JPH082438B2 - Water purification methods for closed water areas - Google Patents

Water purification methods for closed water areas

Info

Publication number
JPH082438B2
JPH082438B2 JP8202289A JP8202289A JPH082438B2 JP H082438 B2 JPH082438 B2 JP H082438B2 JP 8202289 A JP8202289 A JP 8202289A JP 8202289 A JP8202289 A JP 8202289A JP H082438 B2 JPH082438 B2 JP H082438B2
Authority
JP
Japan
Prior art keywords
water
sludge
closed
desorbed
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8202289A
Other languages
Japanese (ja)
Other versions
JPH02261595A (en
Inventor
一 伊藤
栄二 嶋田
秀実 長川
Original Assignee
日立機電工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立機電工業株式会社 filed Critical 日立機電工業株式会社
Priority to JP8202289A priority Critical patent/JPH082438B2/en
Publication of JPH02261595A publication Critical patent/JPH02261595A/en
Publication of JPH082438B2 publication Critical patent/JPH082438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は池や堀などの閉鎖性水域においてヘドロ分の
除去と、曝気とにより水質を浄化する方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a method for purifying water quality by removing sludge and aeration in a closed water area such as a pond or a moat.

〔従来の技術〕[Conventional technology]

湖沼、城の堀、貯水池等の閉鎖性水域においては雨水
の他に落葉や土砂その他のごみ等が流入し、この流入不
純物により水質が汚濁する。この閉鎖性水域に魚等の水
生生物が生存している場合、この水質の汚濁は水生生物
の生存を損なうものとなる。それでこのヘドロ分を除去
する方法としては池、堀の水を揚水して排出し、池等を
干上がらせ、底部に沈降堆積しているヘドロ等を機械的
・物質的に除去する方法、あるいはこの水のサンドポン
プ等でヘドロと共に揚水し、この揚水に凝集剤を投入混
合して分離し、固形物を除去した後、上澄水を池、堀等
に再び戻す浚渫法とがある。
In closed water areas such as lakes, castle moats, and reservoirs, in addition to rainwater, litter, earth and sand, and other debris flow in, and the inflow impurities pollute the water quality. When aquatic organisms such as fish live in this closed water area, this pollution of water quality impairs the survival of aquatic organisms. Therefore, as a method of removing this sludge, the water of the pond and the moat is pumped and discharged, the pond is dried up, and the sludge that has settled and accumulated at the bottom is mechanically and physically removed, or There is a dredging method in which this water is pumped together with sludge by a sand pump or the like, a flocculant is added to and mixed with the pumped water to separate the solid matter, and then the supernatant water is returned to a pond, a moat or the like again.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

池等を干上がらせて機械的に沈降堆積したヘドロを除
去する方法では、一旦池や堀の水を抜く、すなわち完全
に排水させ、天日等にてある程度乾燥させた後、パワー
シャベル、ブルドーザ等により排出するので、池等の排
水に手数がかかり、またヘドロ除去作業時、池や堀とし
ての機能が一時停止すると共に、景観を損ねるものとな
る。
In the method of removing sludge that has been mechanically settled and accumulated by drying the pond, etc., the pond or moat is drained once, that is, completely drained and dried to some extent in the sun, etc., then a power shovel, bulldozer. Since it is discharged by such things as drainage from ponds, etc., it takes a lot of time to drain water, and when sludge is removed, the function as a pond or moat is temporarily stopped and the landscape is damaged.

また、浚渫法においては、ポンプアップした大量のヘ
ドロ水に凝集剤を投入撹拌混和してヘドロの固形物を除
去している。しかしながら、この方法では大量のヘドロ
水に凝集剤を直接投入するため、ヘドロ分に凝集剤が作
用しにくく、ヘドロを分離した排水中には凝集剤が未だ
残留している。したがって、この脱水後の排水をそのま
ま元の池や堀に戻すと、この凝集剤により魚等の水生動
物を死滅させるものとなる。
In addition, in the dredging method, a flocculant is added to a large amount of sludge water pumped up and mixed by stirring to remove sludge solids. However, in this method, since the coagulant is directly added to a large amount of sludge water, the coagulant hardly acts on the sludge, and the coagulant still remains in the wastewater from which the sludge has been separated. Therefore, if the drainage after the dehydration is directly returned to the original pond or moat, the aggregating agent will kill aquatic animals such as fish.

本発明は、池や堀などの閉鎖性水域において水生生物
の生存を損なうことなく安全に水質の浄化ができる閉鎖
性水域の水質浄化方法を提供することを目的とする。
It is an object of the present invention to provide a water purification method for a closed water area that can safely purify water quality without damaging the survival of aquatic organisms in a closed water area such as a pond or a moat.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、本第1発明の閉鎖性水域の
水質浄化方法は、閉鎖性水域のヘドロを水と共に揚水
し、このヘドロ水を沈降分離して上澄水を閉鎖性水域に
戻し、分離したヘドロ分にカチオン系凝集剤を添加して
凝集させた後脱水し、固形分を除去し、この脱水工程で
の脱離水をヘドロ水の沈降分離工程へ返還させて脱離水
中のカチオン系凝集剤をヘドロ水のヘドロ分に吸収させ
るとともに、閉鎖性水域中を撹拌曝気を行って水質を浄
化することを要旨とする。
In order to achieve the above-mentioned object, the water purification method for a closed water area of the first aspect of the present invention is to pump sludge in a closed water area together with water, settle and separate the sludge water, and return supernatant water to the closed water area for separation. A cationic flocculant is added to the sludge to make it flocculate and then dehydrated to remove solids, and the desorbed water in this dehydration process is returned to the sedimentation and separation process of the sludge to cause cationic flocculation in the desorbed water. The main point is to absorb the agent into the sludge of sludge water and purify the water quality by stirring and aerating the closed water area.

また、本第2発明の閉鎖性水域の水質浄化方法は、本
第1発明の閉鎖性水域の水質浄化方法において、脱水工
程で得られる脱離水に余剰分が生じた場合に、この余剰
脱離水にカチオン系凝集剤の毒性を中和する中和剤を添
加した後、閉鎖性水域に戻すことを要旨とする。
The water purification method for closed water bodies according to the second aspect of the present invention is the method for water purification for closed water areas according to the first aspect, when excess water is generated in the desorption water obtained in the dehydration step. The point is to add a neutralizing agent that neutralizes the toxicity of the cationic flocculant to, and then return to the closed water area.

〔実施例〕〔Example〕

以下、本発明の閉鎖性水域の水質浄化方法を図面に示
す実施例に基づいて説明する。
Hereinafter, a method for purifying water in a closed water area according to the present invention will be described based on embodiments shown in the drawings.

湖沼、城の堀、貯水池等の閉鎖性水域1(以下「池
等」と略称する。)よりポンプ2により池等の底部に沈
澱堆積したヘドロを揚水と共に吸い上げ、揚水管3を経
て池等より排出する。この揚水されたヘドロ水は凝集濃
縮タンク4へ導く。
From the closed water area 1 such as lakes, castle moats, and reservoirs (hereinafter abbreviated as “pond”), pump 2 sucks up the sludge that has settled and deposited at the bottom of the pond with pumping water, and pumps it through pumping pipe 3 from the pond etc. Discharge. The pumped sludge water is guided to the coagulation / concentration tank 4.

このタンク4は一次タンク41と二次タンク42に分けら
れるが、これは一つであっても良い。一次タンク内で行
われるヘドロ水よりヘドロ分を除去する方法は水とヘド
ロ分との重量差を利用して沈降分離させる。この時、ヘ
ドロ分の沈降分離をより効率的に行うため、後述する脱
水工程で得た脱離水を濾液受槽13で受け、これをポンプ
14と返還水管15を介して一次タンクへ供給するものとす
る。
The tank 4 is divided into a primary tank 41 and a secondary tank 42, but this may be one. In the method of removing sludge from sludge water performed in the primary tank, sedimentation is performed by utilizing the weight difference between water and sludge. At this time, in order to perform the sedimentation separation of the sludge more efficiently, the desorption water obtained in the dehydration step described later is received in the filtrate receiving tank 13 and is pumped.
It shall be supplied to the primary tank through 14 and the return water pipe 15.

脱離水中には濃度は低いが凝集剤成分が残存している
ので、これによりヘドロ水のヘドロ分の凝集が促進され
る。
Since the flocculant component remains in the desorbed water although the concentration is low, the flocculation of the sludge in the sludge water is promoted.

この一次タンク41でヘドロ固形分を分離した上澄水は
返戻管7を経て、池又は堀へ返送される。この時、脱水
工程で得た排水中に含有される濃度の低い凝集剤成分は
この一次タンク内に新たに供給されるヘドロ水のヘドロ
分と凝固反応を起こしてその濃度はさらに低下し、ほと
んど無害化されている。
The supernatant water from which sludge solids have been separated in the primary tank 41 is returned to the pond or moat via the return pipe 7. At this time, the coagulant component having a low concentration contained in the wastewater obtained in the dehydration step causes a coagulation reaction with the sludge component of the sludge water newly supplied into the primary tank to further reduce its concentration. It has been rendered harmless.

一次タンク41にて濃縮されたヘドロ分はポンプ8と供
給管9を経て二次タンク42へ供給される。この二次タン
ク42内には凝集剤10、例えばカチオンポリマーをヘドロ
分量に応じて投入してこれを混合撹拌し、このヘドロ分
を凝集させ、脱水可能な固形状とする。次いでこの二次
タンク42より管11を経て脱水工程12へ移送する。この脱
水工程12では多量の水分を含んだヘドロ固形分を投棄又
は埋立等が行える程度に脱水され、ヘドロ分はここで確
実に所要含水率まで低下された固形体となる。この脱水
工程で使用される脱水装置としては特公昭60−89、同62
−54048号公報に開示された固定型あるいは移動型のベ
ルトプレス式脱水機、加圧式脱水機、遠心分離機等各種
のものが採用可能である。
The sludge component concentrated in the primary tank 41 is supplied to the secondary tank 42 via the pump 8 and the supply pipe 9. A coagulant 10, for example, a cationic polymer is charged into the secondary tank 42 in accordance with the amount of sludge, and the mixture is mixed and stirred to coagulate the sludge to be dehydrated solid. Next, the secondary tank 42 is transferred to the dehydration step 12 via the pipe 11. In this dehydration step 12, the sludge solid content containing a large amount of water is dehydrated to such an extent that it can be discarded or landfilled, and the sludge content is surely reduced to the required water content to become a solid body. As the dehydrator used in this dehydration process, Japanese Patent Publication Nos. 60-89 and 62
Various types such as a fixed type or movable type belt press type dehydrator, a pressure type dehydrator, a centrifuge and the like disclosed in Japanese Patent Publication No. 54048 can be adopted.

また、閉鎖性水域には上述の如きヘドロ等の汚濁物質
を除去し、分離した上澄水等を循環させて再使用する手
段と共に、水中の有機物質を好気性分解等により除去
し、水質の浄化を図る手段とが備えられる。この水質浄
化手段としては第3図に示すような水中曝気装置その他
の曝気装置が採用される。
In addition, as a means of removing pollutants such as sludge as described above in closed water areas and reusing separated supernatant water etc. by recycling, organic substances in water are removed by aerobic decomposition etc. to purify water quality. And means for achieving the above. As the water purification means, an underwater aerating device or another aerating device as shown in FIG. 3 is adopted.

本発明に使用される水中曝気装置の一実施例を第3図
に示す。
An embodiment of the underwater aeration apparatus used in the present invention is shown in FIG.

この曝気装置2Sは水中モータ2Mと、撹拌羽根22と、モ
ータ軸の反出力側に設けた通気管23と、整流筒28とより
なっている。
The aeration device 2S includes a submersible motor 2M, a stirring blade 22, a ventilation pipe 23 provided on the opposite output side of the motor shaft, and a rectifying cylinder 28.

水中モータ2Mは油圧式、電動式その他の動力源にて駆
動されるもので、この水中モータ2Mの中空状のモータ軸
24に同様に中空状の撹拌羽根軸25を直結固定する。撹拌
羽根22は中空状の軸25の外周に螺旋状その他曝気に適し
た形状を有する撹拌羽根本体26を一体に設けて形成す
る。
The submersible motor 2M is driven by a hydraulic, electric, or other power source.
Similarly, a hollow stirring blade shaft 25 is directly connected and fixed to 24. The stirring blade 22 is formed by integrally providing a stirring blade main body 26 having a shape suitable for aeration on the outer circumference of a hollow shaft 25.

そして水中モータ2Mのモータ軸24には所要の断面積を
有する通気孔27を穿設した中空状とし、該モータ軸内を
通気可能とすると共に、この水中モータ軸24の反出力側
すなわち反撹拌羽根側に通気管23を連設し、通気管23の
先端を常に水面より上方位置にあるように配設し、この
通気管23を経てモータ軸の通気孔27と導通させ、かつこ
のモータ軸内より撹拌羽根軸内を通気可能とするもので
ある。また撹拌羽根22は整流筒28(ドラフトチューブ)
内に収納し、この整流筒28は上端をラッパ状に拡開した
吸込口29とし、撹拌羽根の長軸方向に開口した吹出口30
を形成し、撹拌羽根の回動にて吸込口29より汚水を整流
筒28内に吸い込み、この羽根にて撹拌されて吹出口より
再び汚水中に放出されるものである。
Then, the motor shaft 24 of the submersible motor 2M has a hollow shape in which a vent hole 27 having a required cross-sectional area is formed to allow ventilation inside the motor shaft, and the sub-motor side of the submersible motor shaft 24, that is, anti-agitation. A ventilation pipe 23 is continuously provided on the blade side, and the tip of the ventilation pipe 23 is arranged so as to be always above the water surface. The ventilation pipe 23 is electrically connected to the ventilation hole 27 of the motor shaft, and the motor shaft is The inside of the stirring blade shaft can be ventilated from the inside. The stirring blade 22 is a rectifying cylinder 28 (draft tube).
The rectifying cylinder 28 is housed inside, and the upper end of the rectifying cylinder 28 serves as a suction port 29 having a trumpet-shaped opening, and the outlet port 30 opens in the longitudinal direction of the stirring blade.
The sewage water is sucked into the flow straightening cylinder 28 through the suction port 29 by the rotation of the stirring blade, is stirred by this blade, and is discharged into the sewage water again from the blowout port.

曝気装置2Sの駆動により水中モータの回動は直接撹拌
羽根22に伝達される。撹拌羽根22の回動にてモータ動力
は水に伝達され、速度エネルギーと圧力エネルギーに変
換される。本装置では、速度エネルギーの増加により撹
拌力を生じさせ、圧力エネルギーの増加により、羽根先
端部に負圧を生じさせる。この負圧により中空状の撹拌
羽根軸及び水中モータ軸を介して通気管にて供給される
空気を吸引し、羽根にて微細化され、水中に撹拌放出さ
れる。羽根により微細気泡の混入した水も撹拌され、こ
れにより曝気が行われる。曝気装置の運転は汚濁物質の
除去と同時に行ってもよいが、汚濁物質の除去を停止し
た時間帯、特に夜間帯はこの曝気装置のみを運転して水
を撹拌曝気し、水中の溶存酸素値を高め、水質の浄化を
より促進するようになす。
The rotation of the submersible motor is directly transmitted to the stirring blade 22 by driving the aeration device 2S. The power of the motor is transmitted to water by the rotation of the stirring blade 22, and is converted into velocity energy and pressure energy. In this apparatus, an increase in velocity energy causes a stirring force, and an increase in pressure energy causes a negative pressure at the blade tips. Due to this negative pressure, the air supplied through the ventilation pipe is sucked through the hollow stirring blade shaft and the submersible motor shaft, and is finely divided by the blade, and is discharged into the water while stirring. Water containing fine bubbles is also agitated by the blades, whereby aeration is performed. The aeration device may be operated at the same time as the removal of pollutants, but during the period when the removal of pollutants was stopped, especially at night, only this aeration device is operated to aerate and agitate the water, and the dissolved oxygen value in the water To improve the purification of water quality.

この場合において、脱水工程で得られる脱離水のすべ
てを一次タンクに返還すると水量及び残存凝集剤成分の
濃度が高くなることがある。これを防止するため、第2
図に示す実施例を採用することができる。これは返還水
管15の一部に離脱水中に残存する凝集剤の濃度及びその
離脱水の量を検出するセンサー16とこの検出値を以て凝
集剤の毒性を中和する中和剤の添加供給量を調整する中
和剤供給制御機構17を介して返還水管15に配設されたバ
ルブ18を制御し、一次タンク内への返送量を調整する。
またこのバルブ18には一次タンク41に隣接されたオーバ
ーフロー槽19に配管される返還水管20を設け、濾液受槽
からの余剰脱離水を一次タンクへ供給しないで、このオ
ーバーフロー槽19へ供給し、ここで中和剤21、例えばア
ニオンポリマーを適量添加し、中和させた後、池等へ戻
すようになすものである。
In this case, if all the desorbed water obtained in the dehydration step is returned to the primary tank, the amount of water and the concentration of the residual coagulant component may increase. To prevent this, the second
The embodiment shown in the figure can be adopted. This is a sensor 16 for detecting the concentration of the coagulant remaining in the desorbed water and the amount of the desorbed water in a part of the return water pipe 15, and the addition amount of the neutralizing agent for neutralizing the toxicity of the coagulant based on the detected value. A valve 18 arranged in the return water pipe 15 is controlled via a neutralizing agent supply control mechanism 17 to be adjusted to adjust the amount of return to the primary tank.
Further, the valve 18 is provided with a return water pipe 20 which is connected to an overflow tank 19 adjacent to the primary tank 41, and the excess desorbed water from the filtrate receiving tank is supplied to the overflow tank 19 without supplying to the primary tank. Then, the neutralizing agent 21, for example, an anionic polymer is added in an appropriate amount for neutralization, and then returned to a pond or the like.

〔発明の効果〕〔The invention's effect〕

本第1発明によれば、分離したヘドロ分に凝集剤を添
加するようにしているため、凝集剤をヘドロ分に効率よ
く作用させることができ、速やかにヘドロの凝集を行わ
せることができる。また、脱水工程での脱離水をヘドロ
水の沈降分離工程へ返還させることにより、脱離水中に
残存する凝集剤成分をヘドロ水のヘドロ分に作用させて
ヘドロ水の沈降分離を早めることができるとともに、脱
離水中に残存する凝集剤成分がそのまま閉鎖性水域に戻
ることを防止することができる。さらに、ヘドロの除去
と共に閉鎖性水域中を撹拌曝気を行うことによって、閉
鎖性水域での水質浄化を昼夜を問わず連続的に行うこと
ができ、水質の浄化をより促進することができる。そし
てこれらにより、凝集剤として毒性の低いカチオン系凝
集剤を使用することと相まって、池や堀などの閉鎖性水
域において水生生物の生存を損なうことなく安全に水質
の浄化を行うことができる。
According to the first aspect of the present invention, since the coagulant is added to the separated sludge component, the coagulant can efficiently act on the sludge component, and the sludge can be rapidly aggregated. Further, by returning the desorbed water in the dehydration step to the sedimentation separation step of the sludge water, the flocculant component remaining in the desorption water can be acted on the sludge part of the sludge water to accelerate the sedimentation separation of the sludge water. At the same time, it is possible to prevent the coagulant component remaining in the desorbed water from returning to the closed water region as it is. Furthermore, by performing aeration and aeration in the closed water area together with the removal of sludge, the water quality in the closed water area can be continuously purified day or night, and the water quality can be further promoted. And by these, together with using a cationic toxicity coagulant with low toxicity as a coagulant, it is possible to safely purify water quality without impairing the survival of aquatic organisms in a closed water area such as a pond or a moat.

本第2発明によれば、脱水工程で得られる脱離水に余
剰分が生じた場合に、この余剰脱離水に、余剰脱離水に
含有されるカチオン系凝集剤の毒性を中和する中和剤を
添加した後、閉鎖性水域に戻すことにより、より安全に
水質の浄化を行うことができる。
According to the second aspect of the present invention, when a surplus is generated in the desorbed water obtained in the dehydration step, the excess desorbed water neutralizes the toxicity of the cationic flocculant contained in the surplus desorbed water. After the addition of, the water quality can be purified more safely by returning to the closed water area.

【図面の簡単な説明】[Brief description of drawings]

第1図は第1実施例の概略説明図、第2図は第2実施例
の概略説明図、第3図は曝気装置の説明図である。 1は池又は堀、2,8,14はポンプ、4は凝集濃縮タンク、
41は一次タンク、42は二次タンク、7は返戻管、9は供
給管、10は凝集剤、12は脱水工程、15は返還水管、16は
センサー、21は中和剤、2Sは曝気装置。
FIG. 1 is a schematic explanatory view of the first embodiment, FIG. 2 is a schematic explanatory view of the second embodiment, and FIG. 3 is an explanatory view of an aeration device. 1 is a pond or moat, 2,8,14 are pumps, 4 is a coagulating concentration tank,
41 is a primary tank, 42 is a secondary tank, 7 is a return pipe, 9 is a supply pipe, 10 is a coagulant, 12 is a dehydration process, 15 is a return water pipe, 16 is a sensor, 21 is a neutralizer, 2S is an aerator. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】閉鎖性水域のヘドロを水と共に揚水し、こ
のヘドロ水を沈降分離して上澄水を閉鎖性水域に戻し、
分離したヘドロ分にカチオン系凝集剤を添加して凝集さ
せた後脱水し、固形分を除去し、この脱水工程での脱離
水をヘドロ水の沈降分離工程へ返還させて脱離水中のカ
チオン系凝集剤をヘドロ水のヘドロ分に吸収させるとと
もに、閉鎖性水域中を撹拌曝気を行って水質を浄化する
ことを特徴とする閉鎖性水域の水質浄化方法。
1. A sludge in a closed water area is pumped together with water, the sludge water is sedimented and separated, and the supernatant water is returned to the closed water area.
A cationic flocculant is added to the separated sludge to coagulate it, followed by dehydration to remove solids, and the desorbed water from this dehydration process is returned to the sedimentation separation process of sludge water to remove the cationic system in the desorbed water. A method for purifying water in a closed water area, which comprises absorbing a coagulant into the sludge of sludge water and agitating and aeration in the closed water area to purify the water quality.
【請求項2】脱水工程で得られる脱離水のうちの余剰分
にカチオン系凝集剤の毒性を中和する中和剤を添加した
後、閉鎖性水域に戻すことを特徴とする請求項1記載の
閉鎖性水域の水質浄化方法。
2. The method according to claim 1, wherein a neutralizing agent for neutralizing the toxicity of the cationic flocculant is added to the surplus of the desorbed water obtained in the dehydration step and then returned to the closed water area. Method for water purification in closed water areas.
JP8202289A 1989-03-31 1989-03-31 Water purification methods for closed water areas Expired - Fee Related JPH082438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8202289A JPH082438B2 (en) 1989-03-31 1989-03-31 Water purification methods for closed water areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8202289A JPH082438B2 (en) 1989-03-31 1989-03-31 Water purification methods for closed water areas

Publications (2)

Publication Number Publication Date
JPH02261595A JPH02261595A (en) 1990-10-24
JPH082438B2 true JPH082438B2 (en) 1996-01-17

Family

ID=13762901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8202289A Expired - Fee Related JPH082438B2 (en) 1989-03-31 1989-03-31 Water purification methods for closed water areas

Country Status (1)

Country Link
JP (1) JPH082438B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6247663B2 (en) * 2015-05-26 2017-12-13 初雁興業株式会社 Firewood system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048240B2 (en) * 1976-04-10 1985-10-25 株式会社大阪造船所 Dewatering method for dredged sludge

Also Published As

Publication number Publication date
JPH02261595A (en) 1990-10-24

Similar Documents

Publication Publication Date Title
KR101189747B1 (en) Water supply and discharge purifying system for water tank type inland aquaculture
CN102503005B (en) Method for replacing bottom sludge of polluted water in site and sludge cleaning equipment
CN211644998U (en) Sewage treatment plant that treatment effeciency is high
JPH082438B2 (en) Water purification methods for closed water areas
KR100292426B1 (en) A Mobile Water Purifying System
KR100457383B1 (en) Accumulation matter processing method and system for water purification of lake and reservoir
CN113716827A (en) Be applicable to cold area row muddy water processing integrated system
CN212864476U (en) Black and odorous water treatment device for ecological dredging
CN211999387U (en) Kitchen wastewater treatment system
JP2004073946A (en) Method of purifying sludge at bottom of water
JP2003181465A (en) Engineering method for decontaminating water bottom
KR100292427B1 (en) A System For Removing Algae and Suspended Solid
JP4019277B2 (en) Method and apparatus for treating organic wastewater generated from fishing ports and fish markets
KR100330493B1 (en) An Intake Water Purifying System
KR100849219B1 (en) equipment and method for treatment waste water
CN217972826U (en) High-efficient compact sewage treatment system
CN216639237U (en) Be applicable to cold area and arrange muddy water treatment integrated system
JPH0330897A (en) Waste water treatment apparatus
CN215161923U (en) Integrated sewage treatment equipment
CN212222660U (en) Air floatation machine for efficiently treating fine particles of industrial wastewater
CN212174645U (en) Printing ink box cleaning wastewater treatment system
CN209242849U (en) A kind of aquaculture environment-friendly type Waster water reuse apparatus
CN218435393U (en) Garbage transfer station sewage treatment device
JP3051586U (en) Pressurized floating type wastewater treatment equipment
CN214735178U (en) Leachate treatment system for garbage transfer station

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees