JPH08246013A - Method for suppressing local erosion of refractories - Google Patents

Method for suppressing local erosion of refractories

Info

Publication number
JPH08246013A
JPH08246013A JP7707295A JP7707295A JPH08246013A JP H08246013 A JPH08246013 A JP H08246013A JP 7707295 A JP7707295 A JP 7707295A JP 7707295 A JP7707295 A JP 7707295A JP H08246013 A JPH08246013 A JP H08246013A
Authority
JP
Japan
Prior art keywords
slope
slag
refractory
refractories
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7707295A
Other languages
Japanese (ja)
Inventor
Yukihiro Nakamura
幸弘 中村
Hiroshi Imagawa
浩志 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7707295A priority Critical patent/JPH08246013A/en
Publication of JPH08246013A publication Critical patent/JPH08246013A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE: To prolong the life of refractories by-making operation in such a manner that a region where three layers of molten steel, slag and refractories coexists is positioned in a slope part. CONSTITUTION: The refractory side wall of the position where local erosion occurs in the refractories in the region where the boundaries of the three layers of the molten iron or molten steel, the slag and the refractories coexist is provided with the slope of the gradient gentler than the gradient of the refractories around this wall. The operation is so made that the region where the boundaries of the three layers coexist is positioned in this slope part. The inclination angle of the slope part is specified in a range of <=75 deg. and the slope is so formed that the flow of the molten iron or molten steel inclines in a direction toward the center of a vessel or flow passage. As a result, the local erosion occurring in Marangoni flow is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉の樋、取鍋、連続
鋳造用ノズル等の、溶銑または溶鋼を取り扱う容器ある
いは流路における溶銑または溶鋼と、スラグと、耐火物
の3層の境界が共存する領域、即ち一般にメタルライン
と称される部位の耐火物に局部溶損が生じるのを抑制す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boundary between three layers of hot metal or molten steel, slag, and refractory in a container or a channel for handling hot metal or molten steel, such as a blast furnace trough, a ladle, and a nozzle for continuous casting. The present invention relates to a method for suppressing the occurrence of local melting loss in a refractory in a coexisting region, that is, a portion generally called a metal line.

【0002】[0002]

【従来の技術】鉄鋼プロセスにおいて、高炉の樋、取
鍋、連続鋳造用ノズル等の、溶銑または溶鋼と、スラグ
(溶滓)と、耐火物の3層の境界が共存する領域、即ち
一般にメタルラインと称される部位では、図1に示すよ
うに、他の部位に比べて耐火物の溶損量が非常に大き
く、この局部溶損が耐火物の寿命を決定していると言っ
ても過言でない。この対策としては、一般に他の部位に
比べて高耐食性の材料をこの部位に適用して寿命延長を
図っているが、未だ充分ではない。
2. Description of the Related Art In a steel process, a region in which a boundary between molten iron or molten steel, slag (slag), and refractory three layers coexists, such as a blast furnace gutter, ladle, and nozzle for continuous casting, generally metal. As shown in FIG. 1, the portion called a line has a much larger amount of refractory material melting than other portions, and it can be said that this local melting loss determines the life of the refractory material. Not an exaggeration. As a measure against this, generally, a material having higher corrosion resistance than other parts is applied to this part to extend the life, but it is not yet sufficient.

【0003】たとえば、高炉出銑樋の内張り材としては
一般に流し込み成型用耐火物が使用されている。しか
し、高炉の大型化、出銑間隔の短縮、出銑量の増加、出
銑温度の高温化等が進み、特に出銑孔からスキンマーダ
ンパーに至る大樋では、耐火物の使用環境、使用条件は
益々過酷になってきている。とりわけ図1に示したメタ
ルライン部の局部溶損は、非常に大きく、他の部位に比
べてえぐられたような溶損プロフィルとなっており、こ
の箇所の溶損が大樋の寿命を決定している。このような
耐火物の局部溶損に対処するために、従来より種々の材
料開発が行われてきている。一般にはAl2 3 −Si
C−C系流し込み材が使用されるが、最近では特開昭5
5−37459号公報や特開昭55−85478号公報
において開示されているようなMgO・Al2 3 系ス
ピネル−SiC−C系流し込み材が検討されている。こ
のような対策は、材料を変更して耐用性向上を図ろうと
するものであり、材料改善以外の対策はあまり検討され
ていないのが実情である。
For example, a cast refractory is generally used as a lining material for a blast furnace tappipe. However, as the blast furnace becomes larger, the tapping interval shortens, the amount of tapping increases, the tapping temperature rises, etc., especially in the large gutter from the taphole to the skinmer damper, the refractory use environment and operating conditions Is getting more and more harsh. In particular, the local melting loss of the metal line part shown in Fig. 1 is very large and has a melting loss profile that is scooped out compared to other parts. The melting loss of this part determines the life of the gutter. ing. In order to deal with such local melting loss of refractory materials, various materials have been developed conventionally. Generally Al 2 O 3 -Si
A C-C type casting material is used, but recently, JP-A-5
The MgO.Al 2 O 3 -based spinel-SiC-C-based casting materials as disclosed in JP-A-5-37459 and JP-A-55-85478 have been studied. Such measures are intended to improve the durability by changing the material, and the fact is that measures other than material improvement have not been studied so much.

【0004】[0004]

【発明が解決しようとする課題】高炉の出銑孔から排出
された溶銑およびスラグは、その比重差により溶銑が下
側、スラグが上流側に来るよう分離し、大樋を下流へと
流れて行く。この溶銑とスラグとが分離した境界領域で
は、特に耐火物の浸食作用が激しく、図1に示すよう
に、3層の境界が共存する領域付近の狭い部分(通常は
この3層の境界が共存する領域、即ち、メタルライン
は、その位置が100mm程度変動すると言われる)に
おいては深くえぐるように浸食されるのが常である。従
って、現状では、このメタルライン部溶損が大樋の寿命
律速となっている。
The hot metal and slag discharged from the tap hole of the blast furnace are separated by the difference in specific gravity so that the hot metal is on the lower side and the slag is on the upstream side, and flows down the gutter to the downstream side. . In the boundary region where the hot metal and the slag are separated, the erosion action of the refractory is particularly strong, and as shown in FIG. 1, a narrow portion near the region where the three-layer boundary coexists (usually, the three-layer boundary coexists). The area where the metal lines are formed, that is, the metal line is said to fluctuate about 100 mm in position, is usually eroded so as to be deeply dug. Therefore, under the present circumstances, the metal line portion melting loss is the life-limiting rate of the Ohiga.

【0005】このようなメタルライン部における耐火物
の溶損は、溶銑とスラグの境界に反応性に富んだFeO
が生成し、これが耐火物と反応することで起きる現象で
あると考えられている。最近の研究では、九工大 向井
ら(吉富、平櫛、向井:鉄と鋼 vol.73,No.
11,pp1535−1542(1987))はこの溶
銑と、スラグと、耐火物の3層の境界が共存する領域付
近で生じる局部溶損の機構を以下のように説明してい
る。
The melting loss of the refractory material in the metal line portion is caused by highly reactive FeO at the boundary between the hot metal and the slag.
Is generated, which is considered to be a phenomenon caused by the reaction with refractory materials. In recent research, Mukai et al., Kyushu Institute of Technology (Yoshitomi, Hirakushi, Mukai: Iron and Steel, Vol. 73, No.
11, pp 1535-1542 (1987)) describes the mechanism of local melting loss that occurs in the vicinity of the region where the boundary between the hot metal, the slag, and the three layers of refractory material coexists.

【0006】図1、2に示すように、耐火物−メタルラ
イン間にはスラグフィルムが形成される。このスラグフ
ィルムは、耐火物やメタルとの反応により局所的にSi
2 ,Al2 3 等の濃度差を生じ、マランゴニー効果
によって活発に運動する。また、Cとスラグフィルム中
のSiO2 との反応により発生するCO気泡もスラグフ
ィルムの動きを高める。一方、スラグフィルム中のFe
Oは、SiC+2FeO=SiO2 +2Fe+Cの反応
によって耐火物中のSiC粒を酸化し、組織の流出を促
進する。また、スラグフィルムの活発な動きは、上部に
あるスラグ層から新鮮なスラグを下部のメタル層に補給
して溶出成分の除去を促進するため、長時間に渡ってス
ラグフィルムを液相状態に保つ。その結果、SiO2
2Fe=2FeO+Siの反応等によってFeOは絶え
間なく供給され、局部溶損が速やかにかつ長時間持続す
るすると報告されている。
As shown in FIGS. 1 and 2, a slag film is formed between the refractory and the metal line. This slag film locally reacts with Si by reaction with refractories and metals.
A difference in concentration of O 2 , Al 2 O 3, etc. is generated, and exercise is actively performed by the Marangoni effect. CO bubbles generated by the reaction between C and SiO 2 in the slag film also enhance the movement of the slag film. On the other hand, Fe in the slag film
O oxidizes the SiC grains in the refractory by the reaction of SiC + 2FeO = SiO 2 + 2Fe + C, and promotes the outflow of the structure. In addition, the active movement of the slag film keeps the slag film in the liquid phase state for a long time because it replenishes the lower metal layer with fresh slag from the upper slag layer to accelerate the removal of the dissolved components. . As a result, SiO 2 +
It has been reported that FeO is continuously supplied by the reaction of 2Fe = 2FeO + Si and the like, and the local erosion damage continues quickly and for a long time.

【0007】このような溶損を抑制するためには、スラ
グフィルムの運動を抑制する必要があるとの考えから、
(1)スラグフィルムに炭素を懸濁させる。(2)スラ
グに対する溶解度が低く、しかも高融点を有する酸化
物、あるいは、そのような酸化物、または化合物を生成
するような成分(例えばZrO2 )の配合等が提案され
ている。しかし、このようにしても十分ではなく、この
局部溶損を抑制し耐火物の寿命を延長することが望まれ
ている。
In order to suppress such melting loss, it is necessary to suppress the movement of the slag film.
(1) Suspending carbon in a slag film. (2) An oxide having a low solubility in slag and a high melting point, or a compound (for example, ZrO 2 ) that forms such an oxide or a compound has been proposed. However, this method is not sufficient, and it is desired to suppress the local melting loss and extend the life of the refractory.

【0008】[0008]

【課題を解決するための手段】そこで、溶銑または溶鋼
を取り扱う容器あるいは流路、例えば高炉の樋で溶銑
と、スラグと、耐火物の3層の境面が共存するメタルラ
イン部の局部溶損を耐火物の材料を工夫するのではな
く、ライニング構造で抑制する方法を検討した。即ち、
前述した向井らの説明による溶損機構で局部溶損の主原
因となっているスラグフィルムの形態を溶融スラグの濡
性、表面張力の観点から検討した。その結果、スラグフ
ィルムの厚みを変化させてスラグフィルムとスラグ層の
濃度差を少なくし、マランゴニー流を極力抑えるライニ
ング構造を発明し、局部溶損抑制方法を得ることができ
た。それは、溶銑又は溶鋼を取り扱う容器あるいは流路
における溶銑又は溶鋼と、スラグと、耐火物の3層の境
界が共存する領域で、耐火物に局部溶損が生じる位置の
耐火物側壁に、その周囲の耐火物よりも傾斜の緩やかな
スロープ部を設け、そのスロープ部の傾斜角度を75°
以下の範囲で、かつ溶銑または溶鋼の流れが容器あるい
は流路の中心に向かう方向に傾斜させるとともに、この
スロープ部に3層の境界が共存する領域が位置するよう
に操業することを特徴とする耐火物の局部溶損抑制方法
である。
[Solution for solving the problems] Therefore, the local melting loss of the metal line portion where the interface between the hot metal, the slag, and the three layers of the refractory material coexists in the vessel or the channel for handling the hot metal or molten steel, for example, in the gutter of the blast furnace Instead of devising a refractory material, we investigated a method of suppressing it with a lining structure. That is,
The morphology of the slag film, which is the main cause of local erosion in the erosion mechanism explained by Mukai et al., Was examined from the viewpoint of wettability and surface tension of the molten slag. As a result, it was possible to invent a lining structure that changes the thickness of the slag film to reduce the concentration difference between the slag film and the slag layer, and to suppress the Marangoni flow as much as possible, and to obtain a method for suppressing local melting loss. It is a region where the boundary between hot metal or molten steel, slag, and three layers of refractory coexists in a container or channel that handles hot metal or molten steel, and on the refractory side wall at the position where local melting loss occurs in the refractory, its surroundings. The slope of the slope is gentler than that of the refractory, and the slope angle of the slope is 75 °.
It is characterized in that the flow of molten pig iron or molten steel is inclined in the following range toward the center of the vessel or flow channel, and that the region where the boundaries of the three layers coexist is located in this slope portion. This is a method for suppressing local melting loss of refractory materials.

【0009】[0009]

【作用】以下、本発明について、高炉の主樋を例として
詳細に説明する。高炉主樋の局部溶損は図2に示すよう
な溶損形態となっている。また、この局部溶損全体を詳
細に観察すると、図1に示すように上部の方が極端に溶
損が大きくなっている。これは上部の方がスラグフィル
ムが安定して存在するため、更に溶損が進んで大きくえ
ぐられたような形態となると考えられる。そこで、発明
者らは、この局部溶損の主因となる安定なスラグフィル
ムを、操業開始時から形成しにくくなるような形状の耐
火物ライニング構造を検討し発明した。すなわち、図
3、図4に示すような溶銑または溶鋼と、スラグと、耐
火物の3層の境界が共存する領域で、耐火物に局部溶損
が生じる位置の耐火物側壁に、その周囲の耐火物よりも
傾斜の緩やかなスロープ部を設け、このスロープ部に3
層の境界が共存する領域が位置するように操業する方法
である。
The present invention will be described in detail below by taking the main gutter of the blast furnace as an example. The local erosion of the blast furnace main gutter has the form of erosion as shown in FIG. Further, when observing the entire local melting loss in detail, as shown in FIG. 1, the melting loss is extremely large in the upper portion. It is considered that this is because the slag film is more stably present in the upper part, so that the erosion further progresses and the slag film is largely scooped. Therefore, the inventors have studied and invented a refractory lining structure having a shape that makes it difficult to form a stable slag film, which is a main cause of this local melting loss, from the start of operation. That is, in a region where the boundary between the hot metal or molten steel, the slag, and the three layers of the refractory coexists as shown in FIGS. 3 and 4, on the refractory side wall at the position where the local melting loss occurs in the refractory, A slope with a gentler slope than the refractory is provided, and 3
It is a method of operating so that the region where the layer boundaries coexist is located.

【0010】また、図3に示したスロープ部の傾斜角度
は、75°以下の範囲で効果が顕著に現れてくる。特に
望ましくは傾斜角度が小さい方が安定したスラグフィル
ムを形成しにくくなるため、局部溶損を抑制できる。こ
れは、図4の従来法と本発明のスラグフィルムの存在形
態を比較すればわかるように、傾斜角度が小さい方がス
ラグフィルムが小さく、薄くなるため、SiO2 、Al
2 3 等の成分のスラグフィルム中の濃度とスラグ中の
濃度との差が小さくなり、結果としてマランゴニーによ
る流動が小さくなって、このマランゴニー流動に基づく
溶損が進行しないことによると思われる。
Further, the effect becomes remarkable when the inclination angle of the slope portion shown in FIG. 3 is in the range of 75 ° or less. Particularly preferably, the smaller the inclination angle is, the more difficult it is to form a stable slag film, so that local melting loss can be suppressed. This is because, as can be seen by comparing the existence form of the slag film of the prior art and the present invention in FIG. 4, towards the inclination angle is small small slag film to become thinner, SiO 2, Al
It is considered that the difference between the concentration of the components such as 2 O 3 in the slag film and the concentration in the slag becomes small, and as a result, the flow due to Marangoni becomes small, and the melting loss due to this Marangoni flow does not proceed.

【0011】なお、本発明は高炉主樋について説明した
が、他の溶銑または溶鋼と、スラグと、耐火物の3層の
境界が共存する領域で、耐火物に局部溶損が生じる位置
に対して、同様本発明が適用できることは言うまでもな
い。例えば、取鍋の一般にスラグラインと称される部
位、連続鋳造に用いられる浸漬ノズルの一般にパウダー
ラインと称される部位等にも適用できる。
Although the present invention has been described with respect to the blast furnace main gutter, the position where local melting loss occurs in the refractory in the region where the boundary between the other three layers of the hot metal or molten steel, the slag, and the refractory coexists. It goes without saying that the present invention can be applied similarly. For example, it can be applied to a portion generally called a slag line of a ladle, a portion generally called a powder line of an immersion nozzle used for continuous casting, and the like.

【0012】[0012]

【実施例】以下、本発明を実施例に基づいて説明する。
図5に示すような供試体(底面150φmm、上面80
φmm、高さ250mm)を樋材メタルゾーン用に使わ
れている Al2 3 −SiC−Cキャスタブルで施工し、乾燥さ
せて作成した。その際の供試体のスロープ部の傾斜角度
は、15゜、30゜、45゜、60゜、75゜、80
゜、90゜の7通りとした。その後これらの供試体を用
いて高周波誘導炉による浸漬試験を実施した。溶銑温度
を1550℃とし、高炉スラグを投入して、厚さ約20
mmのスラグ層を設け、図5のスロープ部Aの中央にメ
タルラインが位置するように、供試体を浸漬した。
尚、浸漬時間は2時間とした。こうして得られた供試体
の最大溶損寸法をスロープ部Aの各傾斜角度について測
定し、その結果を鉛直部すなわちスロープ部傾斜角度が
90゜の場合の溶損量を100としたときの値を溶損指
数として表1に示した。
EXAMPLES The present invention will be described below based on examples.
Specimen as shown in Fig. 5 (bottom 150 mm, top 80
(φ mm, height 250 mm) was constructed with Al 2 O 3 —SiC—C castables used for the gutter metal zone and dried. At that time, the slope angle of the slope of the specimen is 15 °, 30 °, 45 °, 60 °, 75 °, 80.
There are 7 types of 90 degrees. After that, an immersion test was carried out in a high frequency induction furnace using these test pieces. The hot metal temperature is set to 1550 ° C., blast furnace slag is added, and the thickness is about 20.
A slag layer of mm was provided, and the test piece was dipped so that the metal line was located at the center of the slope portion A in FIG.
The immersion time was 2 hours. The maximum erosion dimension of the specimen thus obtained was measured for each inclination angle of the slope part A, and the result was taken as the value when the amount of erosion is 100 when the inclination angle of the vertical part, that is, the slope part is 90 °. The melting index is shown in Table 1.

【0013】[0013]

【表1】 [Table 1]

【0014】表1から明らかなように、スロープ部傾斜
角度が75゜以下の溶損は、鉛直部すなわちスロープ部
傾斜角度90゜の場合に比べてその8割以下に軽減して
いる。
As is clear from Table 1, the melting loss when the slope portion inclination angle is 75 ° or less is reduced to 80% or less of that in the vertical portion, that is, when the slope portion inclination angle is 90 °.

【0015】次に、具体的な使用例について述べる。図
3に示すように、スロープ部傾斜角度が45゜となるよ
うにして大形高炉の主樋に本発明の耐火物ライニングを
施工した。ライニングの材料としては、従来からメタル
ゾーン用に使われているAl2 3 −SiC−Cキャス
タブルを用いた。その結果高周波誘導炉による浸漬試験
の結果と同様に溶損量が少なくなり、従来のライニング
に比較して約25%の寿命延長が図られた。この場合、
高周波誘導炉による浸漬試験の結果に比べて効果が小さ
かったのは、実際の主樋では溶銑に流速があり、その流
速に基づく損耗があるため、その分溶損量が大きくなる
ことが原因と思われる。同様に本発明を、取鍋の一般に
スラグラインと称される部位、連続鋳造に用いられる浸
漬ノズルの一般にパウダーラインと称される部位等に対
しても適用できる。
Next, a specific example of use will be described. As shown in FIG. 3, the refractory lining of the present invention was applied to the main gutter of the large-sized blast furnace so that the slope angle was 45 °. As a material for the lining, Al 2 O 3 —SiC—C castable, which has been conventionally used for a metal zone, was used. As a result, the amount of melting loss was reduced similarly to the result of the immersion test using the high frequency induction furnace, and the life was extended by about 25% as compared with the conventional lining. in this case,
The effect was smaller than the result of the immersion test using the high-frequency induction furnace because the actual hot metal launder had a flow velocity in the hot metal, and there was wear due to that flow velocity, which caused the amount of melt loss to increase. Seem. Similarly, the present invention can be applied to a portion generally called a slag line of a ladle, a portion generally called a powder line of an immersion nozzle used for continuous casting, and the like.

【0016】[0016]

【発明の効果】高炉の樋等で本発明を適用することによ
り、マランゴニー流動で生じる局部溶損を抑制すること
ができ、耐火物の寿命延長が図れる。
EFFECTS OF THE INVENTION By applying the present invention to a gutter of a blast furnace, it is possible to suppress local melting loss caused by Marangoni flow and to extend the life of the refractory.

【図面の簡単な説明】[Brief description of drawings]

【図1】高炉主樋の溶損プロフィル及びスラグフィルム
の存在形態を示した概念図である。
FIG. 1 is a conceptual diagram showing the erosion profile of a blast furnace main gutter and the existing form of a slag film.

【図2】溶銑あるいは溶鋼と、スラグと、耐火物の3層
の界面が共存する領域、すなわち一般にメタルライン部
と称される部位での局部溶損を説明した概念図である。
FIG. 2 is a conceptual diagram illustrating local melting loss in a region where the interfaces of three layers of molten pig iron or molten steel, slag, and refractory coexist, that is, a portion generally called a metal line portion.

【図3】本発明により局部溶損抑制を図る高炉主樋のラ
イニング構造図である。
FIG. 3 is a lining structure diagram of a blast furnace main gutter for suppressing local melting loss according to the present invention.

【図4】従来法および本発明でのスラグフィルムの存在
形態を示す概念図である。
FIG. 4 is a conceptual diagram showing the existing form of the slag film in the conventional method and the present invention.

【図5】実施例において浸漬試験に用いた供試体の概略
説明図である。
FIG. 5 is a schematic explanatory diagram of a test piece used for an immersion test in Examples.

【符号の説明】[Explanation of symbols]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】溶銑または溶鋼を取り扱う容器あるいは流
路における溶銑又は溶鋼と、スラグと、耐火物の3層の
境界が共存する領域で、耐火物に局部溶損が生じる位置
の耐火物側壁に、その周囲の耐火物よりも傾斜の緩やか
なスロープ部を設け、そのスロープ部の傾斜角度を75
°以下の範囲で、かつ溶銑または溶鋼の流れが容器ある
いは流路の中心に向かう方向に傾斜するとともに、この
スロープ部に3層の境界が共存する領域が位置するよう
に操業することを特徴とする耐火物の局部溶損抑制方
法。
1. A refractory side wall at a position where local melting damage occurs in a refractory in a region where the boundary between the hot metal or the molten steel, the slag, and the three layers of the refractory coexists in a container or a channel for handling the hot metal or the molten steel. , The slope of the slope is gentler than the surrounding refractories, and the slope angle of the slope is 75
It is characterized by operating in such a manner that the flow of molten pig iron or molten steel inclines toward the center of the container or the flow path within the range of ° or less, and the region where the three-layer boundaries coexist is located in this slope part. Method for suppressing local melting loss of refractories.
JP7707295A 1995-03-09 1995-03-09 Method for suppressing local erosion of refractories Withdrawn JPH08246013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7707295A JPH08246013A (en) 1995-03-09 1995-03-09 Method for suppressing local erosion of refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7707295A JPH08246013A (en) 1995-03-09 1995-03-09 Method for suppressing local erosion of refractories

Publications (1)

Publication Number Publication Date
JPH08246013A true JPH08246013A (en) 1996-09-24

Family

ID=13623598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7707295A Withdrawn JPH08246013A (en) 1995-03-09 1995-03-09 Method for suppressing local erosion of refractories

Country Status (1)

Country Link
JP (1) JPH08246013A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058753A (en) * 2020-12-18 2022-02-18 山东耐火材料集团有限公司 Partitioning method for refractory material of main channel working layer of large blast furnace casting house
CN115820956A (en) * 2022-11-29 2023-03-21 武汉钢铁有限公司 Sectional erosion control method for blast furnace hearth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058753A (en) * 2020-12-18 2022-02-18 山东耐火材料集团有限公司 Partitioning method for refractory material of main channel working layer of large blast furnace casting house
CN115820956A (en) * 2022-11-29 2023-03-21 武汉钢铁有限公司 Sectional erosion control method for blast furnace hearth
CN115820956B (en) * 2022-11-29 2024-03-19 武汉钢铁有限公司 Sectional erosion control method for blast furnace hearth

Similar Documents

Publication Publication Date Title
Zhang et al. State of the art in evaluation and control of steel cleanliness
Liu et al. Composition changes of inclusions by reaction with slag and refractory: A review
US5270075A (en) Ceramic welding process
FI60409C (en) ANORDING FROM THE METAL SURFACE AND THE METALLURGICAL SCOPE OF KAERL
CN113444857B (en) Production process for increasing continuous casting furnace number of aluminum-deoxidized high-carbon chromium bearing steel
Yang et al. Formation and Prevention of Nozzle Clogging during the Continuous Casting of Steels: A Review
JPH08246013A (en) Method for suppressing local erosion of refractories
JP6493635B1 (en) Method of continuous casting of steel and method of manufacturing thin steel sheet
JPH082487B2 (en) Flux for addition in tundish
Way Cleanness, castability, and surface quality of formable sheet steels
JPH06218504A (en) Tundish refining method
JP7364893B2 (en) Method of supplying molten steel
Dutta et al. Secondary steelmaking
Manninen et al. Low reoxidation tundish metallurgy at Fundia Koverhar steel plant
Biswas et al. Modern refractory practice for clean steel
JP2019155396A (en) Slab casting device and slab casting method
JP7380900B2 (en) Continuous steel casting method
JP4459933B2 (en) How to resume continuous casting of steel by tundish hot water reservoir
Williams et al. Mechanism and control of buildup phenomenon in channel induction and pressure pouring furnaces–Part 1
JP2003155517A (en) Method for producing low carbon and high manganese steel
JP3745689B2 (en) Manufacturing method for continuous cast slabs with excellent cleanliness
JPH11158536A (en) Method for melting extra-low carbon steel excellent in cleanliness
JP2001032009A (en) Method for refining molten steel containing chromium
JP2000017320A (en) Method for preventing erosion of lining brick in ladle
JP2004276093A (en) Continuous casting method of high purity steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604