting, bending, and shake, and improve the disassembly accuracy. (2) When the scale is provided on the side surface of the disc, the disassembling accuracy is good on the outer peripheral side, but the division accuracy is bad on the inner peripheral side. However, in the present invention, the scale is arranged in the circumferential direction of the cylindrical rotating body. Since it is provided linearly, the disassembly accuracy can be improved also in this respect. (3) The member on which the scale is provided has a cylindrical structure with a U-shaped cross section, and the boss is integrally formed on the axial center of the cylindrical rotating body, which facilitates manufacturing and reduces cost. Further, since the inside of the cylindrical rotating body can be used for installing the detecting means and the like, the optical rotary encoder can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学式ロータリエンコーダの第1実施
例を示す斜視図である。
FIG. 1 is a perspective view showing a first embodiment of an optical rotary encoder of the present invention.

【図2】本発明の光学式ロータリエンコーダの第2実施
例を示す斜視図である。
FIG. 2 is a perspective view showing a second embodiment of the optical rotary encoder of the present invention.

【図3】本発明の光学式ロータリエンコーダの第3実施
例を示す斜視図である。
FIG. 3 is a perspective view showing a third embodiment of the optical rotary encoder of the present invention.

【図4】本発明の光学式ロータリエンコーダの第4実施
例を示す斜視図である。
FIG. 4 is a perspective view showing a fourth embodiment of the optical rotary encoder of the present invention.

【図5】本発明の光学式ロータリエンコーダの第4実施
例を示す斜視図である。
FIG. 5 is a perspective view showing a fourth embodiment of the optical rotary encoder of the present invention.

【図6】従来の光学式ロータリエンコーダの一例を示す
側面図である。
FIG. 6 is a side view showing an example of a conventional optical rotary encoder.

【図7】従来の光学式ロータリエンコーダの他の例を示
す側面図である。
FIG. 7 is a side view showing another example of a conventional optical rotary encoder.

【符号の説明】[Explanation of symbols]

1 円筒回転体 1a ボス 1b ボス孔 2 回転軸 3 軸受 11 スケール 11a〜11d 目盛部 15a〜15d 投光手段 16a〜16d 検出手段 DESCRIPTION OF SYMBOLS 1 Cylindrical rotating body 1a Boss 1b Boss hole 2 Rotating shaft 3 Bearing 11 Scale 11a to 11d Scale part 15a to 15d Light projecting means 16a to 16d Detection means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光学式ロータリエンコーダの回転体を断
面コ字状の円筒構造とし、スケールを同円筒回転体に円
周方向に沿って設け、ボスを同円筒回転体の軸心部に一
体成形により設けたことを特徴とする光学式ロータリエ
ンコーダ。
1. A rotary body of an optical rotary encoder has a cylindrical structure with a U-shaped cross section, a scale is provided on the cylindrical rotary body along a circumferential direction, and a boss is integrally formed on an axial center portion of the cylindrical rotary body. An optical rotary encoder characterized by being provided by.
【請求項2】 光学的に応答特性の異なる目盛部を所定
規則に従って配列したスケールを前記円筒回転体の外周
面に円周方向に沿って設けるとともに軸方向に複数列に
設け、同各スケールに光を照射する投光手段と同各スケ
ールからの反射光を検出する検出手段とを同各スケール
に対向して設けた請求項1記載の光学式ロータリエンコ
ーダ。
2. A scale in which graduations having different optical response characteristics are arranged according to a predetermined rule is provided along the circumferential direction on the outer peripheral surface of the cylindrical rotating body and is provided in a plurality of rows in the axial direction. The optical rotary encoder according to claim 1, wherein a light projecting means for irradiating light and a detecting means for detecting reflected light from each scale are provided so as to face each scale.
【請求項3】 前記各スケールを前記円筒回転体の内外
周面に円周方向に沿って設け、前記投光手段と前記検出
手段とを前記円筒回転体の内部と外部とに設けた請求項
1記載の光学式ロータリエンコーダ。
3. The scale is provided on the inner and outer peripheral surfaces of the cylindrical rotating body along the circumferential direction, and the light projecting means and the detecting means are provided inside and outside the cylindrical rotating body. 1. The optical rotary encoder according to 1.
【請求項4】 前記各スケールを前記円筒回転体の内周
面と端面とに円周方向に沿って設け、前記投光手段と前
記検出手段とを前記円筒回転体の内部と端面外方とに設
けた請求項1記載の光学式ロータリエンコーダ。
4. The scales are provided on an inner peripheral surface and an end surface of the cylindrical rotating body along a circumferential direction, and the light projecting means and the detecting means are provided inside and outside the end surface of the cylindrical rotating body. The optical rotary encoder according to claim 1, wherein the optical rotary encoder is provided.
【請求項5】 前記各スケールの目盛部を開口部にした
請求項1記載の光学式ロータリエンコーダ。
5. The optical rotary encoder according to claim 1, wherein the scale portion of each scale is an opening.
JP5733695A 1995-03-16 1995-03-16 Optical rotary encoder Withdrawn JPH08254439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5733695A JPH08254439A (en) 1995-03-16 1995-03-16 Optical rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5733695A JPH08254439A (en) 1995-03-16 1995-03-16 Optical rotary encoder

Publications (1)

Publication Number Publication Date
JPH08254439A true JPH08254439A (en) 1996-10-01

Family

ID=13052736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5733695A Withdrawn JPH08254439A (en) 1995-03-16 1995-03-16 Optical rotary encoder

Country Status (1)

Country Link
JP (1) JPH08254439A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164588A (en) * 2003-12-01 2005-06-23 Agilent Technol Inc Encoder using reflective cylindrical surface
US7348545B2 (en) * 2005-06-17 2008-03-25 Avago Technologies Ecbu Ip Pte Ltd System and method for optical encoding on two opposed surfaces of a pattern medium
JP2011099869A (en) * 2011-01-17 2011-05-19 Canon Inc Optical encoder
CN102243081A (en) * 2010-05-10 2011-11-16 上海宏曲电子科技有限公司 Laser angular displacement sensor
WO2013037204A1 (en) * 2011-09-15 2013-03-21 成都伊贝基科技有限公司 High-precision coding wheel and coder formed thereby
DE112010005910T5 (en) 2010-09-28 2013-07-25 Harmonic Drive Systems Inc. Rotary actuator and connection unit equipped with a sensor mechanism
CN107830819A (en) * 2017-09-28 2018-03-23 中国科学院长春光学精密机械与物理研究所 High-precision angular errors demarcation dish and calibration system with identification groove
JP2021527544A (en) * 2018-08-31 2021-10-14 ナイキ イノベイト シーブイ Automatic lace-up footwear motor with rotating drum encoder
WO2021253578A1 (en) * 2020-06-18 2021-12-23 苏州希声科技有限公司 Ultrasonic rotary encoder applicable to micro shaft rotation measurement

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005164588A (en) * 2003-12-01 2005-06-23 Agilent Technol Inc Encoder using reflective cylindrical surface
JP4705363B2 (en) * 2003-12-01 2011-06-22 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド Encoder using a reflective cylindrical surface
US7348545B2 (en) * 2005-06-17 2008-03-25 Avago Technologies Ecbu Ip Pte Ltd System and method for optical encoding on two opposed surfaces of a pattern medium
CN102243081A (en) * 2010-05-10 2011-11-16 上海宏曲电子科技有限公司 Laser angular displacement sensor
DE112010005910T5 (en) 2010-09-28 2013-07-25 Harmonic Drive Systems Inc. Rotary actuator and connection unit equipped with a sensor mechanism
KR20140000680A (en) 2010-09-28 2014-01-03 가부시키가이샤 하모닉 드라이브 시스템즈 Rotary actuator equipped with sensing mechanism, and joint unit
US9077228B2 (en) 2010-09-28 2015-07-07 Harmonic Drive Systems Inc. Rotary actuator equipped with sensing mechanism, and joint unit
DE112010005910B4 (en) 2010-09-28 2022-04-21 Harmonic Drive Systems Inc. Rotary actuator and connection unit equipped with a sensor mechanism
JP2011099869A (en) * 2011-01-17 2011-05-19 Canon Inc Optical encoder
WO2013037204A1 (en) * 2011-09-15 2013-03-21 成都伊贝基科技有限公司 High-precision coding wheel and coder formed thereby
CN107830819A (en) * 2017-09-28 2018-03-23 中国科学院长春光学精密机械与物理研究所 High-precision angular errors demarcation dish and calibration system with identification groove
JP2021527544A (en) * 2018-08-31 2021-10-14 ナイキ イノベイト シーブイ Automatic lace-up footwear motor with rotating drum encoder
US11490676B2 (en) 2018-08-31 2022-11-08 Nike, Inc. Autolacing footwear motor having rotary drum encoder
US11903449B2 (en) 2018-08-31 2024-02-20 Nike, Inc. Autolacing footwear motor having rotary drum encoder
WO2021253578A1 (en) * 2020-06-18 2021-12-23 苏州希声科技有限公司 Ultrasonic rotary encoder applicable to micro shaft rotation measurement

Similar Documents

Publication Publication Date Title
JP4780825B2 (en) Rotation angle sensor for rotating members
US7940380B1 (en) Rotary position detector and associated methods
KR100900873B1 (en) Optical encoder and apparatus using optical encoder
US7688432B1 (en) Rotary position detector and associated methods
US8508726B2 (en) Rotary position detector and associated methods
JP2013504068A (en) Apparatus and method for optically correcting scale track eccentricity with rotation angle sensor
JPH02285214A (en) Length measuring machine and scale member used for the same
EP0220757A1 (en) Optical transducer element and displacement meter comprising such an element
US6885457B1 (en) Rotary position measuring system
JPH08254439A (en) Optical rotary encoder
US6750445B1 (en) Encoder
JP2002340624A (en) Detector for rotation angle, and rotary disc therefor
JP2002005694A (en) Optical scale, its molding tool, and optical encoder
CN102679910B (en) Rotary position detector and relevant method
JP4636858B2 (en) Optical encoder
JP2003057074A (en) Rotary encoder apparatus
US5670779A (en) Electro-optical shaft angle transducer having a rotatable refractive optical element
JPH0687007B2 (en) Angle measuring device
JPS63153425A (en) Rotational quantity detecting device
US11885614B2 (en) Optical rotary sensor
JP2002277286A (en) Device of detecting rotation displacement amount and disk
JP3574733B2 (en) Rotation angle detector
US5111040A (en) Photoelectric device for position measuring
JP2527728B2 (en) Optical encoder
JP2001012968A (en) Rotary encoder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604