JPH082494B2 - Method for producing fiber-reinforced metal composite material - Google Patents

Method for producing fiber-reinforced metal composite material

Info

Publication number
JPH082494B2
JPH082494B2 JP1143869A JP14386989A JPH082494B2 JP H082494 B2 JPH082494 B2 JP H082494B2 JP 1143869 A JP1143869 A JP 1143869A JP 14386989 A JP14386989 A JP 14386989A JP H082494 B2 JPH082494 B2 JP H082494B2
Authority
JP
Japan
Prior art keywords
aggregate
frm
molten metal
tubular body
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1143869A
Other languages
Japanese (ja)
Other versions
JPH038552A (en
Inventor
徹 堀田
文雄 冨田
厚 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1143869A priority Critical patent/JPH082494B2/en
Publication of JPH038552A publication Critical patent/JPH038552A/en
Publication of JPH082494B2 publication Critical patent/JPH082494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高圧鋳造法によって、中実棒状や管状
等、特に薄肉管状の、繊維強化金属複合材料(FRM)を
製造する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a fiber-reinforced metal composite material (FRM) of a solid rod shape, a tubular shape or the like, particularly a thin tubular shape, by a high pressure casting method.

(従来の技術) 中実棒状や管状等のFRMを製造する方法はいろいろあ
るが、その一つに高圧鋳造法がある。
(Prior Art) There are various methods for producing a solid rod-shaped or tubular FRM, and one of them is the high-pressure casting method.

この方法は、たとえば特開昭63−165042号公報ほかに
記載されているように、補強繊維の集合体が入った金属
製の管体を金型に入れ、管体内にマトリクスとなる金属
の溶湯を注ぎ込み、その溶湯を加圧して上記集合体に含
浸し、凝固せしめた後、脱型し、管体を切削して除去す
るものである。管体を使用する理由は、主として集合体
の形態保持にある。しかしながら、この従来の方法に
は、以下において説明するような問題がある。
In this method, as described in, for example, Japanese Patent Laid-Open No. 63-165042, a metal tube containing an aggregate of reinforcing fibers is placed in a mold, and a molten metal of a metal to be a matrix is formed in the tube. Is poured, the molten metal is pressurized to impregnate the above-mentioned aggregate, and after solidifying, the mold is removed, and the tubular body is cut and removed. The main reason for using the tube is to maintain the shape of the aggregate. However, this conventional method has problems as described below.

すなわち、管体を切削によって除去するのが大変やっ
かいである。また、得られるFRMには歪があるので、切
削時に、表面の補強繊維を切断してしまったり、傷付け
てしまうこともある。補強繊維が切断されたり損傷され
たりすると、所望の特性をもつFRMが得られなくなる
し、製品間の特性のばらつきも大きくなる。
That is, it is very difficult to remove the tubular body by cutting. Moreover, since the obtained FRM has distortion, the reinforcing fibers on the surface may be cut or scratched during cutting. If the reinforcing fiber is cut or damaged, it becomes impossible to obtain an FRM having desired properties, and the variation in properties between products becomes large.

また、特に、引張破断伸びの小さな補強繊維や、引張
弾性率の大きな補強繊維を使用する場合、溶湯の凝固に
伴う、管体の、特に長手方向における大きな収縮による
圧縮応力のために、補強繊維が座屈したり、FRMが補強
繊維間で割れたりすることがある。この問題は、管体の
肉厚を薄くしたり、管体に代えて、集合体に金属製の箔
をら旋状に巻き付けることによって防止することが可能
であるけれども、そうすると、溶湯を加圧、含浸する際
に管体や箔が破れて、あるいは、ら旋状に巻いた箔の間
から、溶湯が漏れ出したりすることがある。
Further, especially when using a reinforcing fiber having a small tensile elongation at break or a reinforcing fiber having a large tensile elastic modulus, the reinforcing fiber is owing to the compressive stress due to the large shrinkage of the tubular body, particularly in the longitudinal direction, due to the solidification of the molten metal. May buckle or the FRM may crack between the reinforcing fibers. This problem can be prevented by reducing the wall thickness of the tube or by winding a metal foil around the assembly in a spiral shape instead of the tube, but then the molten metal is pressurized. During the impregnation, the tube or foil may be broken, or the molten metal may leak out between the spirally wound foils.

(発明が解決しようとする課題) この発明の目的は、従来の方法の上述した問題点を解
決し、管体の除去が極めて容易であるばかりか、除去時
における補強繊維の切断や損傷を防止することができ、
また、溶湯凝固時の管体の収縮に伴う補強繊維の座屈や
FRMの割れ等を防止することができて、強度等の特性に
優れたFRMを得ることができる方法を提供するにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned problems of the conventional method and to not only facilitate the removal of the tubular body, but also to prevent the reinforcing fiber from being cut or damaged during removal. You can
In addition, the buckling of the reinforcing fiber due to the shrinkage of the tube during solidification of the molten metal
Another object of the present invention is to provide a method capable of preventing FRM cracking and the like and obtaining an FRM excellent in properties such as strength.

(課題を解決するための手段) 上記目的を達成するために、この発明は、補強繊維の
集合体を入れた、外周面において長手方向にら旋状に延
びる溝を有する管体を型に入れ、上記管体内にマトリク
スとなる金属の溶湯を注ぎ込み、その溶湯を加圧して上
記集合体に含浸し、凝固せしめた後、脱型し、上記管体
を上記溝に沿って剥ぎ取ることを特徴とする、繊維強化
金属複合材料の製造方法を提供する。脱型は、型と管体
との間に、集合体に溶湯を含浸するときの温度では焼結
されない粉粒体を充填し、溶湯の含浸、凝固後に上記粉
粒体を除去することによって行うのが好ましい。
(Means for Solving the Problem) In order to achieve the above-mentioned object, the present invention puts a tubular body having a groove extending spirally in a longitudinal direction on an outer peripheral surface into a mold, in which an aggregate of reinforcing fibers is put. Characterized in that a molten metal of a matrix is poured into the tubular body, the molten metal is pressurized to impregnate the aggregate, solidify, and then demolded, and the tubular body is peeled off along the groove. The present invention provides a method for producing a fiber-reinforced metal composite material. Demolding is performed by filling a powder and granular material that is not sintered at the temperature at which the molten metal is impregnated into the aggregate between the mold and the tube, and removing the powder and granular material after impregnation and solidification of the molten metal. Is preferred.

この発明の方法は、中実棒状のFRMを製造する場合で
も、管状のFRMを製造する場合でも、いずれも適用でき
るが、薄肉管状のFRMを製造する場合に特に有効であ
る。管状のFRMを製造する場合には、芯金(中子)を使
用する。
The method of the present invention can be applied to both the case of producing a solid rod-shaped FRM and the case of producing a tubular FRM, but is particularly effective for producing a thin-walled tubular FRM. A core metal (core) is used when manufacturing a tubular FRM.

型としては、通常、金型を使用するが、黒鉛型等の使
用も可能である。
As a mold, a mold is usually used, but a graphite mold or the like can also be used.

補強繊維としては、炭素繊維、アルミナ繊維、アルミ
ナ−シリカ繊維、ボロン繊維、炭化ケイ素繊維等の高強
度、高弾性率繊維を使用することができる。これら補強
繊維は、マルチフィラメント、短繊維、織物、マット
等、どのような形態であってもよい。なお、FRMの用途
等に応じて、一つの集合体について、種類の異なる補強
繊維を併用したり、形態の異なるものを併用することも
できる。
As the reinforcing fiber, a high-strength, high-modulus fiber such as carbon fiber, alumina fiber, alumina-silica fiber, boron fiber, silicon carbide fiber can be used. These reinforcing fibers may be in any form such as multifilament, short fiber, woven fabric and mat. Depending on the application of FRM and the like, different types of reinforcing fibers or different forms can be used together in one aggregate.

上述した補強繊維からなる集合体は、たとえば、マル
チフィラメントを一方向に引き揃えたようなものや、短
繊維を塊状にしたようなものや、織物やマット等を積層
したり巻いたりしたようなものである。管状のFRMを得
る場合には、芯金の周りに集合体を形成する。なお、集
合体を形成するとき、FRMの製造において極く普通に採
られているように、用途等に応じて、補強繊維の方向が
所望の方向になるように配慮することはもちろんであ
る。
The aggregate composed of the reinforcing fibers described above is, for example, one in which multifilaments are aligned in one direction, one in which short fibers are lumped, one in which a woven fabric or mat is laminated or wound. It is a thing. When obtaining a tubular FRM, an aggregate is formed around the cored bar. In addition, when forming the aggregate, it is needless to say that the direction of the reinforcing fiber is in a desired direction according to the application, as is commonly used in the production of FRM.

集合体の形成に際して、その形態を維持するために必
要であれば、結着剤を使用してもよい。結着剤として
は、溶湯を注ぎ込んだときに熱分解して飛散するものが
好ましく、でんぷんや、ポリビニルアルコール、ポリメ
チルメタクリレート、ポリエステル等の樹脂を使用する
ことができる。
When forming the aggregate, a binder may be used if necessary to maintain its shape. As the binder, those which are thermally decomposed and scattered when the molten metal is poured are preferable, and starch, polyvinyl alcohol, polymethylmethacrylate, polyester and other resins can be used.

上述した集合体は、外周面において長手方向にら旋状
に延びる溝を有する管体に入れられる。管体は、その中
に注ぎ込まれる溶湯の熱で溶けたりしない材料で構成さ
れているが、そのような材料は、引張弾性率や熱膨脹係
数の低いものであるのが好ましく、特に、熱膨脹係数が
製造するFRMのそれとよく似ているものが好ましい。通
常、肉厚が数mm以下の鉄管、ステンレス管、チタン管、
銅管等の金属管を使用するが、石英管、セラミックス管
等を使用することもできる。
The above-mentioned assembly is put into a tubular body having a groove extending spirally in the longitudinal direction on the outer peripheral surface. The tubular body is composed of a material which is not melted by the heat of the molten metal poured therein, and it is preferable that such a material has a low tensile elastic modulus and a low coefficient of thermal expansion. Those similar to those of the manufactured FRM are preferable. Normally, iron pipes with a wall thickness of several mm or less, stainless steel pipes, titanium pipes,
Although a metal tube such as a copper tube is used, a quartz tube, a ceramics tube, or the like can also be used.

管体には、前に述べたように、外周面において、長手
方向にら旋状に延びる、U字形やV字形の溝が加工され
ている。この溝は、FRMの製造後における管体の剥ぎ取
りを容易にするとともに、管体の横断面積を部分的に小
さくして、上述した収縮時の圧縮応力を緩和させるため
のもので、少なくとも集合体が位置する部分に形成され
ている。ら旋のピッチは、管体の材質、長さ、肉厚や、
溶湯の温度や、溶湯を集合体に含浸するときの加圧力等
によって異なるものの、10〜40mm程度の範囲である。ま
た、溝深さは、管体の肉厚の10〜80%程度、通常、60%
前後にする。溝は、浅くても剥ぎ取りは可能なことが多
いが、極端に浅いと、圧縮応力の緩和効果が得られなく
なる。なお、ら旋状の溝を設けることに代えて、適当な
ピッチで円周溝を形成しておくことも考えられないでは
ない。しかしながら、そのような円周溝は、圧縮応力の
緩和効果は発現し得ても、剥ぎ取りを容易にするという
ことはならない。
As described above, the outer peripheral surface of the tubular body is provided with U-shaped or V-shaped grooves extending spirally in the longitudinal direction. This groove is for facilitating the stripping of the tubular body after manufacturing the FRM and for partially reducing the cross-sectional area of the tubular body to relieve the above-mentioned compressive stress at the time of contraction, and at least the aggregate. It is formed where the body is located. The pitch of the spiral is the material, length, wall thickness, and
Although it depends on the temperature of the molten metal and the pressure applied when the aggregate is impregnated with the molten metal, it is in the range of about 10 to 40 mm. The groove depth is about 10 to 80% of the wall thickness of the pipe, usually 60%.
Put it back and forth. The grooves can often be stripped even if they are shallow, but if they are extremely shallow, the compression stress relaxation effect cannot be obtained. Instead of providing the spiral groove, it is not unthinkable to form the circumferential groove at an appropriate pitch. However, such a circumferential groove does not facilitate peeling, although the effect of relaxing the compressive stress may be exhibited.

FRMのマトリクスとなる金属は、極く普通に使用され
ている、アルミニウム、マグネシウム、銅、錫、亜鉛等
の単体金属や、これら単体金属の少なくとも一種を主成
分とする合金のようなものである。
The metal used as the matrix of FRM is a very commonly used elemental metal such as aluminum, magnesium, copper, tin, or zinc, or an alloy containing at least one of these elemental metals as a main component. .

この発明においては、製造後の脱型を容易にする目的
で、型と、その型内に入れた管体との間に粉粒体を充填
しておいてもよい。そのような粉粒体は、集合体に溶湯
を含浸する時の温度、すなわち、複合化時の温度では焼
結されない、アルミナ、ジルコニア、ムライト、窒化ケ
イ素、炭化ケイ素等のセラミックスや、黒鉛や、鋳物砂
や、山砂等からなっている。タングステンやモリブデ
ン、鉄、ニッケル、チタンやそれらの合金等の金属材料
の使用も可能である。
In the present invention, for the purpose of facilitating demolding after manufacturing, a powdery or granular material may be filled between the mold and the tubular body put in the mold. Such a granular material is a temperature at the time of impregnating the aggregate with the molten metal, that is, is not sintered at the temperature at the time of complexing, alumina, zirconia, mullite, silicon nitride, ceramics such as silicon carbide, graphite, or the like. It consists of foundry sand and mountain sand. It is also possible to use metal materials such as tungsten, molybdenum, iron, nickel, titanium and alloys thereof.

第1図は、この発明の方法によって管状のFRMを製造
している様子を示すもので、芯金8の周りに補強繊維の
集合体2を形成したものを、第2図に示すように、外周
面において長手方向にら旋状に延びる溝9を有する管体
4に入れ、金型1内に入れる。金型1と管体4との間に
は、粉粒体3を充填しておく。
FIG. 1 shows a state in which a tubular FRM is manufactured by the method of the present invention, in which a reinforcing fiber aggregate 2 is formed around a core metal 8 as shown in FIG. It is put into a tube body 4 having a groove 9 extending spirally in the longitudinal direction on the outer peripheral surface, and then put into the mold 1. The powder particles 3 are filled between the mold 1 and the tube body 4.

FRMの製造は、管体4内にマトリクスとなる金属の溶
湯5を注ぎ込み、プランジャ6で加圧して集合体2に含
浸し、凝固させることによって行う。溶湯5が凝固した
後、すなわち、FRMが得られた後は、金型1とその台座
7とを分離し、粉粒体3を排出し、金型1から管体4ご
とFRMを取り出した後、第3図に示すように、管体4を
溝9に沿ってめくるようにして剥ぎ取り、FRM10を得
る。
The FRM is manufactured by pouring a molten metal 5 serving as a matrix into the tubular body 4, pressurizing it with a plunger 6 to impregnate the aggregate 2 and solidifying it. After the molten metal 5 is solidified, that is, after the FRM is obtained, the mold 1 and its pedestal 7 are separated, the granular material 3 is discharged, and the FRM together with the tubular body 4 is taken out from the mold 1. As shown in FIG. 3, the tube body 4 is peeled off along the groove 9 to obtain FRM10.

(実 施 例) 第1図に示した方法によって、FRMを製造した。(Example) FRM was manufactured by the method shown in FIG.

すなわち、直径25mm、長さ1000mmの鉄製芯金に、東レ
株式会社製炭素繊維平織物R8112(厚み:0.2mm、目付99g
/m2)を、その経糸が芯金の長手方向になるように、か
つ、厚みが0.4mmになるように巻き、その上に、東レ株
式会社製炭素繊維“トレカ"M40(単糸径:6μm、引張弾
性率:40トン/mm2、引張破断伸び:0.6%)を、繊維軸の
方向が芯金の長手方向になるように、かつ、厚みが0.6m
mになるように巻き、さらに、その上に上記平織物を厚
みが1.5mmになるように巻いて炭素繊維の集合体を形成
した。
That is, on a core metal made of iron with a diameter of 25 mm and a length of 1000 mm, a carbon fiber plain fabric R8112 (thickness: 0.2 mm, basis weight 99 g, manufactured by Toray Industries, Inc.)
/ m 2 ) so that the warp is in the longitudinal direction of the core metal and the thickness is 0.4 mm, and on top of that, the carbon fiber “Torayca” M40 (single yarn diameter: manufactured by Toray Industries, Inc .: 6 μm, tensile modulus: 40 ton / mm 2 , tensile elongation at break: 0.6%) with the fiber axis oriented in the longitudinal direction of the cored bar and a thickness of 0.6 m
The carbon fiber was wound so as to have a thickness of m, and further the above plain woven fabric was wound thereon so as to have a thickness of 1.5 mm to form an aggregate of carbon fibers.

次に、上記集合体を、芯金ごと、外周面において25mm
ピッチで長手方向にら旋状に延びるU字形の溝を有する
SUS304製管体(内径:30mm、肉厚:1mm、溝深さ:0.6mm)
に入れ、金型に入れた。金型と管体との間には、直径0.
5mmのアルミナ粒体を充填した。
Next, the above assembly, together with the core metal, is 25 mm on the outer peripheral surface.
Has U-shaped grooves that extend spirally in the longitudinal direction at a pitch
SUS304 tube body (inner diameter: 30 mm, wall thickness: 1 mm, groove depth: 0.6 mm)
And put in the mold. The diameter between the mold and the tube is 0.
It was filled with 5 mm of alumina granules.

次に、金型を550℃に予熱した後、管体内にアルミニ
ウムとケイ素の合金(JIS AC4C)の溶湯(温度:750
℃)を注ぎ込み、プランジャで1000kg/cm2の圧力を加え
て集合体に含浸した。
Next, after preheating the mold to 550 ° C, a molten alloy of aluminum and silicon (JIS AC4C) (temperature: 750
(° C.), And the assembly was impregnated by applying a pressure of 1000 kg / cm 2 with a plunger.

溶湯が凝固した後、金型と台座とを分離し、ハンマー
で金型を軽く叩いてアルミナ粒体を排出し、芯金ごとFR
Mを取り出し、芯金を引き抜いた後、管体を端部からめ
くるように剥ぎ取って除去し、管状FRM(外径:30mm、内
径:25mm)を取り出した。取り出しは、極めて容易であ
った。また、得られたFRMには、炭素繊維の損傷等は見
られなかった。引張強度は、70kgf/mm2であった。
After the molten metal has solidified, the mold and pedestal are separated, the mold is tapped with a hammer to discharge the alumina granules, and the core metal FR
After taking out M and pulling out the core metal, the tubular body was peeled off from the end and removed, and a tubular FRM (outer diameter: 30 mm, inner diameter: 25 mm) was taken out. Removal was extremely easy. The obtained FRM did not show damage to the carbon fiber. The tensile strength was 70 kgf / mm 2 .

(比 較 例) 溝を有しない管体を使用したほかは実施例と同様にし
て、FRMを製造した。管体の除去は、切削によった。切
削に際して、表面の一部の炭素繊維が削り取られた。ま
た、得られたFRMの引張強度は、わずかに23kgf/mm2にす
ぎなかった。
(Comparative example) An FRM was manufactured in the same manner as in the example except that a tube having no groove was used. The tube was removed by cutting. During cutting, part of the carbon fibers on the surface was scraped off. The tensile strength of the obtained FRM was only 23 kgf / mm 2 .

(発明の効果) この発明は、補強繊維の集合体を収容する管体とし
て、外周面において長手方向にら旋状に延びる溝を有す
る管体を使用するから、FRMの製造後における管体の除
去が極めて容易であるばかりか、切削によって除去する
ときのように補強繊維を切断したり傷付けたりする心配
がない。また、ら旋状の溝によって、溶湯凝固時の、長
手方向における圧縮応力が緩和されるので、補強繊維の
座屈やFRMの割れ等を防止することができる。そのた
め、強度等に特性に優れたFRMを製造することができる
ようになる。また、型と管体との間に、集合体に溶湯を
含浸するときの温度では焼結されない粉粒体を充填し、
溶湯の含浸、凝固後に粉粒体を除去するようにすると、
脱型が極めて容易に行えるようになる。
(Effects of the Invention) Since the present invention uses a tubular body having a groove extending spirally in the longitudinal direction on the outer peripheral surface as a tubular body for accommodating an aggregate of reinforcing fibers, Not only is it extremely easy to remove, but there is no need to worry about cutting or scratching the reinforcing fiber as when removing by cutting. Further, since the helical groove relieves the compressive stress in the longitudinal direction when the molten metal is solidified, it is possible to prevent buckling of the reinforcing fiber, cracking of FRM, and the like. Therefore, it becomes possible to manufacture an FRM having excellent properties such as strength. In addition, between the mold and the tubular body, a powder or granular material which is not sintered at the temperature when the aggregate is impregnated with the molten metal is filled,
If you try to remove the particles after impregnation and solidification of the molten metal,
Demolding becomes extremely easy.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明を実施している様子を示す、型の概
略縦断面図、第2図は、管体を示す概略正面図、第3図
は、管体を剥ぎ取って除去している様子を示す、管体の
概略正面図である。 1:型 2:補強繊維の集合体 3:粉粒体 4:管体 5:溶湯 6:プランジャ 7:台座 8:芯金 9:溝 10:FRM(繊維強化金属複合材料)
FIG. 1 is a schematic vertical sectional view of a mold showing a state in which the present invention is carried out, FIG. 2 is a schematic front view showing a tubular body, and FIG. FIG. 3 is a schematic front view of a tubular body showing a state of being present. 1: Mold 2: Aggregate of reinforcing fibers 3: Powder 4: Tube 5: Molten metal 6: Plunger 7: Pedestal 8: Core 9: Groove 10: FRM (fiber reinforced metal composite material)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】補強繊維の集合体を入れた、外周面におい
て長手方向にら旋状に延びる溝を有する管体を型に入
れ、上記管体内にマトリクスとなる金属の溶湯を注ぎ込
み、その溶湯を加圧して上記集合体に含浸し、凝固せし
めた後、脱型し、上記管体を上記溝に沿って剥ぎ取るこ
とを特徴とする、繊維強化金属複合材料の製造方法。
1. A tubular body having a groove extending spirally in the longitudinal direction on the outer peripheral surface and containing an aggregate of reinforcing fibers is placed in a mold, and a molten metal of a matrix is poured into the tubular body. A method for producing a fiber-reinforced metal composite material, which comprises pressurizing to impregnate the aggregate, solidify the aggregate, and then demold, and strip the tubular body along the groove.
【請求項2】型と管体との間に、集合体に溶湯を含浸す
るときの温度では焼結されない粉粒体を充填し、溶湯の
含浸、凝固後に上記粉粒体を除去することによって脱型
する、請求項(1)の繊維強化金属複合材料の製造方
法。
2. A powder and granular material which is not sintered at a temperature at which the molten metal is impregnated into the assembly is filled between the mold and the pipe body, and the powder and granular material is removed after impregnation and solidification of the molten metal. The method for producing the fiber-reinforced metal composite material according to claim 1, wherein the method is carried out.
JP1143869A 1989-06-06 1989-06-06 Method for producing fiber-reinforced metal composite material Expired - Lifetime JPH082494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1143869A JPH082494B2 (en) 1989-06-06 1989-06-06 Method for producing fiber-reinforced metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1143869A JPH082494B2 (en) 1989-06-06 1989-06-06 Method for producing fiber-reinforced metal composite material

Publications (2)

Publication Number Publication Date
JPH038552A JPH038552A (en) 1991-01-16
JPH082494B2 true JPH082494B2 (en) 1996-01-17

Family

ID=15348887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1143869A Expired - Lifetime JPH082494B2 (en) 1989-06-06 1989-06-06 Method for producing fiber-reinforced metal composite material

Country Status (1)

Country Link
JP (1) JPH082494B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828490B2 (en) 2006-05-31 2010-11-09 Toshiba Tec Kabushiki Kaisha Printing apparatus including a cover holding a thermal head and a platen roller on a hinged frame

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165041A (en) * 1986-12-25 1988-07-08 Toray Ind Inc Production of fiber reinforced metallic composite material

Also Published As

Publication number Publication date
JPH038552A (en) 1991-01-16

Similar Documents

Publication Publication Date Title
US7220492B2 (en) Metal matrix composite articles
EP0110097B1 (en) Method and apparatus for manufacturing composite material using pressure chamber and casting chamber
JPH082494B2 (en) Method for producing fiber-reinforced metal composite material
US2688781A (en) Self-eliminating core wire and core
JPH0826421B2 (en) Method for producing tubular fiber-reinforced metal composite material
US3490135A (en) Method of centrifugally casting tubular bodies
JPS63235059A (en) Production of fiber reinforced metal composite material tube
JPH0378178B2 (en)
Papworth et al. Oxide film casting defects in squeeze cast metal matrix composites
Burr et al. The strength of metal-matrix composite joints
JP4081426B2 (en) Manufacturing method of fiber reinforced metal composite material
JP6459576B2 (en) Die casting sleeve
JPH10323747A (en) Manufacture of alloy of aluminum and silicon
JPS61172666A (en) Production of fiber reinforced cylindrical member
JPS6029433A (en) Production of fiber-reinforced metallic composite material
JPS63165041A (en) Production of fiber reinforced metallic composite material
JPS609838A (en) Fiber-reinforced metallic body and its production
JPS6362306B2 (en)
US2864160A (en) Method of continuously protecting pyrophoric flint material manufactured by extrusion
JPS642471B2 (en)
JPH02169171A (en) Production of fiber reinforced metal body
JPS63160767A (en) Manufacture of fiber reinforced metal composite material
JPH01122654A (en) Manufacture of cylindrical fiber reinforced metal composite material
JPS63256260A (en) Production of cylindrical fiber reinforced metallic composite material
JPS63256259A (en) Production of cylindrical fiber reinforced metallic composite material