JPH08245295A - Rare earth element-iron-cobalt-boron tetragonal compound - Google Patents

Rare earth element-iron-cobalt-boron tetragonal compound

Info

Publication number
JPH08245295A
JPH08245295A JP7348303A JP34830395A JPH08245295A JP H08245295 A JPH08245295 A JP H08245295A JP 7348303 A JP7348303 A JP 7348303A JP 34830395 A JP34830395 A JP 34830395A JP H08245295 A JPH08245295 A JP H08245295A
Authority
JP
Japan
Prior art keywords
compound
tetragonal
permanent magnet
phase
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7348303A
Other languages
Japanese (ja)
Other versions
JP2665658B2 (en
Inventor
Masato Sagawa
眞人 佐川
Setsuo Fujimura
節夫 藤村
Yutaka Matsuura
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP7348303A priority Critical patent/JP2665658B2/en
Publication of JPH08245295A publication Critical patent/JPH08245295A/en
Application granted granted Critical
Publication of JP2665658B2 publication Critical patent/JP2665658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE: To obtain a tetragonal compd. useful as a constituent compd. of a high performance magnetic material, a permanent magnet material, etc. CONSTITUTION: This tetragonal compd. is an R (Fe, Co) B tetragonal compd. (R is one or more kinds of rare earth elements including Y) contg. R, Fe, Co and B as essential components and having a tetragonal crystal structure with about 12Å lattice constant c0 or an R(Fe, Co) BA tetragonal compd. (A is Ti, Ni, Bi, V, Nb, Ta, Cr, Mo, W, Mn, Al, Sb, Ge, Sn, Zr, Hf, Cu, S, C, Ca, Mg, Si, O or P).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類・鉄・ボロンを
必須成分とする希土類・鉄・ボロン系正方晶化合物を基
礎とした置換・修飾型正方晶化合物、特に希土類・鉄・
コバルト・ボロン系正方晶化合物に関する。この正方晶
化合物は、磁性材料等特に永久磁石の構成化合物として
も有用な物質発明の対象である。
BACKGROUND OF THE INVENTION The present invention relates to a substitution / modification type tetragonal compound based on a rare earth / iron / boron tetragonal compound containing rare earth / iron / boron as an essential component, particularly a rare earth / iron / tetragonal compound.
The present invention relates to a cobalt-boron tetragonal compound. This tetragonal compound is a subject of the invention of a substance useful as a constituent compound of a magnetic material or the like, particularly a permanent magnet.

【0002】R(希土類元素)とCoは種々の安定な化
合物を形成する。なかでもSmCo5やSm2Co17は高
い飽和磁化、高いキュリー点、大きい磁気異方性定数を
有しており、これらの化合物をベースとして超高性能永
久磁石材料が開発された。現在RCo磁石は小型モータ
や小型スピーカなど様々な用途に広く利用されている。
しかしながら、これらのSmCo系磁石は資源が稀少な
SmやCoを多量に含んでいるので高価である。そのた
めSmやCoをあまり含まないか、あるいは全く含まな
い材料の開発が望まれている。
R (rare earth element) and Co form various stable compounds. Among them, SmCo 5 and Sm 2 Co 17 have high saturation magnetization, high Curie point, and large magnetic anisotropy constant, and an ultrahigh performance permanent magnet material was developed based on these compounds. Currently, RCo magnets are widely used in various applications such as small motors and small speakers.
However, these SmCo-based magnets are expensive because they contain a large amount of Sm and Co, which are scarce resources. Therefore, it is desired to develop a material containing little or no Sm or Co.

【0003】この目的に沿った永久磁石材料とする上で
の観点からRCo化合物と同様に巨大な異方性定数をも
っているRFe系化合物が注目された。しかしRFe系
ではRCo系ほど多種類の化合物は存在しない。特にR
元素の中では資源的に豊富なCe、La、Ndなど軽希
土類でR2Fe17型化合物とほんの少数の他の化合物
(例Nd6Fe23、PrFe2)が見出されているにすぎ
ない。これらの化合物はキュリー点も低く、異方性定数
も小さいため、実用的な永久磁石とするのに必要な特性
を示さない。
From the viewpoint of making a permanent magnet material for this purpose, an RFe compound having a huge anisotropy constant like an RCo compound has been noted. However, in the RFe system, there are not as many kinds of compounds as in the RCo system. Especially R
Among the elements, light rare earths such as Ce, La, and Nd, which are abundant in resources, have been found as R 2 Fe 17 type compounds and only a few other compounds (eg Nd 6 Fe 23 , PrFe 2 ). . Since these compounds have a low Curie point and a small anisotropy constant, they do not exhibit the properties required for a practical permanent magnet.

【0004】最近、RFe系合金の超急冷リボンが高保
磁力を示すことが見出され、永久磁石材料としての関心
が高まっている。しかし、RFe超急冷リボンでは実用
形状、寸法の磁石が得られず、まだ実用永久磁石とはい
えない。また、磁気特性の上でも超急冷リボンは従来の
磁石に比べて低い値しか示さない。
Recently, it has been found that an ultra-quenched ribbon of an RFe alloy exhibits a high coercive force, and the interest as a permanent magnet material is increasing. However, the RFe ultra-quenching ribbon cannot provide a magnet having a practical shape and size, and cannot be said to be a practical permanent magnet. Also, in terms of magnetic properties, the ultra-quenched ribbon shows a lower value than the conventional magnet.

【0005】本発明は、上述の従来技術で達成されてい
ないR、Fe、Co及び第4成分を少くとも必須成分と
し室温以上で安定な新規な化合物を提供することを基本
的目的とする。本発明は、特にR、Fe、Co、Bを必
須の成分とする新規な化合物に基づきさらに置換ないし
修飾成分を含む新規な化合物であって磁性材料及び永久
磁石の構成化合物として有用なものを提供することを基
本目的とする。本発明はまた、従来必要とされているS
mやCoを実用上は必ずしも多量に用いることなく、優
れた実用的磁気特性を備えた或いは発現可能な磁性材料
及び永久磁石の構成化合物として有用なものを提供せん
とするものである。
The basic object of the present invention is to provide a novel compound which contains at least essential components of R, Fe, Co and the fourth component, which have not been achieved by the above-mentioned prior art, and which is stable at room temperature or higher. The present invention provides a novel compound which further contains a substitution or modification component based on a novel compound containing R, Fe, Co and B as essential components and which is useful as a constituent compound of a magnetic material and a permanent magnet. The basic purpose is to do. The present invention also provides the previously required S
It is an object of the present invention to provide a useful material as a constituent compound of a magnetic material and a permanent magnet having excellent practical magnetic properties or capable of exhibiting them without necessarily using a large amount of m and Co in practical use.

【0006】即ち、本願発明の基礎を成す出願(特願昭
58−94876)の開示によれば、R(RはYを含む
希土類元素の一種以上)、Fe、Bを必須成分とし、格
子定数のc0が約12Åである正方晶系の結晶構造を有
するRFeB正方晶化合物が得られる。このRFeB正
方晶化合物は本願発明の基礎をなす。
That is, according to the disclosure of the application forming the basis of the present invention (Japanese Patent Application No. 58-94876), R (R is one or more rare earth elements including Y), Fe and B are essential components, and the lattice constant is An RFeB tetragonal compound having a tetragonal crystal structure with c 0 of about 12Å is obtained. This RFeB tetragonal compound forms the basis of the present invention.

【0007】本発明は第1に、上記RFeB系正方晶化
合物において、FeをCoにて置換したもの即ち、R
(Fe、Co)B正方晶化合物(好ましくは原子比にて
Co50%以下 −以下明記ないときは%は原子比を示
す−)を提供する。CoによるFeの置換は正方晶化合
物のキュリー点の増大の効果がある。
The present invention firstly relates to the above-mentioned RFeB type tetragonal compound in which Fe is replaced by Co, that is, R
Provide a (Fe, Co) B tetragonal compound (preferably not more than 50% Co by atomic ratio-% means atomic ratio unless otherwise specified). Substitution of Fe with Co has the effect of increasing the Curie point of a tetragonal compound.

【0008】好ましくは、かかる化合物が非磁性相によ
り互いに隔離されていることにより、優れた磁石特性を
発現できる構成化合物を与える。なお、好ましくはこの
場合(特に焼結体の場合)、正方晶化合物の平均結晶粒
径は1〜100μmである。
Preferably, such compounds are separated from each other by a non-magnetic phase to provide a constituent compound capable of exhibiting excellent magnet characteristics. In this case (particularly in the case of a sintered body), the average crystal grain size of the tetragonal compound is preferably 1 to 100 μm.

【0009】さらに本発明において、第2に、R(F
e、Co)B系の正方晶化合物に下記特定のA元素を含
有したものも同様の正方晶系を示し、磁性材料及び永久
磁石の構成化合物として有用かつ優れたものである。但
しA元素はTi、Ni、Bi、V、Nb、Ta、Cr、
Mo、W、Mn、Al、Sb、Ge、Sn、Zr、H
f、Cu、S、C、Ca、Mg、Si、O及びPの一種
以上である。
Further, in the present invention, secondly, R (F
e, Co) B-type tetragonal compounds containing the following specific A element also show the same tetragonal system and are useful and excellent as constituent compounds of magnetic materials and permanent magnets. However, the A element is Ti, Ni, Bi, V, Nb, Ta, Cr,
Mo, W, Mn, Al, Sb, Ge, Sn, Zr, H
It is one or more of f, Cu, S, C, Ca, Mg, Si, O and P.

【0010】好ましくは、このR(Fe、Co)BA正
方晶化合物が非磁性相で互いに隔離されている状態のと
き、永久磁石の構成化合物として最も優れている。なお
この場合(特に焼結体の場合)、このR(Fe、Co)
BA正方晶化合物の平均結晶粒径が1〜100μmであ
ることが好ましい。
Preferably, when the R (Fe, Co) BA tetragonal compound is in a state in which it is isolated from each other in the non-magnetic phase, it is the most excellent as a constituent compound of the permanent magnet. In this case (especially in the case of a sintered body), this R (Fe, Co)
The average crystal grain size of the BA tetragonal compound is preferably 1 to 100 μm.

【0011】有用な磁気特性を得るため、本発明におい
て、高性能の磁性材料、永久磁石とするためには、正方
晶系(後述参照)の結晶構造を有する化合物を主相とす
る必要がある。ここで主相とは材料中に含まれているい
くつかの相のうち、体積比で50%以上を占める相をい
う。即ち、この主相としては、R(Fe、Co)B化合
物、R(Fe、Co)BA化合物の一種以上が構成化合
物となる。
In order to obtain useful magnetic properties, in the present invention, a compound having a tetragonal (see later) crystal structure must be the main phase in order to obtain a high-performance magnetic material or permanent magnet. . Here, the main phase means a phase that occupies 50% or more in volume ratio among some phases contained in the material. That is, as the main phase, one or more of R (Fe, Co) B compounds and R (Fe, Co) BA compounds are constituent compounds.

【0012】第1及び第2の発明(特定発明、併合発
明)においてかつ正方晶化合物に基づいて磁性材料又は
永久磁石を製造する場合、その組成を好ましくはB2〜
28%、R8〜30%、残部実質上Feとすることによ
って優れた磁気特性が得られ、より好ましくはFe40
〜90%とし、これを基本系としてCo置換あるいはA
元素添加を行う。
In the first and second inventions (specific invention, combined invention) and when a magnetic material or a permanent magnet is produced based on a tetragonal compound, the composition is preferably B2 to.
28%, R8-30%, and the balance substantially Fe to obtain excellent magnetic properties, and more preferably Fe40
~ 90%, with this as the basic system, Co substitution or A
Element addition is performed.

【0013】なお磁性材料又は永久磁石とする場合、A
元素の量は好ましくは次の通りである:Ti 4.5%以
下、 Ni 8.0%以下、Bi 5.0%以下、
V 9.5%以下、Nb 12.5%以下、 Ta
10.5%以下、Cr 8.5%以下、 Mo 9.5%
以下、W 9.5%以下、 Mn 8.0%以下、A
l 9.5%以下、 Sb 2.5%以下、Ge 7.0
%以下、 Sn 3.5%以下、Zr 5.5%以下、
Hf 5.5%以下、Cu 3.5%以下、
S 2.0%以下、C 4.0%以下、 Ca 8.
0%以下、Mg 8.0%以下、 Si 8.0%以
下、O 1.0%以下、および P 3.5%以下(但し
A元素は2以上含むこともでき、その場合、A元素の合
量は、当該含有A元素のうち最大値を有するものの値以
下含有できる)。
When a magnetic material or a permanent magnet is used, A
The amount of elements is preferably as follows: Ti 4.5% or less, Ni 8.0% or less, Bi 5.0% or less,
V 9.5% or less, Nb 12.5% or less, Ta
10.5% or less, Cr 8.5% or less, Mo 9.5%
Below, W 9.5% or less, Mn 8.0% or less, A
l 9.5% or less, Sb 2.5% or less, Ge 7.0
%, Sn 3.5% or less, Zr 5.5% or less,
Hf 5.5% or less, Cu 3.5% or less,
S 2.0% or less, C 4.0% or less, Ca 8.
0% or less, Mg 8.0% or less, Si 8.0% or less, O 1.0% or less, and P 3.5% or less (however, the A element can also be contained in 2 or more, in which case, the total amount of the A element is the contained A element. Of these, the maximum value can be contained below the value).

【0014】以下、本発明について詳述する。The present invention will be described in detail below.

【0015】本発明者らはRFe系化合物の磁気的性質
と構造の関係について従来の研究結果をもとに考察し
た。その結果次のことが明らかになった。
The present inventors have discussed the relationship between the magnetic properties and the structure of RFe compounds based on the results of conventional studies. As a result, the following became clear.

【0016】(1)RFe系化合物の磁気的性質には、
Feどうしの原子間距離や、Fe原子の周囲の環境(最
近核原子の数、種類など)がきわめて大きい役割を果し
ている。
(1) The magnetic properties of the RFe compound include:
The interatomic distance between Fe atoms and the environment around Fe atoms (such as the number and type of nuclear atoms recently) play an extremely large role.

【0017】(2)RとFeの組合せだけでは結晶状態
で永久磁石として適した化合物は存在しない。
(2) There is no compound suitable for a permanent magnet in the crystalline state only by the combination of R and Fe.

【0018】本発明者らは、RFe化合物において、F
e原子の周囲の環境を変え、永久磁石として適した特性
を与えるためには第三の元素の存在が不可欠であるると
判断した。そこで第三の元素Xとして、種々の元素を加
えたRFeX三元化合物について、磁気的性質を詳細に
調べた。その結果XとしてBを含むRFeB基本化合物
を見出した。RFeB基本化合物は未知の化合物であり
従来のRFe化合物よりキュリー点も高く、異方性定数
も大きいため優れた永久磁石材料の構成化合物となりう
ることが明らかとなった。
The present inventors have found that in RFe compounds, F
It was judged that the presence of the third element is indispensable in order to change the environment around the e-atom and give the characteristics suitable as a permanent magnet. Therefore, the magnetic properties of the RFeX ternary compound containing various elements as the third element X were examined in detail. As a result, an RFeB basic compound containing B as X was found. It has been revealed that the RFeB basic compound is an unknown compound, has a higher Curie point and a larger anisotropy constant than the conventional RFe compound, and thus can be an excellent constituent compound of a permanent magnet material.

【0019】以下実施例に従いさらに詳細に述べる。Further details will be described below with reference to examples.

【0020】実験方法 (1)原料(純度は重量%) Fe: 電解鉄 99.9% B: フェロボロンまたは99%の純度のB R: 99% Ti、Mo、Mn、Sb、Ni、Ta: 98% Al、Cu: 99.9% Hf: 95% V: フェロバナジウム(81.2%V) Nb: フェロニオブ(67.6%Nb) Cr: フェロクロム(61.9%Cr) Zr: フェロジルコニウム(75.5%Zr)Experimental method (1) Raw material (purity is% by weight) Fe: electrolytic iron 99.9% B: ferroboron or 99% pure BR: 99% Ti, Mo, Mn, Sb, Ni, Ta: 98% Al , Cu: 99.9% Hf: 95% V: Ferrovanadium (81.2% V) Nb: Ferroniobium (67.6% Nb) Cr: Ferrochrome (61.9% Cr) Zr: Ferrozirconium (75.5% Zr)

【0021】(2)実験手順は図2に図示の通りであ
る。実験結果は次の通りであった。なお、手順(A)は
化合物の同定のための実験手順を示し、手順(B)は永
久磁石にした場合の実験手順を示す。
(2) The experimental procedure is as shown in FIG. The experimental results were as follows. The procedure (A) shows an experimental procedure for identifying a compound, and the procedure (B) shows an experimental procedure when a permanent magnet is used.

【0022】(1)高特性を示すFe−B−Nd基本焼
結体(原子百分比で77Fe−15Nd−8B)につい
て測定した典型的な粉末X線ディフラクトメータのパタ
ーンを図1に示す。このパターンはきわめて複雑で、こ
れまで知られているどのようなRFe系化合物、FeB
化合物、あるいはRB系化合物によっても説明できな
い。
(1) A pattern of a typical powder X-ray diffractometer measured on an Fe-B-Nd basic sintered body (77Fe-15Nd-8B in atomic percentage ratio) showing high characteristics is shown in FIG. This pattern is extremely complex, and any RFe compound known so far, FeB
It cannot be explained by the compound or RB compound.

【0023】(2)(1)の試料のXMA測定による
と、焼結体は三つまたは四つの相からなっている。主相
はFe、B、Rを同時に含んでおり、第二相はRが重量
比で70%以上のR濃縮相、第三相は主相よりもBの富
んだ相である。第四相は酸化物の相である。
(2) According to the XMA measurement of the sample of (1), the sintered body is composed of three or four phases. The main phase contains Fe, B, and R at the same time, the second phase is an R-enriched phase in which R is 70% by weight or more, and the third phase is a phase richer in B than the main phase. The fourth phase is the oxide phase.

【0024】(3)図1の粉末X線ディフラクトメータ
のパターンを解析した結果、このパターンに含まれる強
いピークは全部a0=8.80Å、c0=12.23Å の正方晶と
して説明できる。図1各X線ピークのところに指数を示
す。XMA測定において観察された、Fe、B、Rを同
時に含む主相が、この構造をもっていることが判明し
た。この構造の特徴は、格子定数が大変大きいことであ
る。このように巨大な格子定数をもった正方晶の化合物
は、RFe、FeB、BRいずれの二元系化合物におい
ても知られていない。
(3) As a result of analyzing the pattern of the powder X-ray diffractometer shown in FIG. 1, all the strong peaks contained in this pattern can be explained as tetragonal crystals with a 0 = 8.80Å and c 0 = 12.23Å. Figure 1 shows the index at each X-ray peak. It was found that the main phase containing Fe, B, and R simultaneously, which was observed in XMA measurement, had this structure. The feature of this structure is that the lattice constant is very large. A tetragonal compound having such a huge lattice constant is not known as a binary compound of any of RFe, FeB and BR.

【0025】(4)種々の組成をもち、かつ前記方法を
含む種々の製造方法によって作成されたFeBR系およ
びFeCoBR系永久磁石について、X線ディフラクト
メータの測定およびXMA測定、光学顕微鏡観察を行っ
た結果、つぎのことが明らかになった。
(4) X-ray diffractometer measurement, XMA measurement, and optical microscope observation were carried out on FeBR-based and FeCoBR-based permanent magnets having various compositions and produced by various manufacturing methods including the above-mentioned method. As a result, the following became clear.

【0026】(i)(3)で述べたR、Fe、Bを基本
成分とし格子定数a0約9Å、c0約12Åの巨大ユニッ
トセルを有する正方晶の化合物が存在する場合に、永久
磁石として良好な特性を持つ。代表的なFeBRおよび
FeCoBR系磁石について得られた主相の正方晶化合
物の格子定数は表1の通りである。
(I) In the presence of a tetragonal compound having a giant unit cell having R, Fe, and B as basic components described in (3) and having lattice constants a 0 about 9Å and c 0 about 12Å, a permanent magnet is used. With good characteristics. Table 1 shows the lattice constants of tetragonal compounds of the main phase obtained for typical FeBR and FeCoBR magnets.

【0027】RFe、FeB、BRなど従来ある二元系
化合物を基本とする化合物では、良好な永久磁石特性は
得られない。
Good permanent magnet characteristics cannot be obtained with compounds based on conventional binary compounds such as RFe, FeB and BR.

【0028】(ii)上記正方晶化合物が適度の結晶粒径
をもち、かつこの化合物がRが多量に含まれた非磁性相
が混在する微細組織の場合に正方晶化合物は、永久磁石
の構成化合物として特に良好な特性を示す。
(Ii) In the case where the tetragonal compound has a proper crystal grain size and the compound has a fine structure in which a nonmagnetic phase containing a large amount of R is mixed, the tetragonal compound has a structure of a permanent magnet. It exhibits particularly good properties as a compound.

【0029】本正方晶化合物に基づく永久磁石(例えば
焼結磁石の一実施例の場合)では上述の正方晶の化合物
の平均結晶粒径が1〜100μm(好ましくは1.5〜9
0μm、さらに好ましくは1.5〜80μm)の範囲にあ
ることが望ましく、1μmより小さいか100μmより
大ではHcが1kOe以下となり、それを構成化合物と
する材料の工業材料としての価値が低下する。
In a permanent magnet based on the present tetragonal compound (for example, in the case of one embodiment of a sintered magnet), the above-mentioned tetragonal compound has an average crystal grain size of 1 to 100 μm (preferably 1.5 to 9).
0 μm, more preferably 1.5 to 80 μm) is desirable, and if it is smaller than 1 μm or larger than 100 μm, Hc becomes 1 kOe or less, and the value of the material containing it as an industrial material decreases.

【0030】また正方晶化合物の存在形態としては、高
い異方性定数をもつ微粒子が1つ1つ非磁性の相によっ
て隔離されていることが理想であり、このようなときに
高いHcを発現することが判明した。本願発明の正方晶
化合物は、この隔離微粒子を成すことによって理想的組
織を形成でき、この組織形態に基づいて焼結磁石に限ら
ず、或いはその構成元素の置換の有無に拘らず理論的永
久磁石ないし永久磁石材料の設計ができる。そのため非
磁性の相が1体積%以上あることが好ましい。焼結磁石
の一実施例において、Hcが1kOe以上であるために
非磁性の相が少なくとも体積比で1%以上とすることが
好ましいが、45%をこえるのは好ましくない。より好
ましい範囲は2〜10%である。非磁性の相は主として
Rを多量に含む金属間化合物相によって構成される。非
磁性の相としては酸化物の相も一部有効に働きうるがこ
れらに必ずしも限定されず、また上述の体積比の範囲も
必ずしもそれらに限定されない。
Further, as the existence form of the tetragonal compound, it is ideal that each fine particle having a high anisotropy constant is separated by a non-magnetic phase, and at such a time, a high Hc is expressed. It turned out to be. The tetragonal compound of the present invention can form an ideal structure by forming the isolated fine particles, and is not limited to a sintered magnet based on this structure morphology, or a theoretical permanent magnet regardless of the substitution of constituent elements thereof. Or the design of permanent magnet material is possible. Therefore, it is preferable that the nonmagnetic phase is 1% by volume or more. In one embodiment of the sintered magnet, since Hc is 1 kOe or more, it is preferable that the nonmagnetic phase is at least 1% by volume, but it is not preferable that it exceeds 45%. A more preferable range is 2 to 10%. The nonmagnetic phase is mainly composed of an intermetallic compound phase containing a large amount of R. As the non-magnetic phase, an oxide phase may partly work effectively, but the non-magnetic phase is not necessarily limited to these, and the above range of the volume ratio is not necessarily limited thereto.

【0031】(iii) 上記RFeB正方晶化合物及びR
(Fe、Co)B正方晶化合物は広い組成範囲で生成し
うる。またR、Fe、B以外の元素を添加又は置換して
も安定に存在しうる。
(Iii) The above-mentioned RFeB tetragonal compound and R
The (Fe, Co) B tetragonal compound can be produced in a wide composition range. Further, even if an element other than R, Fe and B is added or substituted, it can exist stably.

【0032】永久磁石として良好な特性を示すための、
材料としての組成範囲はつぎの通りである。原子百分比
で2〜28%のB、8〜30%のRおよび40〜90%
のFeを必須成分とする合金系(I)。
In order to exhibit good characteristics as a permanent magnet,
The composition range of the material is as follows. Atomic percentage of 2-28% B, 8-30% R and 40-90%
Alloy system (I) containing Fe as an essential component.

【0033】また2〜28%のB、8〜30%のR、4
0〜90%のFeおよび50%以下のCoを必須成分と
する合金系(II)。
Also, 2 to 28% of B, 8 to 30% of R,
An alloy system (II) containing 0 to 90% Fe and 50% or less Co as essential components.

【0034】合金系(I)、(II)においてB2%以
下、R8%以下ではHcが1kOe以下となり、永久磁
石とした場合の工業的価値が低下する。B28%以上、
R30%以上ではBrが4kG以下となり、ハードフェ
ライトよりも低下してしまう。合金系(II)においては
Feに対する置換Co量の増大にともなって正方晶化合
物のキュリー点が上昇し(300〜750℃)、温度特
性が向上するが、Coが50%以上となると、Hcが1
kOe以下となり永久磁石とした場合の価値は低くな
る。しかし、永久磁石以外の磁性材料としての用途に
は、それでも構わない。
In the alloy systems (I) and (II), when B2% or less and R8% or less, Hc becomes 1 kOe or less, and the industrial value of a permanent magnet decreases. B28% or more,
When R is 30% or more, Br becomes 4 kG or less, which is lower than that of hard ferrite. In the alloy system (II), the Curie point of the tetragonal compound rises (300 to 750 ° C.) with an increase in the amount of Co substituted with Fe (300 to 750 ° C.), and the temperature characteristics are improved, but when Co is 50% or more, Hc is 1
The value becomes less than kOe, and the value of the permanent magnet becomes low. However, it may be used as a magnetic material other than the permanent magnet.

【0035】上記必須成分に加えて各種の添加元素およ
び原料や製造工程から混入する不純物元素を含む合金も
前記範囲内において主相を正方晶化合物とすることがで
き、その場合に良好な永久磁石特性を示す。
In addition to the above essential components, an alloy containing various additive elements and impurity elements mixed in from raw materials and manufacturing processes can have a tetragonal compound as the main phase within the above range, and in such a case, a good permanent magnet is obtained. Show the characteristics.

【0036】また1%以下のH、Li、Na、K、B
e、Sr、Ba、Ag、Zn、N、F、Se、Te、P
bを含んでも上記基本ないしCo置換正方晶化合物は安
定であり良好な永久磁石が得られる。
Further, 1% or less of H, Li, Na, K, B
e, Sr, Ba, Ag, Zn, N, F, Se, Te, P
Even if b is included, the basic or Co-substituted tetragonal compound is stable and a good permanent magnet can be obtained.

【0037】上述のように、RFeB系あるいはR(F
e、Co)B系正方晶化合物は従来全く知られていない
化合物であり、この化合物を主相とすることにより永久
磁石として高い特性が得られることは、新規の事実であ
る。RFeB基本化合物に基づく合金のキュリー点はR
FeB基本化合物に基づき凡そ300〜370℃の範囲
にあり、このような化合物に基づく合金は従来知られて
いない。
As described above, the RFeB system or R (F
The (e, Co) B-type tetragonal compound is a compound that has not been known at all, and it is a novel fact that high characteristics as a permanent magnet can be obtained by using this compound as the main phase. The Curie point of an alloy based on the RFeB basic compound is R
It is in the range of about 300 to 370 ° C. based on the FeB basic compound, and an alloy based on such a compound has not been heretofore known.

【0038】従来、RFe系合金において超急冷法によ
るリボン磁石の報告がいくつかあるが、本発明は以下の
点でこれらの公知例とは異なる。すなわち、リボン磁石
は非晶質または凖安定結晶状態から安定な結晶状態に移
行する中途段階において永久磁石としての特性が得られ
る。従来の報告によると、これらの磁石材料が高保磁力
を示すのは非晶質状態が残留した状態または準安定なF
3BやR6Fe23が主相として存在する状態である。本
発明の正方晶化合物に基づく磁石では非晶質状態の合金
相の残留は検出されず、Fe3BやR6Fe23相は主相で
はない。
Conventionally, there have been some reports of ribbon magnets in the RFe alloy by the ultra-quenching method, but the present invention is different from these known examples in the following points. That is, the ribbon magnet has the characteristics of a permanent magnet in the middle of the transition from the amorphous or stable crystalline state to the stable crystalline state. According to previous reports, these magnet materials have a high coercive force because the amorphous state remains or the metastable F
This is a state in which e 3 B and R 6 Fe 23 exist as the main phase. In the magnet based on the tetragonal compound of the present invention, no residual alloy phase in the amorphous state is detected, and the Fe 3 B or R 6 Fe 23 phase is not the main phase.

【0039】本発明の正方晶化合物において希土類元素
RはYを包含し、軽希土類及び重希土類を包含する希土
類元素であり、そのうち一種以上を用いる。即ちこのR
としては、Nd、Pr、La、Ce、Tb、Dy、H
o、Er、Eu、Sm、Gd、Pm、Tm、Yb、Lu
及びYが包含される。Rとしては軽希土類をもって足
り、特にNd、Prが好ましい。また通例Rのうち一種
をもって足りるが、実用上は二種以上の混合物(ミッシ
ュメタル、ジジム等)を入手上の便宜等理由により用い
ることができ、Sm、Y、Er、Tm、Ce、Gd等は
Nd、Prを主体とする他のR(Nd、Pr、Tb、D
y、Ho)との混合物として用いることができる。La
はNd、Prを主体とする他のRとの混合物として用い
る必要がある。なお、このRは純希土類元素でなくとも
よく、工業上入手可能な範囲で製造上不可避な不純物を
含有するもので差支えない。
In the tetragonal compound of the present invention, the rare earth element R includes Y and is a rare earth element including light rare earth and heavy rare earth, and at least one of them is used. That is, this R
As Nd, Pr, La, Ce, Tb, Dy, H
o, Er, Eu, Sm, Gd, Pm, Tm, Yb, Lu
And Y are included. A light rare earth element is sufficient as R, and Nd and Pr are particularly preferable. Usually, one of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons such as convenience of availability, and Sm, Y, Er, Tm, Ce, Gd, etc. Is another R (Nd, Pr, Tb, D) mainly composed of Nd and Pr.
y, Ho). La
Must be used as a mixture with other R mainly composed of Nd and Pr. It should be noted that R does not have to be a pure rare earth element, and may contain impurities that are unavoidable in production within a range that is industrially available.

【0040】B(ホウ素)としては、純ボロン又はフェ
ロボロンを用いることができ、不純物としてAl、S
i、C等を含むものも用いることができる。
As B (boron), pure boron or ferroboron can be used, and Al and S as impurities.
Those containing i, C, etc. can also be used.

【0041】以下に本発明の正方晶化合物及びこれを構
成化合物とする永久磁石ないし永久磁石材料について実
施例をもって更に詳説する。
The tetragonal compound of the present invention and the permanent magnet or permanent magnet material containing the tetragonal compound will be described in more detail with reference to examples.

【0042】実施例1(参考例) 6at%B、16at%Pr、残部Feの合金を粉砕し
て平均粒度15μmの粉末を作製した。この粉末を2t
/cm2 の圧力で19kOeの磁場中においてプレス
し、2×10-1TorrのAr中で1090℃ 一時間
焼結した。
Example 1 (Reference Example) An alloy of 6 at% B, 16 at% Pr and the balance Fe was pulverized to prepare a powder having an average particle size of 15 μm. 2 tons of this powder
It was pressed in a magnetic field of 19 kOe at a pressure of / cm 2 and sintered in Ar at 2 × 10 −1 Torr at 1090 ° C. for 1 hour.

【0043】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.85Å、 c0=12.
26Åであった。XMAおよび光学顕微鏡観察の結果、主
相はFe、B、Prを同時に含み、体積比で90%を占
めていた。主相の粒界相を成す、Rを80%以上含む非
磁性化合物相の合計は体積比3%で、残りは酸化物とポ
ア(空孔)であった。この正方晶化合物の平均結晶粒径
は25μmであった。
According to X-ray diffraction, the main phase of this sintered body is a tetragonal compound, and the lattice constants are a 0 = 8.85Å, c 0 = 12.
It was 26Å. As a result of XMA and optical microscope observation, the main phase simultaneously contained Fe, B, and Pr, and occupied 90% by volume. The total volume of the non-magnetic compound phase containing 80% or more of R forming the grain boundary phase of the main phase was 3% by volume, and the rest was oxides and pores. The average crystal grain size of this tetragonal compound was 25 μm.

【0044】磁気測定の結果はつぎの通りである。 Br=9.9kG、Hc=6.5kOe、(BH)max=1
8MGOe これは従来のリボン磁石材料に比べてはるかに高い値で
ある。
The results of the magnetic measurement are as follows. Br = 9.9kG, Hc = 6.5kOe, (BH) max = 1
8MGOe This is a much higher value than the conventional ribbon magnet material.

【0045】実施例2(参考例) 8at%B、15%atNd、残部Fe合金を粉砕して
平均粒度3μmの粉末を作製した。この粉末を2t/c
2 の圧力で10kOeの磁場中においてプレスし2×
10-1TorrのAr中で1100℃ 1時間焼結し
た。
Example 2 (Reference Example) 8 at% B, 15% at Nd and the balance Fe alloy were pulverized to prepare a powder having an average particle size of 3 μm. 2 t / c of this powder
Pressed in a magnetic field of 10 kOe at a pressure of m 2 for 2 ×
Sintered in Ar at 10 -1 Torr for 1 hour at 1100 ° C.

【0046】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.80Å、c0=12.2
3Å であった。XMAおよび光学顕微鏡観察の結果、主
相は体積比でFe、B、Ndを同時に含み90.5%を占め
ていた。主相の粒界相を成す、Rを80%以上含む非磁
性の化合物相は体積比4%で、残りはほとんど酸化物と
ポアであった。この正方晶化合物の平均結晶粒径は15
μmであった。
According to X-ray diffraction, the main phase of this sintered body was a tetragonal compound, and the lattice constants were a 0 = 8.80Å and c 0 = 12.2.
3Å. As a result of observation by XMA and an optical microscope, the main phase contained 90.5% by volume of Fe, B, and Nd at the same time. The nonmagnetic compound phase containing 80% or more of R constituting the grain boundary phase of the main phase had a volume ratio of 4%, and the rest was mostly oxides and pores. The average crystal grain size of this tetragonal compound is 15
μm.

【0047】磁気特性はBr=12.1kG、Hc=9.3k
Oe、(BH)max=34MGOeであった。これは
従来のリボン磁石に比べてはるかに高い値である。
The magnetic characteristics are as follows: Br = 12.1 kG, Hc = 9.3 k
Oe, (BH) max = 34 MGOe. This is a much higher value than the conventional ribbon magnet.

【0048】実施例3 10at%Co、8at%B、15at%Nd、残部F
eの合金を粉砕して平均粒径 1.1μmの粉末を作製し
た。この粉末を2t/cm2 の圧力で12kOeの磁場
中においてプレスし 1.5TorrのAr中、1080℃
で1時間焼結した。
Example 3 10 at% Co, 8 at% B, 15 at% Nd, balance F
The alloy of e was pulverized to prepare a powder having an average particle size of 1.1 μm. This powder was pressed in a magnetic field of 12 kOe at a pressure of 2 t / cm 2 and then heated in Ar at 1.5 Torr at 1080 ° C.
For 1 hour.

【0049】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.79Å、c0=12.2
1Å であった。XMAおよび光学顕微鏡観察の結果、主
相はFe、Co、B、Ndを同時に含み体積比で90%
を占めていた。
According to X-ray diffraction, the main phase of this sintered body was a tetragonal compound, and the lattice constants were a 0 = 8.79Å and c 0 = 12.2.
1Å. As a result of XMA and optical microscope observation, the main phase contains Fe, Co, B, and Nd at the same time, and the volume ratio is 90%.
Was occupied.

【0050】Rを80%以上含む非磁性化合物相は体積
比 4.5%で残りはほとんど酸化物とポアであり、正方晶
化合物の平均結晶粒径は3.1μmであった。
The nonmagnetic compound phase containing 80% or more of R was 4.5% in volume ratio, the rest was mostly oxides and pores, and the average crystal grain size of the tetragonal compound was 3.1 μm.

【0051】磁気測定の結果は次の通りである。 Br=12.0kG、iHc=9.2kOe、(BH)max
=34MGOe これは従来のリボン磁石材料に比べてはるかに高い値で
ある。
The results of the magnetic measurement are as follows. Br = 12.0 kG, iHc = 9.2 kOe, (BH) max
= 34 MGOe This is a much higher value than the conventional ribbon magnet material.

【0052】実施例4(参考例) 5at%B、7at%Nd、3at%Pr、2at%T
b、残部Feの合金を粉砕して平均粒径 2.1μmの粉末
を作製した。この粉末を2t/cm2 の圧力で15kO
eの磁場中においてプレスし、1TorrのAr中11
30℃で1時間焼結した。
Example 4 (reference example) 5 at% B, 7 at% Nd, 3 at% Pr, 2 at% T
b, an alloy of the balance Fe was pulverized to prepare a powder having an average particle size of 2.1 μm. This powder was added at a pressure of 2 t / cm 2 to 15 kO
Pressed in the magnetic field of e, 11 in 1 Torr of Ar
Sintered at 30 ° C. for 1 hour.

【0053】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.80Å、c0=12.2
4Å であった。XMAおよび光学顕微鏡観察の結果、主
相はFe、Nd、Pr、Tb、Bを含み体積比で91%
を占めていた。Rを80%以上含む非磁性化合物相は体
積比で 1.5%で、その他にFeリッチの強磁性低保磁力
相が体積比で1%含まれ、残りはほとんど酸化物とポア
であり、正方晶化合物の平均結晶粒径は5μmであっ
た。
According to X-ray diffraction, the main phase of this sintered body was a tetragonal compound, and the lattice constants were a 0 = 8.80Å, c 0 = 12.2.
4Å. As a result of XMA and optical microscope observation, the main phase contained Fe, Nd, Pr, Tb, and B, and the volume ratio was 91%.
Was occupied. The volume ratio of the non-magnetic compound phase containing 80% or more of R is 1.5%, the content of Fe-rich ferromagnetic low coercive force phase is 1% by volume, and the balance is mostly oxides and pores. The average crystal grain size of the compound was 5 μm.

【0054】磁気測定の結果はつぎの通りである。 Br=11.5kG、iHc=4kOe、(BH)max
=17MGOe これは従来のリボン磁石に比べてはるかに高い値であ
る。
The results of the magnetic measurement are as follows. Br = 11.5 kG, iHc = 4 kOe, (BH) max
= 17 MGOe This is a much higher value than the conventional ribbon magnet.

【0055】実施例5(参考例) 17at%B、10at%Nd、3at%La、2at
%Gd、残部Feの合金を粉砕して平均粒径 2.7μmの
粉末を作製した。この粉末を4t/cm2 の圧力で12
kOeの磁場中においてプレスし 1.5TorrのAr中
1080℃で1時間焼結した。
Example 5 (reference example) 17 at% B, 10 at% Nd, 3 at% La, 2 at
% Gd, the balance Fe was pulverized to prepare a powder having an average particle size of 2.7 μm. This powder was applied at a pressure of 4 t / cm 2 to 12
It was pressed in a magnetic field of kOe and sintered in Ar at 1.5 Torr at 1080 ° C. for 1 hour.

【0056】X線回折によると、この焼結体の主相は正
方晶化合物であり、格子定数はa0=8.82Å、c0=12.2
2Å であった。XMAおよび光学顕微鏡観察の結果、主
相はFe、B、Nd、La、Gdを含み体積比で82%を
占めていた。Rを80%以上含む非磁性化合物相は体積
比12%で、残りはほとんどポアであり、正方晶化合物
の平均結晶粒径は7μmであった。
According to X-ray diffraction, the main phase of this sintered body was a tetragonal compound, and the lattice constants were a 0 = 8.82Å and c 0 = 12.2.
2Å. As a result of XMA and optical microscope observation, the main phase contained Fe, B, Nd, La, and Gd, and occupied 82% by volume. The volume ratio of the non-magnetic compound phase containing 80% or more of R was 12%, the rest was almost pores, and the average crystal grain size of the tetragonal compound was 7 μm.

【0057】磁気測定の結果は次の通りである。 Br=8.2kG、iHc=5.0kOe、(BH)max=
15MGOe これは従来のリボン磁石材料に比べてはるかに高い値で
ある。
The results of the magnetic measurement are as follows. Br = 8.2 kG, iHc = 5.0 kOe, (BH) max =
15MGOe This is a much higher value than the conventional ribbon magnet material.

【0058】実施例6(参考例) 17at%B、28at%Nd、残部Feの合金を粉砕
して平均粒径5μmの粉末を作製した。この粉末を2t
/cm2 の圧力で12kOeの磁場中においてプレス
し、2×10-1Torr 1050℃、1時間焼結し
た。焼結後Ar気流で冷却した。X線回折によると、こ
の焼結体では正方晶化合物のピークが他の相によるピー
クより低く、この化合物は主相ではない。XMAおよび
光学顕微鏡観察の結果、正方晶化合物は体積比で48%
でRを80%以上含む非磁性化合物相は47%であっ
た。残りはほとんどポアであり、平均結晶粒径は正方晶
化合物の16μmであった。
Example 6 (Reference Example) An alloy of 17 at% B, 28 at% Nd and the balance Fe was pulverized to prepare a powder having an average particle size of 5 μm. 2 tons of this powder
It was pressed in a magnetic field of 12 kOe at a pressure of / cm 2 and sintered at 2 × 10 −1 Torr 1050 ° C. for 1 hour. After sintering, it was cooled by an Ar gas flow. According to X-ray diffraction, the peak of the tetragonal compound is lower than the peaks of the other phases in this sintered body, and this compound is not the main phase. As a result of XMA and optical microscope observation, the tetragonal compound is 48% by volume.
The non-magnetic compound phase containing 80% or more of R was 47%. The rest was almost pores, and the average crystal grain size was 16 μm of the tetragonal compound.

【0059】磁気測定の結果は次の通りである。 Br=4.2kG、iHc=13.2kOe、(BH)max
=3.7MGOe これはフェライト系磁石の特性より低い。
The results of magnetic measurement are as follows. Br = 4.2 kG, iHc = 13.2 kOe, (BH) max
= 3.7MGOe This is lower than the characteristics of ferrite magnets.

【0060】焼結後5℃/minで制御冷却したところ
磁気特性はつぎのように上昇した。 Br=4.5kG、iHc=13.3kOe、(BH)max
=4.2MGOe
When controlled cooling was carried out at 5 ° C./min after sintering, the magnetic characteristics were increased as follows. Br = 4.5 kG, iHc = 13.3 kOe, (BH) max
= 4.2 MGOe

【0061】徐冷試料のX線回折によると、正方晶化合
物のピークは強くなった。XMA測定および光学顕微鏡
観察によると正方晶化合物は体積比53%になり、Rを
80%以上含む非磁性化合物相は体積比43%であっ
た。残りはほとんどポアであり、正方晶化合物の平均結
晶粒径は17μmであった。
According to X-ray diffraction of the slowly cooled sample, the peak of the tetragonal compound became stronger. According to XMA measurement and optical microscope observation, the tetragonal compound had a volume ratio of 53%, and the nonmagnetic compound phase containing 80% or more of R had a volume ratio of 43%. The remainder was mostly pores, and the average crystal grain size of the tetragonal compound was 17 μm.

【0062】実施例7(参考例を含む) 表1に示す組成の合金を高周波溶解し、図2Aの工程に
より資料を作製して、X線回折により主相の構造を決定
した。その結果を表1に示す。これにより正方晶化合物
はFe−B−Nd系の広い組成範囲において常温から焼
結温度に至るまで安定であることがわかる。またFe−
Co−Nd−B系についても同様である。
Example 7 (including Reference Example) Alloys having the compositions shown in Table 1 were subjected to high frequency melting, and materials were prepared by the process of FIG. 2A, and the structure of the main phase was determined by X-ray diffraction. Table 1 shows the results. This shows that the tetragonal compound is stable from room temperature to the sintering temperature in a wide composition range of Fe-B-Nd system. Fe-
The same applies to the Co-Nd-B system.

【0063】これらRFeB正方晶化合物、特に、R
(Fe、Co)B正方晶化合物は、従来のRFe、Fe
B、RBのどの組合せによっても実現できないユニーク
な特徴を有している磁性材料の構成化合物であり、工業
用材料としての価値が大変大きい。
These RFeB tetragonal compounds, in particular, R
The (Fe, Co) B tetragonal compound is a conventional RFe, Fe
It is a constituent compound of a magnetic material having unique characteristics that cannot be realized by any combination of B and RB, and is extremely valuable as an industrial material.

【0064】なお上記RFeB化合物はほとんどの場
合、a軸、b軸、c軸各方向のなす角度は測定誤差の範
囲で90°であり、かつ、a0=b0≠c0 であるからご
くわずかにずれることもありうる(例えば約1°以
内)。またa0とb0がほんのわずか違う場合も含める。
しかし、この場合にも、実質的な意味で正方晶と呼ぶ。
これは、R(Fe、Co)B系化合物についても同様で
ある。
In most of the RFeB compounds, the angles formed by the a-axis, b-axis, and c-axis directions are 90 ° within the measurement error range, and a 0 = b 0 ≠ c 0. It may be slightly deviated (for example, within about 1 °). It also includes the case where a 0 and b 0 are slightly different.
However, also in this case, it is called tetragonal in a substantial sense.
The same applies to the R (Fe, Co) B-based compound.

【0065】[0065]

【表1】 [Table 1]

【0066】図3は、つぎの工程によって作製した種々
のR(Fe、Co)BA化合物を構成化合物とする永久
磁石体の代表例(1)Fe−10Co−9B−14Nd
−2Mo及び(2)Fe−20Co−8B−15Pr−
2Zrについて正方晶化合物の平均結晶粒径Dとの磁気
特性の関係を示す。図4〜図6はさらに種々のA元素
(M)を用いた場合の磁気特性とMの含有量の関係を示
す。
FIG. 3 shows a typical example of a permanent magnet body (1) Fe-10Co-9B-14Nd having various R (Fe, Co) BA compounds as constituent compounds, which were produced by the following steps.
-2Mo and (2) Fe-20Co-8B-15Pr-
The relationship between the magnetic properties of 2Zr and the average crystal grain size D of the tetragonal compound is shown. 4 to 6 show the relationship between the magnetic characteristics and the M content when various A elements (M) are used.

【0067】(1)合金を高周波溶解し、水冷銅鋳型に
鋳造、出発原料はFeとして純度99.9%の電解鉄、Bと
してフェロボロン合金(19.38 %B、5.32%Al、0.74
%Si、0.03%C、残部Fe)、Rとして純度99.7%以
上(不純物は主として他の希土類金属)を使用。
(1) The alloy was melted by high frequency and cast in a water-cooled copper mold, starting materials were electrolytic iron having a purity of 99.9% as Fe, and ferroboron alloy as B (19.38% B, 5.32% Al, 0.74).
% Si, 0.03% C, balance Fe), and a purity of 99.7% or more as R (impurities are mainly other rare earth metals).

【0068】Coは純度99.9%の電解Coを使用した。As Co, electrolytic Co having a purity of 99.9% was used.

【0069】A元素(M)としては純度99%のTi、M
o、Bi、Mn、Sb、Ni、Ta、Ge、98%の
W、99.9%のAl、Sn、95%のHf、またVとして
81.2%のVを含むフェロバハジウム、Nbとして67.6%
のNbを含むフェロニオブ、Crとして61.9%のCrを
含むフェロクロムおよびZrとして75.5%のZrを含む
フェロジルコニウムを使用した。
As the A element (M), Ti and M having a purity of 99%
As o, Bi, Mn, Sb, Ni, Ta, Ge, 98% W, 99.9% Al, Sn, 95% Hf, and V
Ferrovadium containing 81.2% V, 67.6% as Nb
Of Nb-containing ferroniobium, Cr of 61.9% Cr of ferrochrome and Zr of 75.5% of Zr of ferrozirconium were used.

【0070】(2)粉砕 スタンプミルにより35メッ
シュスルーまでに粗粉砕し、次いでボールミルにより3
時間微粉砕(3〜10μm)。
(2) Pulverization Coarse pulverization was performed by a stamp mill to a size of 35 mesh through, and then 3 by a ball mill.
Time milling (3-10 μm).

【0071】(3)磁界 (10kOe)中配向・成形
( 1.5t/cm2にて加圧。)
(3) Orientation and molding in a magnetic field (10 kOe) (pressurized at 1.5 t / cm 2 ).

【0072】(4)焼結 1000〜1200℃1時間
Ar中、焼結後放冷。
(4) Sintering 1000 to 1200 ° C. for 1 hour in Ar, after sintering, let stand to cool.

【0073】次に、前記の方法中(2)粉砕をFish
er社製のサブ・シーブ・サイザ(sub−sieve
−sizer)での平均粒度測定値が 0.5〜100μm
の各値をとるよう適当に粉砕時間を変更して行い、各種
組成の試料を作製した。
Next, in the above method, (2) crushing is performed by Fish.
er sub-sieve sizer (sub-sieve)
-Size) is 0.5 to 100 μm
Samples of various compositions were prepared by appropriately changing the crushing time so as to take each value of.

【0074】比較例:100μm以上の結晶粒径とする
ため、焼結後に焼結温度よりも5〜20℃低い温度でA
r雰囲気中にて長時間保持した。
Comparative Example: In order to obtain a crystal grain size of 100 μm or more, after the sintering, the temperature A was 5 to 20 ° C. lower than the sintering temperature.
r It was kept in the atmosphere for a long time.

【0075】このようにして得られた各組成の試料につ
いて磁石化の検討を行い、磁石特性及び正方晶化合物の
平均結晶粒径を測定した。その結果を図3に示す。ここ
で平均結晶粒径とは、試料面を研摩、腐蝕後光学顕微鏡
を用いて×100〜×1000の倍率の顕微鏡写真を撮
影し、既知面積の円を描いて円を八等分する直線を描
き、直径上にある平均粒子数を数え、算出した。但し、
境界上(円周上)にて区切られた粒子は1/2個として
数える(この方法はHeynの方法として知られてい
る)。空孔の部分は計算より省く。
Magnetization was examined for the samples of the respective compositions thus obtained, and the magnet characteristics and the average crystal grain size of the tetragonal compound were measured. The result is shown in FIG. Here, the average crystal grain size means a straight line that divides the circle into eight equal parts by drawing a circle of a known area by taking a photomicrograph of × 100 to × 1000 using an optical microscope after polishing and corroding the sample surface. It was drawn and the average number of particles on the diameter was counted and calculated. However,
The number of particles separated on the boundary (on the circumference) is counted as 1/2 (this method is known as the Heyn method). The holes are omitted from the calculation.

【0076】組成(1)の試料は平均結晶粒径D 9.2μ
mのときエネルギ積(BH)max28.5MGOeを示
し、組成(2)の試料はD 4.6μmのとき、(BH)m
ax25.4MGOeを示した。
The sample of composition (1) had an average crystal grain size of D 9.2 μm.
The energy product (BH) max28.5MGOe is shown at m, and the sample of the composition (2) has (BH) m at D 4.6 μm.
ax25.4MGOe was shown.

【0077】[0077]

【発明の効果】本願発明は、常温から焼結温度に至るま
で安定に存在する新規なRFeB基本系正方晶化合物を
基礎として、さらにFeをCoにより置換(特に部分的
に)したR(Fe、Co)B系を基礎とし、さらに特定
元素Aを含む新規なR(Fe、Co)BA系を基礎とし
た新規な正方晶化合物を提供したものである。詳しく
は、Coの置換によりFeBR基本系正方晶化合物のキ
ュリー温度を大きく増大させ、さらに特定元素Aを含む
ことによってもその基本的磁気特性を失わずに安定に存
在し得ることのみならず、これにより様々な修飾ないし
改良が所望の特性に応じて可能となるという優れた有用
性を備える。正方晶化合物のキュリー温度の増大は、永
久磁石の構成要素の化合物としてとりもなおさず、高温
下にも高い性能を失わない永久磁石の開発の具体的可能
性を担保するものである。
EFFECTS OF THE INVENTION The present invention is based on a novel RFeB basic tetragonal compound that exists stably from room temperature to the sintering temperature, and R (Fe, The present invention provides a new tetragonal compound based on a Co) B system and further based on a new R (Fe, Co) BA system containing a specific element A. Specifically, not only does the substitution of Co significantly increase the Curie temperature of the FeBR basic tetragonal compound, and the inclusion of the specific element A not only allows it to exist stably without losing its basic magnetic properties, It has the excellent utility that various modifications or improvements can be made depending on desired properties. The increase in the Curie temperature of the tetragonal compound guarantees the specific possibility of developing a permanent magnet that does not lose its high performance even at high temperatures, as a compound of a constituent element of the permanent magnet.

【0078】また、好ましくは所定の非磁性相により互
いに隔離された正方晶化合物は、永久磁石としての理想
的な微細組織を明らかにしたものであり画期的なもので
ある。このような隔離構造によって理想的な永久磁石の
設計の技術的基礎が確立されたものである。
Further, preferably, the tetragonal compounds separated from each other by a predetermined non-magnetic phase clarify the ideal microstructure as a permanent magnet and are epoch-making. Such an isolation structure establishes the technical basis for the design of an ideal permanent magnet.

【0079】かくて、本願発明において、これらの正方
晶化合物は、物質発明としての意義を有し、この知見に
到達する手がかりとなった焼結永久磁石材料とは次元を
異にする基本的な技術思想であり、焼結永久磁石のさら
なる改良及び理論値に近い高性能磁石の開発の指針を与
えると共に、さらに、これらの正方晶化合物を基礎とし
た様々な磁石の設計、開発の科学的、実際的な指針を与
えるものである。即ち、その永久磁石分野における科学
上の意義は言うに及ばず、永久磁石に止まらず様々な磁
性材料関連技術及び産業の発展の一大エポックを画する
ブレークスルーを成すものである。
Thus, in the present invention, these tetragonal compounds have a significance as material inventions, and are fundamentally different in dimension from the sintered permanent magnet material that has been the clue to reach this finding. It is a technical idea, and provides guidelines for further improvement of sintered permanent magnets and development of high-performance magnets close to theoretical values, and further, for the design and development of various magnets based on these tetragonal compounds, the scientific, It gives practical guidance. That is, not to mention its scientific significance in the field of permanent magnets, it is a breakthrough that marks a major epoch in the development of various magnetic material-related technologies and industries beyond permanent magnets.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の参考例たる代表的Fe−B−Nd焼結
体試料の粉末X線ディフラクトメータの測定結果パター
ンを示す写真である。
FIG. 1 is a photograph showing a measurement result pattern of a representative Fe—B—Nd sintered body sample, which is a reference example of the present invention, by a powder X-ray diffractometer.

【図2】実験の手順を示すフローチャートである。
((A)は化合物の同定、(B)は永久磁石にした場
合。)
FIG. 2 is a flowchart showing the procedure of an experiment.
((A) is the compound identification, (B) is a permanent magnet.)

【図3】平均結晶粒径D(μm)と保磁力iHcとの関
係を示すグラフである。
FIG. 3 is a graph showing the relationship between the average crystal grain size D (μm) and the coercive force iHc.

【図4】FeCoBRA系永久磁石のA元素(M)含有
量とiHcの関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the A element (M) content of a FeCoBRA permanent magnet and iHc.

【図5】FeCoBRA系永久磁石のA元素(M)含有
量とiHcの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the content of element A (M) in a FeCoBRA-based permanent magnet and iHc.

【図6】FeCoBRA系永久磁石のA元素(M)含有
量とiHcの関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the content of element A (M) in a FeCoBRA-based permanent magnet and iHc.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R(但しRはYを含む希土類元素の一種以
上)、Fe、Co、Bを必須成分とし、格子定数のc0
が約12Åの正方晶系の結晶構造を有するR(Fe、C
o)B正方晶化合物。
1. R (where R is one or more rare earth elements including Y), Fe, Co and B are essential components, and the lattice constant c 0 is
Has a tetragonal crystal structure of about 12Å
o) B tetragonal compound.
【請求項2】R(但しRはYを含む希土類元素の一種以
上)、Fe、Co、B及びA元素(但し、A元素は下記
のA元素の1種以上)を必須成分とし、格子定数のc0
が約12Åである正方晶系の結晶構造を有するR(F
e、Co)BA正方晶化合物(A元素:Ti、Ni、B
i、V、Nb、Ta、Cr、Mo、W、Mn、Al、S
b、Ge、Sn、Zr、Hf、Cu、S、C、Ca、M
g、Si、O、およびP)。
2. A lattice constant, wherein R (where R is one or more rare earth elements including Y), Fe, Co, B and A elements (where A element is one or more of the following A elements) are essential components. C 0
With a tetragonal crystal structure in which R is about 12Å
e, Co) BA tetragonal compound (A element: Ti, Ni, B)
i, V, Nb, Ta, Cr, Mo, W, Mn, Al, S
b, Ge, Sn, Zr, Hf, Cu, S, C, Ca, M
g, Si, O, and P).
JP7348303A 1995-12-18 1995-12-18 Rare earth / iron / cobalt / boron tetragonal compounds Expired - Lifetime JP2665658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7348303A JP2665658B2 (en) 1995-12-18 1995-12-18 Rare earth / iron / cobalt / boron tetragonal compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7348303A JP2665658B2 (en) 1995-12-18 1995-12-18 Rare earth / iron / cobalt / boron tetragonal compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4304352A Division JP2684140B2 (en) 1992-10-19 1992-10-19 Rare earth / iron / cobalt / boron tetragonal compounds

Publications (2)

Publication Number Publication Date
JPH08245295A true JPH08245295A (en) 1996-09-24
JP2665658B2 JP2665658B2 (en) 1997-10-22

Family

ID=18396128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7348303A Expired - Lifetime JP2665658B2 (en) 1995-12-18 1995-12-18 Rare earth / iron / cobalt / boron tetragonal compounds

Country Status (1)

Country Link
JP (1) JP2665658B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990081728A (en) * 1998-04-22 1999-11-15 히로지 사토 Composition for permanent magnets
JP2008305908A (en) * 2007-06-06 2008-12-18 Hitachi Metals Ltd METHOD FOR MANUFACTURING R-Fe-B PERMANENT MAGNET
JP2009249232A (en) * 2008-04-07 2009-10-29 Shinshu Univ Method and apparatus for growing silicon crystal by applying magnetic field
WO2014034390A1 (en) * 2012-08-31 2014-03-06 Jx日鉱日石金属株式会社 Fe-BASED MAGNETIC MATERIAL SINTERED BODY
CN110880392A (en) * 2019-11-28 2020-03-13 厦门钨业股份有限公司 Neodymium-iron-boron alloy powder, neodymium-iron-boron magnet material, and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030185882A1 (en) 2001-11-06 2003-10-02 Vergez Juan A. Pharmaceutical compositions containing oxybutynin
US6955729B2 (en) 2002-04-09 2005-10-18 Aichi Steel Corporation Alloy for bonded magnets, isotropic magnet powder and anisotropic magnet powder and their production method, and bonded magnet

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990081728A (en) * 1998-04-22 1999-11-15 히로지 사토 Composition for permanent magnets
JP2008305908A (en) * 2007-06-06 2008-12-18 Hitachi Metals Ltd METHOD FOR MANUFACTURING R-Fe-B PERMANENT MAGNET
JP2009249232A (en) * 2008-04-07 2009-10-29 Shinshu Univ Method and apparatus for growing silicon crystal by applying magnetic field
WO2014034390A1 (en) * 2012-08-31 2014-03-06 Jx日鉱日石金属株式会社 Fe-BASED MAGNETIC MATERIAL SINTERED BODY
TWI609368B (en) * 2012-08-31 2017-12-21 Jx Nippon Mining & Metals Corp Fe-based magnetic material sintered body
US10090012B2 (en) 2012-08-31 2018-10-02 Jx Nippon Mining & Metals Corporation Fe-bases magnetic material sintered compact
CN110880392A (en) * 2019-11-28 2020-03-13 厦门钨业股份有限公司 Neodymium-iron-boron alloy powder, neodymium-iron-boron magnet material, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2665658B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JPH0778269B2 (en) Rare earth / iron / boron tetragonal compound for permanent magnet
US5096512A (en) Magnetic materials and permanent magnets
US4792368A (en) Magnetic materials and permanent magnets
US5766372A (en) Method of making magnetic precursor for permanent magnets
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
US4767474A (en) Isotropic magnets and process for producing same
JPS6134242B2 (en)
Ormerod The physical metallurgy and processing of sintered rare earth permanent magnets
EP0124655B1 (en) Isotropic permanent magnets and process for producing same
US4840684A (en) Isotropic permanent magnets and process for producing same
JP2000114017A (en) Permanent magnet and material thereof
JPH0316761B2 (en)
JP2665658B2 (en) Rare earth / iron / cobalt / boron tetragonal compounds
US5194098A (en) Magnetic materials
JP2684140B2 (en) Rare earth / iron / cobalt / boron tetragonal compounds
JPH06207203A (en) Production of rare earth permanent magnet
JPWO2014112406A1 (en) Magnetic material and method for manufacturing magnetic material
JPH085664B2 (en) Rare earth / iron / boron tetragonal compound
JPH0316762B2 (en)
US5192372A (en) Process for producing isotropic permanent magnets and materials
JPH06207204A (en) Production of rare earth permanent magnet
US5183516A (en) Magnetic materials and permanent magnets
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH0535210B2 (en)
JPS60187662A (en) Ferromagnetic alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970513