JPH08243739A - Continuous welding method of boiler tube - Google Patents

Continuous welding method of boiler tube

Info

Publication number
JPH08243739A
JPH08243739A JP5021895A JP5021895A JPH08243739A JP H08243739 A JPH08243739 A JP H08243739A JP 5021895 A JP5021895 A JP 5021895A JP 5021895 A JP5021895 A JP 5021895A JP H08243739 A JPH08243739 A JP H08243739A
Authority
JP
Japan
Prior art keywords
welding
boiler tube
tube
cooling
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5021895A
Other languages
Japanese (ja)
Inventor
Kiyoshi Sakuma
潔 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5021895A priority Critical patent/JPH08243739A/en
Publication of JPH08243739A publication Critical patent/JPH08243739A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the generation of hot cracking inside a welded metal without dropping down of the weld bead at the time of welding a joint of a pure austenite base boiler tube. CONSTITUTION: A tube 1 is turned, a cooling water is poured on the front face of a lower part of a tube joint weld part from the lower side toward the upper side, the TIG continuous welding is executed with a welding torch 11 fixed just above the weld part. Further, the tube 1 is fixed, a copper cooling belt 14 is attached closely on the tube joint weld part and the base material is cooled, the TIG continuous welding is executed while moving the welding head. Further, the tube 1 is brought into close contact with the copper cooling belt 14, the base material is cooled regardless of the rotary tube welding or the fixed tube welding and the manual welding is executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば次世代火力発電
ボイラー用として完全オーステナイト系耐熱鋼管を使用
してボイラーを建造する際に、溶接性能を保証し、且つ
溶接能率が向上する溶接施工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding method for assuring welding performance and improving welding efficiency when constructing a boiler using a completely austenitic heat-resistant steel pipe for a next-generation thermal power generation boiler, for example. Regarding

【0002】[0002]

【従来の技術】ボイラーチューブを溶接するに当り、そ
の突合せ開先例としての代表例を図1に示す。当該完全
オーステナイト系耐熱鋼の化学成分例を表1に示す。
2. Description of the Related Art A typical example of a butt groove when welding a boiler tube is shown in FIG. Table 1 shows an example of the chemical composition of the completely austenitic heat resistant steel.

【0003】[0003]

【表1】 [Table 1]

【0004】図1に示すように、種々の外径を持つボイ
ラーチューブ1に対し、各々の肉厚に適した開先を機械
加工し、開先会合部2を合せることにより、溶接開先3
を形成する。その後、TIGアークにより溶材を溶かし
た溶接金属を挿入しながら円周方向に連続的に溶接を実
行する。溶接開先3を溶接金属で埋めつくし終えたら溶
接を終了する。
As shown in FIG. 1, a boiler tube 1 having various outer diameters is machined into a groove suitable for each wall thickness, and the groove joining portion 2 is aligned to form a welding groove 3
To form. After that, welding is continuously performed in the circumferential direction while inserting the weld metal in which the molten material is melted by the TIG arc. When the welding groove 3 is completely filled with the weld metal, the welding is finished.

【0005】火力発電における発電効率向上に対し、そ
れぞれ該当機関で研究が活発に行われているところであ
るが、効率を左右する大きな因子として、蒸気圧力と蒸
気温度がある。蒸気圧力、蒸気温度を上げることによ
り、従来にない使用環境条件に耐え得る特性を持つこと
が要求され、材料の必要条件となる。特に耐高温強度性
が問題となる。
[0005] Researches on the improvement of power generation efficiency in thermal power generation are being actively conducted by the respective organizations, but steam pressure and steam temperature are major factors that influence the efficiency. By increasing the steam pressure and steam temperature, it is required to have properties that can withstand unprecedented operating environment conditions, which is a necessary condition for materials. Particularly, high temperature resistance is a problem.

【0006】そこで、健全な継手性能を確保し、保証す
るためには克服しなければならないいくつかの技術的課
題がある。例えば、溶接性、耐割れ性、高温強度、靭
性、クリープ強度、時効靭性、水蒸気酸化特性、耐高温
腐食割れ等々である。これらの課題の中では、材料独自
の成分構成で特性が引き出せるものと、材料特性を生か
しきれない、即ち溶接施工技術で補ってやらなければ解
決できない課題が併存している。
There are therefore some technical challenges that must be overcome in order to ensure and guarantee sound joint performance. For example, weldability, crack resistance, high temperature strength, toughness, creep strength, aging toughness, steam oxidation characteristics, high temperature corrosion cracking resistance and the like. Among these problems, there are a problem in which the characteristics can be derived by the component composition unique to the material and a problem in which the material characteristics cannot be fully utilized, that is, the problem cannot be solved unless it is supplemented by welding construction technology.

【0007】特開昭59−92194号公報には、管内
面に肉盛溶接等を行うに際し、管の下側表面を冷却水に
浸漬し、管の上側表面に冷却水を散水して管を回転させ
て溶接することにより、冷却が確実に行われ、材質変
化、応力発生等を回避する技術が開示されている。
In JP-A-59-92194, when performing overlay welding or the like on the inner surface of the pipe, the lower surface of the pipe is immersed in cooling water, and the cooling water is sprinkled on the upper surface of the pipe to form the pipe. By rotating and welding, cooling is surely performed, and a technique for avoiding material change, stress generation, etc. is disclosed.

【0008】又、本発明で提案しようとする固定された
完全オーステナイト系ボイラーチューブの継手溶接に際
し、当該ボイラーチューブの熱影響部から母材にかかる
範囲に当該ボイラーチューブ外面に沿い銅製冷却帯を密
着させ、冷却しながら、且つ溶接ヘッドを移動させなが
らTIG溶接するボイラーチューブの連続溶接法に類す
る技術はない。
Further, in the joint welding of the fixed complete austenitic boiler tube proposed in the present invention, a copper cooling zone is adhered along the outer surface of the boiler tube in the range from the heat affected zone of the boiler tube to the base material. There is no technique similar to the continuous welding method of the boiler tube, in which TIG welding is performed while cooling, cooling and moving the welding head.

【0009】[0009]

【発明が解決しようとする課題】ここで対象とした完全
オーステナイト系材料には、周知のように種々の特性が
ある。溶接性の面からは、熱伝導率が小さいため、母材
に熱がこもり、溶融池が垂れ落ち易く、そのため連続的
に溶接することが不可能である。又、耐割れ性の面から
は、図2に模式図を示すように、結晶粒界のミクロ割れ
4や、結晶粒内のミクロ割れ5のような高温割れが発生
し易いため、被溶接材に溶接熱を蓄積させることは厳禁
である。更に、上記2点の理由から、溶接施工時の対策
として、被溶接材に冷却時間を置くことを余儀なくさ
れ、そのため、一層毎に溶接を停止しなければならない
結果、溶接開先内において、各ビードの終端部には図3
に示すクレータ高温割れ6が高い頻度で発生した。
The fully austenitic material targeted here has various properties as is well known. From the viewpoint of weldability, the heat conductivity is small, so that the base material retains heat and the molten pool easily drips, which makes continuous welding impossible. Further, from the viewpoint of crack resistance, as shown in the schematic diagram of FIG. 2, high temperature cracks such as micro cracks 4 at grain boundaries and micro cracks 5 inside crystal grains are likely to occur. It is strictly prohibited to accumulate welding heat in the. Furthermore, for the above-mentioned two reasons, as a countermeasure at the time of welding, it is unavoidable to put a cooling time on the material to be welded, so that the welding must be stopped layer by layer. Figure 3 at the end of the bead
The crater hot crack 6 shown in (1) occurred frequently.

【0010】しかるに、前の溶接ビード終端部に発生し
たクレータ高温割れ6を次の積層で再溶融し、溶接停止
位置を移動することで解決しようとすると、TIGアー
クのガウジング力が小さいため、割れ深部を溶かしきれ
ず、積層した溶接ビードの内部に割れ欠陥を温存する結
果になる。割れ欠陥を温存しないためには、各ビード毎
に、毎回、グラインダーで完全に削り取ってしまうこと
が最良の方法であった。
However, if the crater high temperature crack 6 generated at the end of the previous weld bead is remelted in the next stack and the solution is to be moved by moving the welding stop position, the gouging force of the TIG arc is small, so that cracking occurs. The deep part cannot be completely melted, resulting in the preservation of crack defects inside the laminated weld beads. In order not to preserve cracking defects, it was best to completely grind each bead with a grinder.

【0011】しかしながら、特開昭59−92194号
公報に記載された、管内面溶接の冷却方法ならびに装置
では、本発明で、説明してきた溶接態様、即ちボイラー
チューブ用オーステナイト系耐熱鋼管の継手溶接に際
し、開先内に冷却水が入るため、突合せ溶接ができず、
且つ下向き回転管のみ可能であり、固定管は溶接できな
いという大きな問題がある。
However, in the cooling method and apparatus for pipe inner surface welding described in JP-A-59-92194, the welding mode described in the present invention, that is, the joint welding of the austenitic heat-resistant steel pipe for a boiler tube, is performed. Since the cooling water enters the groove, butt welding cannot be performed,
Moreover, there is a big problem that only the downward rotary tube is possible and the fixed tube cannot be welded.

【0012】又、ボイラーチューブの継手溶接に際し、
本発明で提案している当該ボイラーチューブの熱影響部
から母材にかかる範囲に当該ボイラーチューブ外面に沿
い銅製冷却帯を密着させ、冷却しながら、且つ溶接ヘッ
ドを移動させながらTIG溶接する方法がなかったた
め、ボイラーチューブを連続的に溶接することができな
い問題もある。
Further, in welding the joint of the boiler tube,
A method of performing TIG welding while adhering a copper cooling zone along the outer surface of the boiler tube in the range from the heat-affected zone of the boiler tube proposed in the present invention to the base metal, while cooling and moving the welding head. There is also a problem that the boiler tube cannot be continuously welded.

【0013】本発明は、種々の特性を持つ完全オーステ
ナイト系材料の継手溶接を行うに際し、従来技術の不都
合を解消し、更に高温強度、靭性の向上を図る目的で含
有させている多量の窒素を、溶接熱による母材温度の上
昇に伴う蒸発からその逸散を防止することにより当該材
料の特性を損ねることなく、逆に十分生かしつつ、健全
な溶接ビードを得ること、特に、初層から最終層までを
連続的に溶接するボイラーチューブの連続溶接法を提供
することにある。
The present invention eliminates the disadvantages of the prior art when performing joint welding of a complete austenitic material having various characteristics, and further contains a large amount of nitrogen contained for the purpose of improving high temperature strength and toughness. To obtain a healthy weld bead while making the best use of the material without deteriorating its evaporation from evaporation due to the rise of the base metal temperature due to the welding heat and conversely making full use of it, especially from the first layer to the final layer. It is to provide a continuous welding method for a boiler tube that continuously welds up to layers.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明は、(1)完全オーステナイト系ボイラーチュ
ーブの継手溶接に際し、当該ボイラーチューブの下部表
面へ冷却水を下から上へ注水しつつ、当該ボイラーチュ
ーブを回転させながら当該継手溶接部の真上に固定され
た溶接トーチによりTIG溶接することを特徴とするボ
イラーチューブの連続溶接法であり、(2)前記冷却水
を注水する代わりに前記ボイラーチューブの熱影響部か
ら母材にかかる範囲に当該ボイラーチューブ外面に沿
い、銅製冷却帯を密着させ冷却することを特徴とする前
記(1)項記載のボイラーチューブの連続溶接法、およ
び(3)固定された完全オーステナイト系ボイラーチュ
ーブの継手溶接に際し、当該ボイラーチューブの熱影響
部から母材にかかる範囲に当該ボイラーチューブ外面に
沿い銅製冷却帯を密着させ、冷却しながら、且つ溶接ヘ
ッドを移動させながらTIG溶接することを特徴とする
ボイラーチューブの連続溶接法である。
In order to achieve the above-mentioned object, the present invention provides (1) during joint welding of a complete austenitic boiler tube, while pouring cooling water from the bottom to the bottom surface of the boiler tube. A continuous welding method for a boiler tube, characterized in that TIG welding is performed by a welding torch fixed directly above the joint weld while rotating the boiler tube, (2) Instead of pouring the cooling water A continuous welding method for a boiler tube according to the item (1), wherein a cooling zone made of copper is brought into close contact with the area outside the heat affected zone of the boiler tube along the outer surface of the boiler tube to cool the area, and ( 3) When welding a fixed complete austenitic boiler tube, the heat-affected zone of the boiler tube affects the base metal. Enclosed in brought into close contact with the copper cooling zone along the boiler tubes outer surface, with cooling, a continuous welding process of boiler tubes, characterized by TIG welding while and moving the welding head.

【0015】[0015]

【作用】請求項1記載の連続溶接法は、当該ボイラーチ
ューブ継手部を回転できる場合に溶接を実行した時、当
該ボイラーチューブ開先の両側熱影響部から母材にわた
る部分を、当該ボイラーチューブの真下の位置で、該チ
ューブ下部表面へ冷却水を下から上へ末広がりの向きに
注水する。注水した冷却水は、熱影響部から母材に伝播
する溶接熱を随時奪い取ってしまうので、一周回って次
のアーク点がきた時点では、すでに開先内溶接ビードの
温度が150℃以下に下がっているので次層の溶接が連
続的に実施できる。
In the continuous welding method according to the first aspect, when welding is performed when the boiler tube joint can be rotated, the portion extending from the heat affected zone on both sides of the boiler tube groove to the base metal is connected to the boiler tube. At a position just below, cooling water is poured onto the lower surface of the tube from bottom to top in the direction of diverging. Since the injected cooling water takes away the welding heat propagating from the heat-affected zone to the base material at any time, the temperature of the welding bead in the groove has already dropped to 150 ° C or less when the next arc point comes around. Therefore, the welding of the next layer can be continuously performed.

【0016】冷却水の注水位置を当該ボイラーチューブ
の真下以外の他の位置に設定すると、該チューブ表面を
伝い流れ落ちた冷却水が開先の中に流入し、ブローホー
ル等溶接欠陥が発生する。又、注水する方向を開先から
遠ざける向き、即ち末広がりの向きに注水することによ
り、開先内への冷却水流入を防止できる。
When the pouring position of the cooling water is set to a position other than directly under the boiler tube, the cooling water flowing down along the surface of the tube flows into the groove and welding defects such as blow holes occur. Further, by injecting water in a direction in which water is poured away from the groove, that is, in the direction of the end spread, it is possible to prevent the cooling water from flowing into the groove.

【0017】更に、当該完全オーステナイト系材料は他
元素の混入に敏感なため、現有する溶接法の中で、簡便
でしかも不活性ガス中での溶融形態から、最も清浄な溶
接金属が得ることができるTIG溶接法を採用すること
とし、そのTIGトーチの位置を当該ボイラーチューブ
の真上に設定したことにより、溶接アークの安定、溶接
ビード形状の安定、溶材の安定供給等が確保できる。
Furthermore, since the completely austenitic material is sensitive to the mixing of other elements, the cleanest weld metal can be obtained from the existing welding methods by a simple and molten form in an inert gas. By adopting a possible TIG welding method and setting the position of the TIG torch directly above the boiler tube, it is possible to secure stable welding arc, stable welding bead shape, stable supply of molten material and the like.

【0018】請求項3記載の連続溶接法は、当該ボイラ
ーチューブ継手部が固定されている場合で、例えば該チ
ューブ継手部が鉛直固定で溶接線が水平、あるいは該チ
ューブ継手部が斜め固定で溶接線が斜め等の溶接に適す
る。前記(発明が解決しようとする課題)したように、
当該完全オーステナイト系材料は、母材に熱がこもり溶
融池が垂れ落ち易いこと、又、高温割れが発生し易いこ
と等から被溶接材に溶接熱を蓄積させることができな
い。そこで、溶接で発生した溶接熱を随時取り去ること
ができれば連続的に溶接を実行することが可能であり、
しかも熱影響部から母材に伝播する、できるだけ早いう
ちに吸収してしまうことが得策である。
The continuous welding method according to claim 3 is a case where the boiler tube joint portion is fixed, for example, the tube joint portion is vertically fixed and the welding line is horizontal, or the tube joint portion is obliquely fixed and welded. Suitable for welding with diagonal lines. As described above (problems to be solved by the invention),
The completely austenitic material cannot accumulate the welding heat in the material to be welded because the base metal retains heat and the molten pool easily drops, and hot cracking easily occurs. Therefore, if the welding heat generated during welding can be removed at any time, it is possible to carry out welding continuously.
Moreover, it is a good idea to propagate the heat-affected zone to the base metal and absorb it as soon as possible.

【0019】かかる理由から、前記請求項1の水による
冷却方法は不可能であるため、代替方法として当該ボイ
ラーチューブ開先の両側熱影響部から母材にかかる範囲
に当該ボイラーチューブ外面に沿い銅製冷却帯を密着的
に巻き付けることにより、その銅製冷却帯が前記請求項
1と同様に、熱影響部から母材に伝播する溶接熱を随時
奪い取ってしまう結果、母材を冷却しつつ、溶接ヘッド
を移動させながらTIG溶接を連続して実行することが
できる。又、当該ボイラーチューブ外面に沿ったその銅
製冷却帯は、溶接開先を両側から囲う壁の役目を果た
し、溶融プールを、トーチシールドを乱す外気の風から
防ぐ効果がある。
For this reason, the method of cooling with water according to claim 1 is not possible, and as an alternative method, a copper pipe is provided along the outer surface of the boiler tube within the range from the heat-affected zone on both sides of the boiler tube groove to the base metal. By tightly winding the cooling zone, the copper cooling zone takes away the welding heat propagating from the heat-affected zone to the base metal at any time as in the case of the first aspect. As a result, the welding head is cooled while cooling the base metal. It is possible to continuously perform TIG welding while moving the. Further, the copper cooling zone along the outer surface of the boiler tube acts as a wall that surrounds the welding groove from both sides, and has an effect of preventing the molten pool from the wind of the outside air that disturbs the torch shield.

【0020】請求項2記載の連続溶接法は、主に手動溶
接の実行に適する。回転管溶接、固定管溶接にかかわら
ず、本溶接又は補修溶接を実行する際に当該ボイラーチ
ューブに熱を蓄積することは厳禁である。このような時
に当該ボイラーチューブ開先の両側熱影響部から母材に
かかる範囲に外面に沿い銅製冷却帯を密着的に巻き付け
ることにより、連続的な溶接又は部分的な溶接にも対応
できる。その他の作用については請求項1および請求項
3記載の発明と同様である。
The continuous welding method according to claim 2 is mainly suitable for performing manual welding. Regardless of rotary pipe welding or fixed pipe welding, it is strictly prohibited to accumulate heat in the boiler tube when performing main welding or repair welding. In such a case, continuous welding or partial welding can be dealt with by tightly winding a copper cooling zone along the outer surface in a range extending from the heat affected zones on both sides of the boiler tube groove to the base material. Other functions are similar to those of the inventions according to claims 1 and 3.

【0021】なお、当該ボイラーチューブ内面シールド
ガスについては、請求項1、請求項2、請求項3記載の
いずれにおいても、継手溶接中は連続して供給し、その
種類はアンゴンガスとする。
The boiler tube inner surface shield gas is continuously supplied during joint welding in any of claims 1, 2 and 3, and the kind thereof is Angon gas.

【0022】[0022]

【実施例】以下に添付の図面に示された具体的な実施例
に基づいて本発明の構成を詳細に説明する。図4は、本
発明に基づき構成された、ボイラーチューブを回転でき
る場合の回転管溶接の状態を示している。即ち、開先会
合部2を合せ、精度良く組立てたボイラーチューブ母材
1を回転治具7に装着する。内面シールドガスを流す必
要からチューブ両端にメクラぶた8を設置し、一方から
内面シールドガスを供給するパイプ9を挿入する。他方
のメクラぶたにはシールドガスの排出口10を設ける。
TIGトーチ11は溶接箇所の真上とし、溶接箇所の真
下には冷却水給水器12を設置する。冷却水給水器12
の上部には冷却水が末広がりの向きに注水できるよう、
噴出穴12aを斜め(18〜20°)に加工している。
流れ落ちた水は、受け皿で受け排水溝13へ導く。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to specific embodiments shown in the accompanying drawings. FIG. 4 shows a state of rotary tube welding when the boiler tube constructed according to the present invention can be rotated. That is, the groove assembly 2 is put together, and the boiler tube base material 1 assembled with high precision is mounted on the rotary jig 7. Since it is necessary to flow the inner shield gas, the blind cover 8 is installed at both ends of the tube, and the pipe 9 for supplying the inner shield gas is inserted from one side. A discharge port 10 for the shield gas is provided on the other cover.
The TIG torch 11 is located directly above the welding location, and the cooling water supplier 12 is installed directly below the welding location. Cooling water feeder 12
In order to be able to pour the cooling water in the direction of the end,
The ejection holes 12a are processed obliquely (18 to 20 °).
The water that has flowed down is guided to the receiving drainage groove 13 by the receiving tray.

【0023】図5は、上記態様で溶接する場合の冷却水
給水器12の適正なボイラーチューブ下部表面との距離
と、冷却水の適正供給水量を示した。本実験では、中央
から注水される2本の冷却水が溶接ビード近傍の両側熱
影響部を狙い、又、開先幅の制約から、給水器の位置を
チューブ下部表面から10mmの距離に設定した。全ての
溶接条件を設定した後、冷却水を注水した状態で、初層
から最終層(7層)までを連続して溶接する。溶接条件
例を下記表2に示す。
FIG. 5 shows the proper distance between the cooling water feeder 12 and the lower surface of the boiler tube in the case of welding in the above-described manner, and the proper supply amount of the cooling water. In this experiment, two cooling waters injected from the center aimed at the heat-affected zone on both sides in the vicinity of the weld bead, and due to the restriction of the groove width, the position of the water supply device was set to a distance of 10 mm from the lower surface of the tube. . After setting all the welding conditions, the first layer to the final layer (7 layers) are continuously welded while cooling water is being poured. Table 2 below shows an example of welding conditions.

【0024】[0024]

【表2】 [Table 2]

【0025】図6は、本発明に基づき構成された、ボイ
ラーチューブが回転できない場合の固定管溶接の状態を
示している。開先会合部2を合せ、精度良く組立てたボ
イラーチューブ母材1を垂直に立て、しっかりと固定す
る。内面シールドガスを流す必要からチューブ両端にメ
クラぶた8を設置し、一方から内面シールドガスを供給
するパイプ9を挿入する。他方のメクラぶたにはシール
ドガスの排出口10を設ける。溶接開先3の両側に、溶
接ビード止端部から2〜3mmの距離の熱影響部から母材
にかかる範囲に、チューブ外面に沿い水冷銅バンド14
をそれぞれ巻き付け密着状態に設置する。更に水冷銅バ
ンド14のまわりには、固定管溶接機ヘッド15をクラ
ンプ16にて設置する。TIGトーチ11は溶接線を狙
い、溶接機ヘッド15に納められたモータハウジング1
7でワイヤフィーダ18に設置した溶材を送給しながら
溶接機ヘッド15全体を回転させ溶接を進める機構とす
る。19,20は、水冷銅バンド14へ冷却水を供給す
る供給口と排出口を表している。
FIG. 6 shows a state of fixed pipe welding when the boiler tube constructed according to the present invention cannot rotate. Boiler tube base material 1 assembled by aligning groove association parts 2 with high accuracy is vertically erected and firmly fixed. Since it is necessary to flow the inner shield gas, the blind cover 8 is installed at both ends of the tube, and the pipe 9 for supplying the inner shield gas is inserted from one side. A discharge port 10 for the shield gas is provided on the other cover. A water-cooled copper band 14 along the outer surface of the tube on both sides of the weld groove 3 in the range of the heat affected zone at a distance of 2-3 mm from the weld bead toe to the base metal.
Wrap each and install in close contact. Further, a fixed pipe welder head 15 is installed around the water-cooled copper band 14 with a clamp 16. The TIG torch 11 is aimed at the welding line and is housed in the welding machine head 15 in the motor housing 1
The welding machine head 15 as a whole is rotated while feeding the molten material set in the wire feeder 18 at 7 to advance welding. Reference numerals 19 and 20 represent a supply port and a discharge port for supplying cooling water to the water-cooled copper band 14.

【0026】全ての溶接条件を設定した後、冷却水を供
給した状態で、初層から最終層(7層)までを連続して
溶接した。なお水冷銅バンド14の模式図を図9に示
し、溶接条件例を下記表3に示す。図9において(a)
は水冷銅バンド14の側面図、(b)は正面図、(c)
はチューブにセットした正面図である。
After setting all the welding conditions, the first layer to the final layer (7 layers) were continuously welded while cooling water was supplied. A schematic diagram of the water-cooled copper band 14 is shown in FIG. 9, and examples of welding conditions are shown in Table 3 below. In FIG. 9, (a)
Is a side view of the water-cooled copper band 14, (b) is a front view, (c)
[Fig. 4] is a front view set in a tube.

【0027】[0027]

【表3】 [Table 3]

【0028】その結果、図4に示す溶接形態、即ち溶接
箇所の真下に設置した冷却水給水器12より注水された
冷却水により溶接熱を吸収し、母材の過熱を防止するこ
とで初めて連続溶接が可能になる回転管溶接、あるい
は、図6に示す溶接形態、即ち一般的な現場溶接のよう
にチューブが回転不可能であってしかも溶接姿勢が多種
多様に変化せざるを得ない固定管溶接にかかわらず、い
かなる溶接姿勢にも対応できる全姿勢溶接に適応し、且
つ、溶接ビード外観上から見ればビードの垂れ落ちがな
く、ビード止端部が揃い、更に、ビードの酸化色がうす
い金色どまりである。このことは冷却の効果を表してい
る。又、溶接金属内部から見ればミクロ的な高温割れの
発生もなく、溶接を途中で止める必要がないことから溶
接中間層のクレータ部の高温割れを温存しない。このよ
うに健全な溶接を実行することができた。
As a result, the welding form shown in FIG. 4, that is, the welding water is absorbed by the cooling water injected from the cooling water feeder 12 installed just below the welding spot, and the overheating of the base metal is prevented, so that the base material is not continuously heated. 6 is a rotary pipe welding that enables welding, or a fixed pipe in which the tube cannot be rotated and the welding posture must be changed in various ways as in the case of the welding form shown in FIG. Suitable for all position welding, regardless of welding position, and when viewed from the appearance of the weld bead, there is no drop of the bead, the bead toes are even, and the oxidized color of the bead is light. It's golden. This represents the effect of cooling. Further, when viewed from the inside of the weld metal, microscopic high-temperature cracking does not occur, and there is no need to stop welding midway, so high-temperature cracking in the crater portion of the welding intermediate layer is not preserved. In this way, sound welding could be performed.

【0029】図7は、溶接ビード近傍の両側熱影響部か
ら母材にかかる範囲を、本発明による冷却水注水方法で
冷却した場合と、冷却しなかった場合とで溶接金属組織
がどの程度微細化するかを確認するため、当該完全オー
ステナイト系ボイラーチューブ材料を用いて溶接を実施
した際の溶接金属ミクロ組織写真である。溶接状況につ
いて説明すれば、図7(a),(b)は水冷却なしでパ
ス間温度が250℃以上での溶接条件で実施した溶接金
属ミクロ組織写真であり、図7(c),(d)は実施例
図4に基づき溶接箇所の真下に設置した冷却水給水器に
より注水したまま連続溶接した場合の溶接金属ミクロ組
織である。各写真において、(a),(c)は100
倍、(b),(d)の写真は200倍で撮影してある。
水冷したものを比較すれば、結晶粒の大きさを約1/3
に微細化する効果があることを証明している。
FIG. 7 shows how fine the weld metal structure is in the range from the heat-affected zone on both sides in the vicinity of the weld bead to the base metal when cooled by the cooling water injection method according to the present invention and when not cooled. 3 is a photograph of a weld metal microstructure when welding was performed using the completely austenitic boiler tube material in order to confirm whether or not it is transformed. Explaining the welding situation, FIGS. 7 (a) and 7 (b) are photographs of weld metal microstructures carried out under the welding conditions at a temperature between passes of 250 ° C. or higher without water cooling, and FIGS. d) is a weld metal microstructure in the case where continuous welding is performed while pouring water by a cooling water feeder installed immediately below the welding spot based on FIG. In each photo, (a) and (c) are 100
The photographs of (b) and (d) are taken at 200 times.
Comparing the water-cooled ones, the crystal grain size is about 1/3.
Has proved to have the effect of miniaturization.

【0030】図8は、周知のように、溶接金属中の窒素
量と引張強度の関係を表したグラフである。本発明に係
る完全オーステナイト系材料は、高温強度確保の目的か
ら、母材金属中に窒素を多量添加(約0.2000〜
0.2010mass%)している。これを受け、溶接金属
を形成する溶接ワイヤは母材と同等かそれ以上の窒素含
有率で成分設計するのが普通である。継手構造物を製作
する過程で溶接手段を用いることにより、その接合部で
は、溶接時に発生する溶接熱により、母材および溶接金
属中から0.0700mass%程度の窒素が逸散する。逸
散する窒素をいかに少なく抑えるかが溶接施工技術の大
きなポイントの一つである。
As is well known, FIG. 8 is a graph showing the relationship between the amount of nitrogen in weld metal and the tensile strength. The completely austenitic material according to the present invention is added with a large amount of nitrogen (about 0.2000-
0.2010 mass%). In view of this, the welding wire forming the weld metal is usually designed with a nitrogen content equal to or higher than that of the base metal. By using the welding means in the process of manufacturing the joint structure, about 0.0700 mass% of nitrogen dissipates from the base metal and the weld metal at the joint portion due to the welding heat generated during welding. One of the major points of welding construction technology is how to reduce the amount of nitrogen that escapes.

【0031】図8に掲げたグラフ例を説明すれば、0.
152mass%は水冷却なしでパス間温度が250℃以上
の溶接条件で実施した際の溶接金属中の窒素量であり、
0.166mass%は当該案件中実施例図4に基づき溶接
箇所真下に設置した冷却水給水器12により注水したま
まで連続溶接した際の溶接金属中の窒素量を表してい
る。当該グラグによれば、溶接金属中の窒素逸散防止に
よる引張強度の向上は約12(N/mm2 )である。
Explaining the graph example shown in FIG.
152 mass% is the amount of nitrogen in the weld metal when the temperature between passes is 250 ° C. or higher without water cooling,
0.166 mass% represents the amount of nitrogen in the weld metal when continuous welding was performed while pouring water by the cooling water feeder 12 installed immediately below the welding location based on FIG. According to the graph, the improvement of the tensile strength by preventing the escape of nitrogen in the weld metal is about 12 (N / mm 2 ).

【0032】表4は、試作溶材における溶接金属の強度
試験結果を示しているが、冷却方法の違いと強度(N/
mm2 )の関係を調べた。溶材1の化学成分(mass%)は
25.7Ni−20.3Cr−0.20TNであり、溶
材2の成分は26.1Ni−21.3Cr−0.18T
Nである。溶材1,2共それぞれ室温と600℃につい
て掲げている。
Table 4 shows the strength test results of the weld metal in the trial molten metal. The difference in the cooling method and the strength (N /
The relationship of mm 2 ) was investigated. The chemical composition (mass%) of the melt 1 is 25.7Ni-20.3Cr-0.20TN, and the composition of the melt 2 is 26.1Ni-21.3Cr-0.18T.
N. Both the melts 1 and 2 are listed at room temperature and 600 ° C, respectively.

【0033】[0033]

【表4】 [Table 4]

【0034】この結果、室温における強度向上分は平均
36(N/mm2 )、600℃においては平均39(N/
mm2 )の強度向上を確認できた。これらの結果を踏まえ
ると、強度が向上した理由は、次のように整理すること
ができる。前記溶接金属中の窒素量逸散防止効果による
強度向上分は約40%、残る60%の強度向上分に寄与
したのは溶接金属内結晶粒の微細化効果であると言え
る。これら2点のいずれもが本発明で提案した溶接開先
直近の熱影響部から母材にかかる範囲を強制的に冷却す
ることにより、母材を過熱することなく、連続的に溶接
ができる溶接方法の成果である。
As a result, the improvement in strength at room temperature was 36 (N / mm 2 ) on average, and at 600 ° C. the average was 39 (N / mm 2 ).
It was confirmed that the strength was improved by mm 2 ). Based on these results, the reason why the strength is improved can be summarized as follows. It can be said that about 40% of the strength improvement by the effect of preventing the amount of nitrogen in the weld metal from escaping and the remaining 60% of the strength improvement contributed to the refinement effect of the crystal grains in the weld metal. Welding in which both of these two points can be continuously welded without overheating the base metal by forcibly cooling the range from the heat-affected zone near the welding groove to the base metal proposed by the present invention. The result of the method.

【0035】[0035]

【発明の効果】このように、本発明によれば、前記母材
過熱防止による強度の向上と合せ、初層から最終層まで
を連続して溶接できることから、一層毎に溶接を止める
必要がなくなり、従来、開先内で高い頻度で発生したク
レータ高温割れ欠陥についてもそれを温存することがな
い。従って、完全オーステナイト系耐熱鋼管の継手溶接
作業における溶接施工技術として多大な効果を奏するこ
とができる。
As described above, according to the present invention, since it is possible to continuously weld from the first layer to the final layer in addition to the improvement of strength by preventing the overheating of the base material, it is not necessary to stop the welding for each layer. Conventionally, crater hot crack defects that frequently occur in the groove are not preserved. Therefore, a great effect can be exerted as a welding construction technique in the joint welding work of the completely austenitic heat-resistant steel pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a),(b),(c),(d)はボイラーチ
ューブ突合せ開先例を示す説明図。
FIG. 1 (a), (b), (c), (d) is an explanatory view showing an example of a butt joint groove of a boiler tube.

【図2】オーステナイト系ステンレス鋼の溶接金属に発
生する代表的なミクロ割れを示す模式図。
FIG. 2 is a schematic diagram showing typical microcracks that occur in the weld metal of austenitic stainless steel.

【図3】クレータ高温割れを示す模式図。FIG. 3 is a schematic diagram showing crater hot cracking.

【図4】本発明の回転管溶接にかかわる一実施例を示す
説明図。
FIG. 4 is an explanatory view showing an embodiment relating to rotary pipe welding of the present invention.

【図5】図4における態様で溶接する場合の冷却水給水
器適正位置と冷却水適正供給量の関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the proper position of the cooling water feeder and the proper supply amount of cooling water when welding is performed in the mode shown in FIG.

【図6】本発明の固定管溶接にかかわる一実施例を示す
説明図。
FIG. 6 is an explanatory view showing an embodiment relating to fixed pipe welding of the present invention.

【図7】冷却効果を比較確認したミクロ溶接金属組織写
真であり、(a)は水冷なしの場合の組織を示す100
倍写真、(b)は同200倍写真、(c)は水冷した場
合の組織を示す100倍写真、(d)は同200倍の写
真である。
FIG. 7 is a photograph of a micro welded metal structure in which the cooling effects are comparatively confirmed, and (a) shows the structure without water cooling.
Double photograph, (b) is a 200-fold photograph, (c) is a 100-fold photograph showing the structure when water-cooled, and (d) is a 200-fold photograph.

【図8】溶接金属中の窒素量と引張強度の関係を示すグ
ラフ。
FIG. 8 is a graph showing the relationship between the amount of nitrogen in the weld metal and the tensile strength.

【図9】水冷銅バンドの模式図であり、(a)は側面、
(b)は正面、(c)はチューブにセットした正面を示
す。
FIG. 9 is a schematic view of a water-cooled copper band, (a) is a side surface,
(B) shows the front, (c) shows the front set in the tube.

【符号の説明】[Explanation of symbols]

1 ボイラーチューブ 2 開先会合部 3 溶接開先 4 結晶粒界ミクロ割れ 5 結晶粒内ミクロ割れ 6 クレータ高温割れ 7 回転治具 8 メクラぶた 9 シールドガス供給パイプ 10 シールドガス排出口 11 TIGトーチ 12 冷却水給水器 12a 噴水孔 13 排水溝 14 水冷銅バンド 15 固定管溶接機ヘッド 16 クランプ 17 モータハウジング 18 ワイヤフィーダ 19 冷却水供給口 20 冷却水排出口 1 Boiler tube 2 Groove joint 3 Weld groove 4 Grain boundary micro-cracking 5 Grain boundary micro-cracking 6 Crater hot cracking 7 Rotating jig 8 Blind lid 9 Shield gas supply pipe 10 Shield gas outlet 11 TIG torch 12 Cooling Water supply device 12a Fountain hole 13 Drain groove 14 Water-cooled copper band 15 Fixed pipe welder head 16 Clamp 17 Motor housing 18 Wire feeder 19 Cooling water supply port 20 Cooling water discharge port

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 完全オーステナイト系ボイラーチューブ
の継手溶接に際し、当該ボイラーチューブの下部表面へ
冷却水を下から上へ注水しつつ、当該ボイラーチューブ
を回転させながら当該継手溶接部の真上に固定された溶
接トーチによりTIG溶接することを特徴とするボイラ
ーチューブの連続溶接法。
1. When welding a joint of a complete austenitic boiler tube, while cooling water is poured from the bottom to the top of the boiler tube, the boiler tube is rotated and fixed directly above the joint weld. Continuous welding method for boiler tubes, characterized by performing TIG welding with a welding torch.
【請求項2】 前記冷却水を注水する代わりに前記ボイ
ラーチューブの熱影響部から母材にかかる範囲に当該ボ
イラーチューブ外面に沿い、銅製冷却帯を密着させ冷却
することを特徴とする請求項1記載のボイラーチューブ
の連続溶接法。
2. A cooling zone made of copper is adhered to and cooled along the outer surface of the boiler tube in a range extending from the heat-affected zone of the boiler tube to the base material, instead of injecting the cooling water. Boiler tube continuous welding method as described.
【請求項3】 固定された完全オーステナイト系ボイラ
ーチューブの継手溶接に際し、当該ボイラーチューブの
熱影響部から母材にかかる範囲に当該ボイラーチューブ
外面に沿い銅製冷却帯を密着させ、冷却しながら、且つ
溶接ヘッドを移動させながらTIG溶接することを特徴
とするボイラーチューブの連続溶接法。
3. When performing joint welding of a fixed complete austenitic boiler tube, a copper cooling zone is closely contacted along the outer surface of the boiler tube in the range from the heat-affected zone of the boiler tube to the base material, while cooling, and A continuous welding method for a boiler tube, characterized by performing TIG welding while moving a welding head.
JP5021895A 1995-03-09 1995-03-09 Continuous welding method of boiler tube Withdrawn JPH08243739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5021895A JPH08243739A (en) 1995-03-09 1995-03-09 Continuous welding method of boiler tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5021895A JPH08243739A (en) 1995-03-09 1995-03-09 Continuous welding method of boiler tube

Publications (1)

Publication Number Publication Date
JPH08243739A true JPH08243739A (en) 1996-09-24

Family

ID=12852928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5021895A Withdrawn JPH08243739A (en) 1995-03-09 1995-03-09 Continuous welding method of boiler tube

Country Status (1)

Country Link
JP (1) JPH08243739A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114881B2 (en) 2000-10-24 2006-10-03 Saipem S.P.A. Method and apparatus for welding pipes together
KR100810131B1 (en) * 2007-11-13 2008-03-06 주식회사 세화기계 Welding method of boiler tubes assembly
WO2011012998A1 (en) * 2009-07-30 2011-02-03 Tubefuse Applications V.O.F Cooling apparatus for cooling a heated/welded region of an object with a plurality of heat sink members; method of cooling a heated/welded region of an object
CN102009250A (en) * 2010-11-08 2011-04-13 哈尔滨锅炉厂有限责任公司 Device and method for water-cooling hot wire argon tungsten-arc welding of austenitic stainless steel tube
KR20180062761A (en) * 2016-12-01 2018-06-11 삼성중공업 주식회사 Welding defect prevention device
WO2018154049A1 (en) * 2017-02-27 2018-08-30 General Electric Technology Gmbh Systems for and method of manufacturing boiler tubes, with synchronous rotation of the tubes in association with automatic welding
JP2022015870A (en) * 2020-07-10 2022-01-21 川田工業株式会社 Welded component manufacturing method and welding system
CN114657557A (en) * 2022-03-31 2022-06-24 西安必盛激光科技有限公司 Tool for communicating water with boiler pipe and method for strengthening boiler pipe

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114881B2 (en) 2000-10-24 2006-10-03 Saipem S.P.A. Method and apparatus for welding pipes together
KR100810131B1 (en) * 2007-11-13 2008-03-06 주식회사 세화기계 Welding method of boiler tubes assembly
WO2011012998A1 (en) * 2009-07-30 2011-02-03 Tubefuse Applications V.O.F Cooling apparatus for cooling a heated/welded region of an object with a plurality of heat sink members; method of cooling a heated/welded region of an object
CN102009250A (en) * 2010-11-08 2011-04-13 哈尔滨锅炉厂有限责任公司 Device and method for water-cooling hot wire argon tungsten-arc welding of austenitic stainless steel tube
CN102009250B (en) * 2010-11-08 2015-05-13 哈尔滨锅炉厂有限责任公司 Method for water-cooling hot wire argon tungsten-arc welding of austenitic stainless steel tube
KR20180062761A (en) * 2016-12-01 2018-06-11 삼성중공업 주식회사 Welding defect prevention device
WO2018154049A1 (en) * 2017-02-27 2018-08-30 General Electric Technology Gmbh Systems for and method of manufacturing boiler tubes, with synchronous rotation of the tubes in association with automatic welding
US10702941B2 (en) 2017-02-27 2020-07-07 General Electric Technology Gmbh System, method and apparatus for welding tubes
US11554437B2 (en) 2017-02-27 2023-01-17 General Electric Technology Gmbh System, method and apparatus for welding tubes
JP2022015870A (en) * 2020-07-10 2022-01-21 川田工業株式会社 Welded component manufacturing method and welding system
CN114657557A (en) * 2022-03-31 2022-06-24 西安必盛激光科技有限公司 Tool for communicating water with boiler pipe and method for strengthening boiler pipe

Similar Documents

Publication Publication Date Title
CN106794538B (en) High productivity hybrid induction heating/welding assembly
US6914213B2 (en) Method and device for overlapping welding of two coated metal sheets with a beam of high energy density
JP2010201507A (en) Method of joining two metallic portions by tungsten inert gas welding and apparatus for carrying out this method
CN103990901B (en) Use the method for resistance welding of pre-cooling
JPH0596392A (en) Method for laser welding of zinc plated steel
JPH08243739A (en) Continuous welding method of boiler tube
JP2004261871A (en) Joining design for laser welding galvanized steel sheet
JP4632428B2 (en) High frequency induction heating pipe making method of steel pipe
US11016000B2 (en) Purging for welding
US8058583B2 (en) Apparatus and method for electroslag welding of rails
KR100468454B1 (en) Apparatus and method for arc brazing for pipe and sheet
KR100605669B1 (en) New copper shoe for electro gas welding
JP2017154171A (en) Welding torch
JP5825997B2 (en) Repair welding method for electroslag welding
KR200402628Y1 (en) Moving copper backing with good adaptableness for electro gas welding on the butt joint with angle
JPS63104783A (en) Horizontal fillet welding method
CN116475537A (en) Welding method for horizontally fixing all-position single-sided welding and double-sided forming of high-temperature steel pipe
CN114192931A (en) High-efficiency welding process for outer pipe of double-layer submarine pipeline
JP2012000662A (en) Method for welding stainless steel sheet and welded joint
JPS5838663A (en) Tig arc spot welding device
JPH04220191A (en) High heat input welding method and cooling system
JPS6057429B2 (en) Electroslag welding method
JPS6127173A (en) Horizontal fillet welding method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604