JPH08246227A - Heat-accumulating and heat-insulating fiber - Google Patents

Heat-accumulating and heat-insulating fiber

Info

Publication number
JPH08246227A
JPH08246227A JP7053917A JP5391795A JPH08246227A JP H08246227 A JPH08246227 A JP H08246227A JP 7053917 A JP7053917 A JP 7053917A JP 5391795 A JP5391795 A JP 5391795A JP H08246227 A JPH08246227 A JP H08246227A
Authority
JP
Japan
Prior art keywords
heat
fiber
temperature
crystallization
accumulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7053917A
Other languages
Japanese (ja)
Other versions
JP3371047B2 (en
Inventor
久治 ▲くわ▼原
Hisaharu Kuwashima
Izumi Yuasa
泉 湯淺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP05391795A priority Critical patent/JP3371047B2/en
Publication of JPH08246227A publication Critical patent/JPH08246227A/en
Application granted granted Critical
Publication of JP3371047B2 publication Critical patent/JP3371047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a heat-accumulating and heat-insulating fiber capable of absorbing or generating heat in response to the change in the temperature of a body or the temperature of the outside air, even when the solar light is not irradiated, not causing the limitation of uses due to the color or touch of the fiber, and suitable as a raw material for cold-protecting clothes, sports clothes, etc. CONSTITUTION: This heat-accumulating and heat-insulating fiber kneaded with a heat-accumulating agent is produced by impregnating and holding a low mol.wt. organic compound (e.g. decanoic acid) having a melting point of 10-50 deg.C, a melting heat of >=20mJ/mg, a lowering temperature crystallization temperature of 45-10 deg.C and a crystallization heat of 20mJ/mg in a porous material such as silica.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄熱保温性を有し、且
つ防寒衣料、スポーツ衣料はもとよりリビング資材の素
材としても好適な蓄熱保温性繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage and heat retention fiber which has heat storage and heat retention properties and is suitable as a material for living materials as well as winter clothes and sports clothes.

【0002】[0002]

【従来の技術】従来から、防寒衣料やスポーツ衣料にお
いて保温性の向上を目的として表地や裏地の間に中綿材
料をいれた三層構造の布帛が知られている。これは、中
綿材料中の空気層の厚みにより保温性を向上させようと
するものである。ところが、このような三層構造の布帛
を防寒衣料や特に動き易さが要求されるスポーツ衣料用
素材として採用すると、着用時に衣料が重く嵩張り、し
かも自由な動きが阻害されるという問題を有していた。
近年、上記問題を解決する方法として布帛に金属を蒸着
することが行われている。すなわち、金属蒸着層を内側
に用いることにより、人体からの熱を布帛表面で反射さ
せ、布帛の外に逃げる熱を減少させて保温性を得ている
が、このように金属を蒸着させるため色調の面から用途
が限定されるという問題を有していた。
2. Description of the Related Art Conventionally, there has been known a three-layer structure cloth in which a batting material is inserted between a front material and a backing for the purpose of improving heat retention in winter clothes and sports clothes. This is intended to improve heat retention by the thickness of the air layer in the batting material. However, if such a three-layer fabric is adopted as a material for winter clothes or sports clothes that require particularly easy movement, there is a problem that the clothes are heavy and bulky when worn, and free movement is hindered. Was.
In recent years, as a method for solving the above problem, vapor deposition of metal on a cloth has been performed. That is, by using the metal vapor deposition layer on the inside, the heat from the human body is reflected on the surface of the fabric to reduce the heat escaping to the outside of the fabric for heat retention. Therefore, there is a problem that the application is limited from the viewpoint of.

【0003】また、最近では繊維構造物にn−パラフィ
ンを封入したマイクロカプセルを樹脂バインダーにより
繊維表面に固着されてなる蓄熱性を有する繊維構造物
(特開平5−156570号公報)や結晶化温度が体温
または外気温度に近い融点および結晶化温度を有する熱
可塑性重合体を繊維の内部に包含する複合繊維(特開平
5−331754号公報)等が提案されている。
In recent years, microcapsules containing n-paraffin encapsulated in a fiber structure are fixed on the fiber surface with a resin binder and have a heat storage property (JP-A-5-156570) and a crystallization temperature. There is proposed a composite fiber (JP-A-5-331754) in which a thermoplastic polymer having a melting point and a crystallization temperature close to the body temperature or the outside air temperature is included in the fiber.

【0004】しかし、前者は、マイクロカプセルを樹脂
バインダーで接着してあるため布帛等の風合や外観に限
界が生じ、洗濯等の着用時の摩耗により脱落やマイクロ
カプセルの破壊により中から融解した液体が染み出して
くる等の問題点を持つ。また、後者は、芯鞘繊維として
芯部に包含されていても生産工程〜布帛になるまでに加
わる熱により繊維端面から熱可塑性重合体が染み出して
くるという課題を有していた。
However, in the former case, since the microcapsules are adhered with a resin binder, the texture and the appearance of the cloth and the like are limited, and the microcapsules are melted from the inside due to falling off due to abrasion during wearing such as washing and destruction of the microcapsules. It has problems such as liquid seeping out. Further, the latter has a problem that the thermoplastic polymer exudes from the fiber end surface by the heat applied during the production process to the fabric even if the latter is included in the core portion as the core-sheath fiber.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
問題点を解決し、太陽光線の照射がなくても体温または
外気温度の変化に対応して吸熱あるいは発熱をし、色
調、風合からの用途の制限がなく、かつ防寒衣料やスポ
ーツ衣料等の素材として好適な蓄熱保温性繊維を提供す
ることである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and absorb heat or generate heat in response to changes in body temperature or outside temperature even without the irradiation of sunlight, thereby obtaining color tone and texture. The purpose of the present invention is to provide a heat-storing and heat-retaining fiber which is suitable for use as a material for winter clothing, sports clothing, etc.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討の結果、体温、外気温度または周
囲温度に近い融点および結晶化温度を有する有機化合物
を繊維の内部に包含する複合繊維を布帛に採用すると、
布帛として実用上十分な性能を保持しつつ吸発熱性を有
する布帛の得られることを見出し本発明に到達した。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have included an organic compound having a melting point and a crystallization temperature close to body temperature, ambient temperature or ambient temperature in the fiber. When the composite fiber that does
The inventors have found that a cloth having heat absorption and exothermic properties can be obtained while maintaining practically sufficient performance as a cloth, and reached the present invention.

【0007】すなわち、本発明は融点が10〜50℃、
融解熱が20mJ/mg以上、降温結晶化温度が45〜
10℃、結晶化熱が20mJ/mg以上である有機化合
物を多孔質体に含浸保持させてなる蓄熱剤を含有する蓄
熱保温性繊維である。
That is, the present invention has a melting point of 10 to 50 ° C.
The heat of fusion is 20 mJ / mg or more, and the crystallization temperature is 45-
A heat storage and heat retention fiber containing a heat storage agent obtained by impregnating and holding an organic compound having a crystallization heat of 20 mJ / mg or more at 10 ° C. in a porous body.

【0008】次に、体温、外気温度または周囲温度に近
い融点および結晶化温度を有する有機化合物について説
明する。本発明における有機化合物は、その融点が10
〜50℃のものであることが必要である。好ましくは1
5〜45℃の融点を有するものが良い。これらは用途に
よって決定することが必要で、例えば衣料用途で通常の
防寒衣料としての用途であれば、20〜30℃が好まし
く、スキーとか冬山登山用途の場合には10〜25℃が
好ましく、またリビング資材として炬燵布団や電気カー
ペットのように外部から熱を加える場合には融点を高く
して吸熱保持するために35〜45℃が好ましい。
Next, an organic compound having a melting point and a crystallization temperature close to body temperature, ambient temperature or ambient temperature will be described. The organic compound in the present invention has a melting point of 10
It is necessary to be at -50 ° C. Preferably 1
Those having a melting point of 5 to 45 ° C are preferable. It is necessary to determine these depending on the use. For example, in the case of use as a normal winter clothes for clothing, 20 to 30 ° C is preferable, and in the case of skiing or winter mountain climbing, 10 to 25 ° C is preferable, and When heat is applied from the outside as a living material such as a tsumugi futon or an electric carpet, the temperature is preferably 35 to 45 ° C. in order to increase the melting point and keep the heat absorption.

【0009】融点があまりに高すぎると使用雰囲気下で
融点まで達せず該化合物が融解しないので冷却した時の
結晶化熱を利用することができない。また、融点が雰囲
気温度よりも低すぎると融解するには十分であるが、結
晶化温度もその融点近傍と雰囲気温度よりも低くなるた
め結晶化温度を潜熱として利用できない。いずれも本発
明の上記目的を達成することが出来ない。また、その降
温結晶化温度は45℃以下、より好ましくは前記理由に
より前記用途範囲のものであることが必要である。さら
に該有機化合物は融解熱および結晶化熱が20mJ/m
g以上のものであることが必要であり、好ましくは30
mJ/mg以上、より好ましくは50mJ/mg以上の
ものが良い。融解熱および結晶化熱が20mJ/mg未
満であると発熱性が十分に発現せず、本発明の上記目的
を達成することができない。融解熱および結晶化熱の上
限値は特に限定されず、これら熱量が大きい方が少量の
添加で効率のよい蓄熱保温性が得られるので好ましい。
If the melting point is too high, the melting point cannot be reached in the use atmosphere and the compound does not melt, so that the heat of crystallization when cooled cannot be used. Further, if the melting point is too lower than the ambient temperature, it is sufficient for melting, but the crystallization temperature is also lower than the vicinity of the melting point and the ambient temperature, so that the crystallization temperature cannot be used as latent heat. None of them can achieve the above-mentioned object of the present invention. Further, the temperature falling crystallization temperature is required to be 45 ° C. or lower, and more preferably within the above-mentioned application range for the above reason. Further, the heat of fusion and heat of crystallization of the organic compound are 20 mJ / m.
It is necessary that it is not less than g, preferably 30
It is preferably mJ / mg or more, more preferably 50 mJ / mg or more. When the heat of fusion and the heat of crystallization are less than 20 mJ / mg, the exothermic property is not sufficiently exhibited, and the above-mentioned object of the present invention cannot be achieved. The upper limits of the heat of fusion and the heat of crystallization are not particularly limited, and the larger the amount of heat is, the more efficient heat storage and heat retention can be obtained with a small amount of addition.

【0010】このような潜熱蓄熱作用をもつ有機化合物
としては、油脂関連化合物すなわち結晶性長鎖炭化水
素、結晶性の脂肪酸、結晶性の脂肪酸エステル、結晶性
の脂肪族アルコールなどが挙げられる。これらは少なく
とも一種または二種以上の化合物からなり、具体例とし
ては、カプリン酸、ウンデカン酸、2−メチルドデカン
酸、2−プロピルデカン酸、10−メチルオクタデカン
酸、12−ヘキシルオクタデカン酸、2,3−ジメチル
ドデカン酸、10−ウンデシレン酸、2−ウンデシン、
7−テトラデシン酸、パルミチン酸メチルエステル、パ
ルミチン酸オクチル、ステアリン酸ブチル、パルミチン
酸ビニル、ラウリルアルコール、オレイルアルコール、
グリセリン、シクロヘキサノール、オクタデカン等が挙
げられる。これら有機化合物の降温結晶化温度は結晶核
剤を含有させることにより調整できるが、本発明では前
記有機化合物を結晶核剤でもある多孔質体に担持させて
繊維中に練込む事を特徴としているため、過冷却現象は
防止できる。本発明においては、かかる有機化合物が後
述する多孔質体に保持された状態で繊維中に包含される
ことが重要であるが、該有機化合物のみの含有量として
1〜30重量%、好ましくは2〜20重量%繊維中に含
まれていることが好ましい。
Examples of such an organic compound having a latent heat storage action include fat-and-oil-related compounds, that is, crystalline long-chain hydrocarbons, crystalline fatty acids, crystalline fatty acid esters, crystalline aliphatic alcohols and the like. These are composed of at least one compound or two or more compounds, and specific examples thereof include capric acid, undecanoic acid, 2-methyldodecanoic acid, 2-propyldecanoic acid, 10-methyloctadecanoic acid, 12-hexyloctadecanoic acid, 2, 3-dimethyldodecanoic acid, 10-undecylenic acid, 2-undecine,
7-tetradecic acid, palmitic acid methyl ester, octyl palmitate, butyl stearate, vinyl palmitate, lauryl alcohol, oleyl alcohol,
Examples thereof include glycerin, cyclohexanol, octadecane and the like. The cooling crystallization temperature of these organic compounds can be adjusted by containing a crystal nucleating agent, but the present invention is characterized in that the organic compound is supported on a porous body which is also a crystal nucleating agent and kneaded into the fiber. Therefore, the supercooling phenomenon can be prevented. In the present invention, it is important that the organic compound is contained in the fiber in a state of being retained by the porous body described later, but the content of only the organic compound is 1 to 30% by weight, preferably 2 It is preferably contained in the fiber in an amount of ˜20% by weight.

【0011】多孔質体としては、タルク、シリカ、活性
炭、ジルコニウム化合物、ゼオライトのような多孔質無
機化合物等が上げられ、用途によって選択すれば良い。
この多孔質体は、繊維中で溶解した有機化合物を保持し
て繊維表面に露出させることなく、また、紡糸時の熱減
量率を小さく抑える効果があり、その粒径は0.01〜
1.0μm、好ましくは0.03〜0.5μmの範囲の
ものが適している。粒径が0.1μmより小さいと混合
時に凝集が生じてしまうこと、粒径が1.0μmより大
きいと紡糸時にノズルに詰まって操業性を著しく損な
う。多孔質体の比表面積は10m2 /g以上、好ましく
は50m2 /g以上が良い。10m2 /g以下であると
吸油量が著しく劣って有機化合物が融解した時、多孔質
体に保持されず表面に出てくるため耐熱性が劣り、繊維
表面まで出たときには風合を損ねる。
Examples of the porous body include talc, silica, activated carbon, zirconium compounds, porous inorganic compounds such as zeolite, and the like, which may be selected depending on the application.
This porous body has an effect of holding the dissolved organic compound in the fiber and not exposing it to the surface of the fiber, and also has an effect of suppressing the heat loss rate during spinning to be small, and the particle size thereof is 0.01 to
A range of 1.0 μm, preferably 0.03 to 0.5 μm is suitable. If the particle size is smaller than 0.1 μm, agglomeration will occur during mixing, and if the particle size is larger than 1.0 μm, the nozzles will be clogged during spinning and the operability will be significantly impaired. The specific surface area of the porous body is 10 m 2 / g or more, preferably 50 m 2 / g or more. When it is 10 m 2 / g or less, the oil absorption is remarkably inferior, and when the organic compound melts, it is not retained by the porous body and appears on the surface, so that the heat resistance is inferior, and when it reaches the fiber surface, the feel is impaired.

【0012】この多孔質体と有機化合物との混合割合
は、多孔質体の表面積にもよるが1:3以下が好まし
く、さらに好ましくは1:2以下のものが良い。混合割
合が大きいと有機化合物が溶融した時に多孔質体に完全
に吸収されず繊維表面に露出して繊維の風合を損ねる。
混合割合が小さいと繊維中に練り込む有機化合物が少な
くなるため極力大きくすることが好ましい。
The mixing ratio of the porous body and the organic compound is preferably 1: 3 or less, more preferably 1: 2 or less, although it depends on the surface area of the porous body. When the mixing ratio is large, when the organic compound is melted, it is not completely absorbed by the porous body and is exposed on the fiber surface, impairing the feel of the fiber.
When the mixing ratio is small, the amount of organic compounds kneaded into the fiber is small, so it is preferable to increase the ratio as much as possible.

【0013】本発明における蓄熱剤入り繊維を構成する
熱可塑性重合体としては、溶融紡糸可能な繊維形成性重
合体であればよく、かかる重合体の具体例としてはポリ
エチレンテレフタレートやポリブチレンテレフタレート
の如きポリエステル系繊維、ナイロン6やナイロン66
の如きポリアミド系繊維、ポリエチレンやポプロピレン
の如きポリオレフィン系繊維等、またはこれらを主成分
とする重合体、さらにはポリフェニレンサルファイド、
ポリエーテルエーテルケトン、ポリエチレン−2,6−
ナフタレート、全芳香族ポリエステル等の耐熱性熱可塑
性重合体も挙げられる。
The thermoplastic polymer constituting the heat storage agent-containing fiber in the present invention may be any fiber-forming polymer capable of being melt-spun, and specific examples of such a polymer include polyethylene terephthalate and polybutylene terephthalate. Polyester fiber, nylon 6 and nylon 66
Polyamide fibers such as, polyolefin fibers such as polyethylene and polypropylene, or polymers containing these as the main component, and further polyphenylene sulfide,
Polyether ether ketone, polyethylene-2,6-
Also included are heat resistant thermoplastic polymers such as naphthalates and wholly aromatic polyesters.

【0014】これらの繊維に前記有機化合物を多孔質体
に保持させた蓄熱剤を溶融工程で直接練込むか、マスタ
ーペレットとして予め蓄熱剤と繊維化しようとする溶融
紡糸可能な繊維形成性重合体とをペレット化したものを
そのまま、又は希釈して溶融紡糸する方法等によって繊
維化可能である。
A melt-spinnable fiber-forming polymer which is to be kneaded directly with a heat storage agent in which the above-mentioned organic compound is held in a porous body in these fibers in a melting step, or as a master pellet, which is to be made into a fiber with the heat storage agent in advance. Fibers can be formed as they are by pelletizing or, or by diluting and melt-spinning.

【0015】繊維断面形状は、とくに円形断面に限定さ
れるものではなく、三角形、四角形、ドッグボーン、多
葉、多枝、中空等の形態であっても良い。また、芯鞘複
合繊維やサイドバイサイド型の複合繊維であっても良
い。複合繊維の場合には、ホモポリマーである必要はな
く、異種のポリマーの組合わせであってもなんら差支え
ない。
The fiber cross-sectional shape is not particularly limited to a circular cross section, and may be triangular, quadrangular, dogbone, multileaf, multibranched, hollow or the like. Further, it may be a core-sheath composite fiber or a side-by-side composite fiber. In the case of the conjugate fiber, it need not be a homopolymer, and a combination of different polymers can be used.

【0016】また、遠赤外線放射能力を有するセラミッ
クや太陽光吸熱能力を有するセラミック、吸湿剤、着色
剤、湿潤剤、安定剤、難燃剤、制電剤等必要に応じて含
有させることができる。
Further, a ceramic having a far infrared ray radiating ability, a ceramic having a solar heat absorbing ability, a hygroscopic agent, a coloring agent, a wetting agent, a stabilizer, a flame retardant, an antistatic agent and the like can be contained if necessary.

【0017】[0017]

【作用】本発明の繊維は、多孔質体に含浸保持された有
機化合物が加熱されて融解したものが、冷却されて結晶
化する時に発する結晶化熱により発熱性を発現して保温
性を持続するものであって、この蓄熱剤成分(有機化合
物)は融解しても多孔質体に吸収されて繊維表面に染み
出すことがなく、衣料用やリビング資材用として必要な
特性を保持しつつ、かつ保温性能を示すものである。
In the fiber of the present invention, an organic compound impregnated and held in a porous body is heated and melted, but when it is cooled and crystallized, heat of crystallization is exerted to maintain heat retention. This heat storage agent component (organic compound) is not absorbed by the porous body even when melted and does not exude to the fiber surface, while maintaining the necessary properties for clothing and living materials, In addition, it shows heat retention performance.

【0018】[0018]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明は、これら実施例によって限定されるも
のではない。また、実施例中の各特性は以下に示す方法
で測定した。また、実施例中の各特性は以下に示す方法
で測定した。 融点、融解熱、降温結晶化温度および結晶化熱 (株)リガク、示差熱分析計(TG−8110D)を使
用し、昇温速度及び降温速度ともに10℃/分で測定
し、融点(℃)および融解熱(J/g)を各々求めた。 熱減量挙動 (株)リガク、示差熱分析計(TG−8110D)を使
用し、昇温速度10℃/分で測定したときの有機化合物
の揮発による熱減量率と温度の関係を求め、熱減量率1
0重量%及び20重量%に到達したときのそれぞれの温
度を調査した。
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Moreover, each property in the examples was measured by the following methods. Moreover, each property in the examples was measured by the following methods. Melting point, heat of fusion, temperature of crystallization and heat of crystallization Rigaku Co., Ltd., differential thermal analyzer (TG-8110D) was used to measure both the temperature raising rate and the temperature lowering rate at 10 ° C / min, and the melting point (° C). And the heat of fusion (J / g) were determined. Thermal loss behavior Rigaku Corporation, differential thermal analyzer (TG-8110D) was used to determine the relationship between the thermal loss rate and the temperature due to the volatilization of the organic compound when measured at a heating rate of 10 ° C./min. Rate 1
The respective temperatures when reaching 0% and 20% by weight were investigated.

【0019】実施例1,2、比較例1,2 デカン酸およびグリセリンをそれぞれ融点よりも約10
℃高い温度に加熱して、同温度に加熱したシリカの入っ
たミキサーの中へスプレーしながら供給して、グリセリ
ン/シリカおよびデカン酸/シリカが1:1のシリカ担
持品を得た。このものとシリカ担持しないものを示差熱
分析計(Tg−DSC)で測定した結果を表1に示す。
Examples 1 and 2, Comparative Examples 1 and 2, decanoic acid and glycerin were each about 10% higher than the melting point.
The mixture was heated to a high temperature of 0 ° C. and fed while being sprayed into a mixer containing silica heated to the same temperature to obtain a silica-supported product having a ratio of glycerin / silica and decanoic acid / silica of 1: 1. Table 1 shows the results of measurement of this substance and the one not supporting silica with a differential thermal analyzer (Tg-DSC).

【0020】[0020]

【表1】 [Table 1]

【0021】この結果に示すように、シリカに担持した
デカン酸(実施例1)およびグリセリン(実施例2)の
同一熱減量率に到達する温度が、シリカ担持しないデカ
ン酸単独(比較例1)及びグリセリン単独(比較例2)
に比較してアップすることが分かる。ついで、これらを
ポリエチレンテレフタレート溶融物に20%添加して紡
糸、延伸して繊維化を試みたが、比較例1,2は繊維化
不能であった。繊維化できた実施例1,2についてTg
−DSC測定した結果、表2のように発熱量が認められ
た。
As shown in these results, the temperatures at which the decanoic acid (Example 1) and glycerin (Example 2) supported on silica reach the same heat loss rate are decanoic acid alone (Comparative Example 1) not supported on silica. And glycerin alone (Comparative Example 2)
You can see that it is up compared to. Then, these were added to a polyethylene terephthalate melt in an amount of 20% and spun and stretched to attempt fiberization, but Comparative Examples 1 and 2 could not be fiberized. Tg of Examples 1 and 2 that could be made into fibers
As a result of DSC measurement, a calorific value was recognized as shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】比較例3 ポリエチレンテレフタレートを鞘成分、ポリエチレンテ
レフタレートとグリセリン(単独)を1/1とした芯成
分とを3/1の比率で各々複合ノズルに導いて紡糸、延
伸して繊維を得た。このTg−DSCを測定した結果を
表2に示す。
Comparative Example 3 Polyethylene terephthalate was used as a sheath component, polyethylene terephthalate and a core component containing 1/1 of glycerin (alone) were introduced into a composite nozzle at a ratio of 3/1, spun, and drawn to obtain a fiber. . The results of measuring this Tg-DSC are shown in Table 2.

【0024】実施例2と比較例3を室温30℃に保温し
た後、繊維に触れてみたところ、実施例2は通常のポリ
エステル繊維となんら変わりなかったが、比較例3は、
繊維内部から表面へのグリセリンの染みだしが多くてタ
ック(ネチャツキ)が強く、衣料用途等の布帛として使
用しがたいものであった。
After heating Example 2 and Comparative Example 3 at room temperature of 30 ° C. and touching the fibers, Example 2 was no different from ordinary polyester fiber, but Comparative Example 3 was
Since glycerin oozes out from the inside of the fiber to the surface so much that it has a strong tackiness, it was difficult to use as a cloth for clothing and the like.

【0025】比較例4 グルタル酸と1,6−ヘキサンジオールとから合成され
た〔η〕0.63のポリエステルを芯成分とし、〔η〕
0.67のポリエチレンテレフタレートを鞘成分とする
芯鞘型複合繊維を芯/鞘比=1/1となるように溶融紡
糸し、常法にしたがって(2.4dr×51mm)のス
テープル繊維を得た。芯成分のポリエステルの融点30
℃、降温結晶化温度4℃、融解熱53mJ/mg、結晶
化熱55mJ/mgであったが、多孔質体に保持されて
いないので、紡績し、製織、染色処理されたものにおい
ては、芯成分ポリエステルが繊維端面より染みだして、
タックが認められた。
Comparative Example 4 [η] was prepared by using [η] 0.63 polyester synthesized from glutaric acid and 1,6-hexanediol as a core component.
A core-sheath type composite fiber having 0.67 polyethylene terephthalate as a sheath component was melt-spun to have a core / sheath ratio of 1/1, and staple fibers of (2.4 dr × 51 mm) were obtained according to a conventional method. . Core component polyester melting point 30
℃, cooling crystallization temperature of 4 ℃, heat of fusion 53mJ / mg, heat of crystallization 55mJ / mg, but since it is not retained in the porous body, in the case of spinning, weaving, dyeing treatment, the core The component polyester seeps out from the fiber end face,
Tack was observed.

【0026】[0026]

【発明の効果】本発明から得られた蓄熱剤入り繊維は望
ましい繊維物性を有すると供に、優れた耐久性を有した
熱特性を示す事から衣料用はもとより寝装具、日用品、
レジャー用およびリビング資材用として利用が可能であ
る。
EFFECTS OF THE INVENTION The heat storage agent-containing fiber obtained from the present invention has desirable fiber physical properties, and also exhibits excellent durability and thermal characteristics. Therefore, not only for clothing but also for bedding, daily necessities,
It can be used for leisure and living materials.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 融点が10〜50℃、融解熱が20mJ
/mg以上、降温結晶化温度が45〜10℃、結晶化熱
が20mJ/mg以上である有機化合物を多孔質体に含
浸保持させてなる蓄熱剤を含有する蓄熱保温性繊維。
1. A melting point of 10 to 50 ° C. and a heat of fusion of 20 mJ.
/ Mg or more, a temperature-lowering crystallization temperature of 45 to 10 ° C, and a heat storage heat retaining fiber containing a heat storage agent obtained by impregnating and holding an organic compound having a crystallization heat of 20 mJ / mg or more in a porous body.
JP05391795A 1995-03-14 1995-03-14 Thermal storage fiber Expired - Fee Related JP3371047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05391795A JP3371047B2 (en) 1995-03-14 1995-03-14 Thermal storage fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05391795A JP3371047B2 (en) 1995-03-14 1995-03-14 Thermal storage fiber

Publications (2)

Publication Number Publication Date
JPH08246227A true JPH08246227A (en) 1996-09-24
JP3371047B2 JP3371047B2 (en) 2003-01-27

Family

ID=12956071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05391795A Expired - Fee Related JP3371047B2 (en) 1995-03-14 1995-03-14 Thermal storage fiber

Country Status (1)

Country Link
JP (1) JP3371047B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003158A (en) * 2001-06-26 2003-01-08 Mitsubishi Paper Mills Ltd Thermal storage medium microcapsule and building materials or fabrics using the same
JP2004510068A (en) * 2000-09-21 2004-04-02 アウトラスト テクノロジーズ,インコーポレイティド Composite fiber with reversible thermal properties
JP2005503497A (en) * 2001-09-21 2005-02-03 アウトラスト テクノロジーズ,インコーポレイティド Multicomponent fiber having reversible thermal properties and method for producing the multicomponent fiber
US8221910B2 (en) 2008-07-16 2012-07-17 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing polymeric phase change materials
US8404341B2 (en) 2006-01-26 2013-03-26 Outlast Technologies, LLC Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
US9234059B2 (en) 2008-07-16 2016-01-12 Outlast Technologies, LLC Articles containing functional polymeric phase change materials and methods of manufacturing the same
US9920455B2 (en) 2001-09-21 2018-03-20 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
US9938365B2 (en) 2011-03-04 2018-04-10 Outlast Technologies, LLC Articles containing precisely branched functional polymeric phase change materials
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
JP2018100326A (en) * 2016-12-19 2018-06-28 株式会社ダイセル Heat transport medium containing latent heat storage substance and mixed liquid for heat transport and heat transport method
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
USD911961S1 (en) 2017-04-03 2021-03-02 Latent Heat Solutions, Llc Battery container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6643974B2 (en) * 2015-12-28 2020-02-12 Kbセーレン株式会社 Synthetic fibers

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016056498A (en) * 2000-09-21 2016-04-21 アウトラスト テクノロジーズ,リミテッド ライアビリティ カンパニー Composite fiber having reversible thermal characteristic
JP2004510068A (en) * 2000-09-21 2004-04-02 アウトラスト テクノロジーズ,インコーポレイティド Composite fiber with reversible thermal properties
JP2003003158A (en) * 2001-06-26 2003-01-08 Mitsubishi Paper Mills Ltd Thermal storage medium microcapsule and building materials or fabrics using the same
JP2005503497A (en) * 2001-09-21 2005-02-03 アウトラスト テクノロジーズ,インコーポレイティド Multicomponent fiber having reversible thermal properties and method for producing the multicomponent fiber
US10208403B2 (en) 2001-09-21 2019-02-19 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
US9920455B2 (en) 2001-09-21 2018-03-20 Outlast Technologies, LLC Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof
US9797087B2 (en) 2006-01-26 2017-10-24 Outlast Technologies, LLC Coated articles with microcapsules and other containment structures incorporating functional polymeric phase change materials
US8404341B2 (en) 2006-01-26 2013-03-26 Outlast Technologies, LLC Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
US9234059B2 (en) 2008-07-16 2016-01-12 Outlast Technologies, LLC Articles containing functional polymeric phase change materials and methods of manufacturing the same
US8221910B2 (en) 2008-07-16 2012-07-17 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing polymeric phase change materials
US10377936B2 (en) 2008-07-16 2019-08-13 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
US10590321B2 (en) 2008-07-16 2020-03-17 Outlast Technologies, Gmbh Articles containing functional polymeric phase change materials and methods of manufacturing the same
US9371400B2 (en) 2010-04-16 2016-06-21 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
US9938365B2 (en) 2011-03-04 2018-04-10 Outlast Technologies, LLC Articles containing precisely branched functional polymeric phase change materials
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US11411262B2 (en) 2015-02-04 2022-08-09 Latent Heat Solutions, Llc Systems, structures and materials for electrochemical device thermal management
JP2018100326A (en) * 2016-12-19 2018-06-28 株式会社ダイセル Heat transport medium containing latent heat storage substance and mixed liquid for heat transport and heat transport method
USD911961S1 (en) 2017-04-03 2021-03-02 Latent Heat Solutions, Llc Battery container

Also Published As

Publication number Publication date
JP3371047B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
JPH08246227A (en) Heat-accumulating and heat-insulating fiber
CN1103385C (en) Autoamtic temp-regulating fibre and its products
CN102704037A (en) Heat accumulating temperature regulating fiber and method for preparing same
JP2014079367A (en) Inner cotton and fiber product
CN111155201A (en) Polyacrylonitrile/carbon nanotube composite fiber and preparation method and application thereof
JP2003246931A (en) Microcapsule-holding molded product
JPH05331754A (en) Heat-absorbing and releasing nonwoven fabric of conjugate fiber
JP2877525B2 (en) Endothermic composite fiber
CN105624825B (en) A kind of fire-retardant melt-blown non-woven material and preparation method thereof
JPH08134720A (en) Functional conjugate fiber and insectproof rug
KR20120109802A (en) Core-sheath type conjugate yarn with light weight and excellent heat insulation and process of preparing same
IE46591B1 (en) Hygroscopic filaments and fibers
JP3150218B2 (en) Biodegradable short fiber non-woven fabric
KR100544780B1 (en) Antibacterial sea-island polyester composite filament and precipitation thereof
JPH04245910A (en) Photothermal converting fiber and photothermal fusible fiber
JP2007113133A (en) Cool feeling fabric
JP4563773B2 (en) Thermal storage and warm clothes
JP2632978B2 (en) Agricultural nonwoven sheet
JP2004530803A5 (en)
CN107874330A (en) A kind of dual-purpose trousers of temperature controllable insulation
KR20060002443A (en) High funtional conjugate fiber with intelligent properties
JP3048434B2 (en) Acrylic synthetic fiber
CN211616914U (en) Warm-keeping high-moisture-absorption sweat-releasing polyester fabric
CN206493652U (en) The gorgeous cotton crepe material that a kind of breathable heat insulating bears dirty
KR950007816B1 (en) Method for the preparation of a aromatic sheath-core type coujugated yarn

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees