JPH08241859A - Projection exposure method - Google Patents

Projection exposure method

Info

Publication number
JPH08241859A
JPH08241859A JP8012513A JP1251396A JPH08241859A JP H08241859 A JPH08241859 A JP H08241859A JP 8012513 A JP8012513 A JP 8012513A JP 1251396 A JP1251396 A JP 1251396A JP H08241859 A JPH08241859 A JP H08241859A
Authority
JP
Japan
Prior art keywords
reduction
substrate
reticle
mark
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8012513A
Other languages
Japanese (ja)
Other versions
JP2653356B2 (en
Inventor
Yoshio Kawamura
喜雄 河村
Akihiro Takanashi
明紘 高梨
Shinji Kuniyoshi
伸治 国吉
Toshishige Kurosaki
利栄 黒崎
Tsuneo Terasawa
恒男 寺澤
Sumio Hosaka
純男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8012513A priority Critical patent/JP2653356B2/en
Publication of JPH08241859A publication Critical patent/JPH08241859A/en
Application granted granted Critical
Publication of JP2653356B2 publication Critical patent/JP2653356B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE: To prevent a pattern projected onto a substrate as reduced in size from deteriorating in absolute dimensional accuracy by a method wherein a mark on the substrate is detected through a reducing lens in a stepper so as to correct the projected pattern for reduction ratio error. CONSTITUTION: A stepper is composed of a condenser lens 1, a reticle 2, a reduction projection lens 3, a substrate 4, and pattern detectors 5 and 6. The pattern detector 5 measures the position of a mark 9' in the window 7 of the reticle 2, the pattern detector 6 measures the position of a mark 9" in the window 8 of the reticle 2, and an amount ΔL of deviation of a relative distance between the marks 9' and 9" to a relative distance L between the windows 7 and 8 is calculated. Therefore, a reduction ratio can be obtained through only the measurement of the positional deviation ΔL of a mark 9 on a substrate 4 moved by a prescribed distance l through the reducing lens 3, and a space between the reducing lens 3 and the reticle 2 is finely adjusted so as to meet a formula, Δb=ΔL.b/L, whereby a reduction projection exposure system of this constitution can be corrected for a reduction ratio error.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の製造工程
で使用される縮小投影露光方法の改良に係り、特に、こ
の種の装置において寸法精度が厳しく要求される高精度
な半導体素子作成時に生じる縮小倍率誤差を自動的に補
正して縮小露光する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a reduced projection exposure method used in a process of manufacturing a semiconductor device, and particularly to a method of manufacturing a highly accurate semiconductor device which requires strict dimensional accuracy in this type of apparatus. The present invention relates to a method for automatically correcting a generated reduction magnification error and performing reduction exposure.

【0002】[0002]

【従来の技術】従来の縮小投影露光装置は、図3に原理
構成を示したような光学系を基本として、原画42のパ
ターンを縮小レンズ43を用いて、基板44の上に投影
している。縮小レンズ43と基板44との距離をa、縮
小レンズ43と原画42との距離をbとすると光学系内
の屈折率分布が一定である限り縮小倍率mはm=a/
b、焦点距離fは1/f=1/a+1/bで表わされ
る。
2. Description of the Related Art A conventional reduction projection exposure apparatus projects a pattern of an original 42 on a substrate 44 by using a reduction lens 43 based on an optical system whose principle configuration is shown in FIG. . Assuming that the distance between the reduction lens 43 and the substrate 44 is a and the distance between the reduction lens 43 and the original image b is b, the reduction magnification m is m = a / as long as the refractive index distribution in the optical system is constant.
b, the focal length f is represented by 1 / f = 1 / a + 1 / b.

【0003】[0003]

【発明が解決しようとする課題】従来の縮小投影露光装
置においては上述距離aとbとが固定されているため、
原画42から基板44に至るまでの光学系の光路内の媒
体物の条件が変わったりなどして屈折率の分布が変化す
ると、光学系上の上述距離a,bが屈折率の関数とな
り、変化して縮小倍率mが変わってしまい、基板44上
に投影されるパターンの寸法精度が劣化する欠点があっ
た。
In the conventional reduction projection exposure apparatus, since the distances a and b are fixed,
When the distribution of the refractive index changes due to a change in the condition of a medium in the optical path of the optical system from the original image 42 to the substrate 44, the distances a and b on the optical system become functions of the refractive index. As a result, the reduction magnification m changes, and the dimensional accuracy of the pattern projected on the substrate 44 deteriorates.

【0004】したがって、本発明の目的は、縮小投影光
学系内の媒体物の屈折率分布等の変化により縮小倍率誤
差を生じて原画から基板上に縮小投影されるパターンの
絶対寸法精度が劣化することを防ぎ、常に、高精度な絶
対寸法の半導体素子を自動的に作ることを可能ならしめ
る縮小投影露光方法を提供することにある。
Therefore, an object of the present invention is to reduce the magnification error due to a change in the refractive index distribution of the medium in the reduction projection optical system, thereby deteriorating the absolute dimensional accuracy of the pattern reduced and projected from the original image onto the substrate. It is an object of the present invention to provide a reduction projection exposure method that prevents such problems and always enables the automatic fabrication of highly accurate semiconductor devices with absolute dimensions.

【0005】[0005]

【課題を解決するための手段】上記目的は、基板と原画
とを所定の倍率の縮小投影露光装置のそれぞれの位置に
装着する工程と、上記基板のマ−クを上記縮小投影露光
装置の縮小レンズを通して検出し、縮小投影倍率を補正
する工程とを含むことを特徴とする投影露光方法により
達成することができる。
The object is to mount a substrate and an original image at respective positions of a reduction projection exposure apparatus of a predetermined magnification, and to make the mark of the substrate reduction of the reduction projection exposure apparatus. Detecting through a lens and correcting the reduced projection magnification.

【作用】所定の倍率の縮小投影露光装置を用い、所定の
縮小倍率の誤差を補正することにより、高精度な絶対寸
法を有するパタ−ンを形成できる。
By using the reduction projection exposure apparatus of a predetermined magnification and correcting the error of the predetermined reduction magnification, it is possible to form a pattern having highly accurate absolute dimensions.

【0006】[0006]

【実施例】以下、本発明の一実施例を図2により説明す
る。
An embodiment of the present invention will be described below with reference to FIG.

【0007】原画であるレティクル22上のパターンを
光源(図示していない)からの照明光をコンデンサレン
ズ21で集光して照明し、縮小レンズ23を通して基板
24上に縮小投影させる。図2内で斜線を付した部分
は、固定されて不動状態の基準部材である。
A pattern on a reticle 22 as an original image is illuminated by condensing illumination light from a light source (not shown) by a condenser lens 21, and is reduced and projected on a substrate 24 through a reduction lens 23. A hatched portion in FIG. 2 is a fixed and immovable reference member.

【0008】基板24は光軸方向に可動なZ移動台30
と光軸と直角な平面内で可動なXY移動台31とで構成
される移動台上に設置され、縮小レンズ23により結像
される焦点位置に基板24面が常に保持されるように、
特公昭55−18043号で示したような、自動焦点機
構が具備されている。基板24の相対位置は、移動台の
位置をレーザ測長計39で測長し、演算回路35で求め
ることができる。
[0008] The substrate 24 is a Z movable table 30 movable in the optical axis direction.
And an XY moving table 31 which is movable in a plane perpendicular to the optical axis, and is installed on a moving table so that the surface of the substrate 24 is always held at a focal position where an image is formed by the reduction lens 23.
An automatic focusing mechanism is provided as shown in Japanese Examined Patent Publication No. 55-18043. The relative position of the substrate 24 can be obtained by the arithmetic circuit 35 by measuring the position of the movable table with the laser length meter 39.

【0009】縮小レンズ23は、光軸方向のみに可動な
ように基準部材に対して案内部材32で支持され、駆動
モータ33によって光軸方向に微動でき、その微動量
は、例えば、差動コイル34によって測長され、レンズ
上下制御回路38に帰還される。
The reduction lens 23 is supported by a guide member 32 with respect to a reference member so as to be movable only in the optical axis direction, and can be finely moved in the optical axis direction by a drive motor 33. The length is measured by 34 and fed back to the lens up / down control circuit 38.

【0010】ここで、縮小倍率の測定方法について、図
1(a),(b),(c)を用いて述べる。
Here, a method of measuring the reduction magnification will be described with reference to FIGS. 1 (a), 1 (b) and 1 (c).

【0011】この縮小投影露光装置はコンデンサレンズ
1、レティクル2、縮小投影レンズ3、基板4、および
第1のパターン検出器5、第2のパターン検出器6から
構成されている。原画であるレティクル2上には所定の
間隔L(図1(b)参照)を隔てた位置に正方形の光透
過性の窓7,8が設けられている。図1(b)は上述の
窓7,8の拡大図を示したものである。基板4上のマー
ク9を縮小レンズ3およびレティクル2の窓7を通して
見るとマーク9′のようになり、また、基板4を所定距
離lだけ移動して窓8から見るとマーク9″のようにな
る(図1(b)参照)。
This reduction projection exposure apparatus comprises a condenser lens 1, a reticle 2, a reduction projection lens 3, a substrate 4, a first pattern detector 5 and a second pattern detector 6. Square light-transmitting windows 7 and 8 are provided on the reticle 2, which is an original image, at positions separated by a predetermined distance L (see FIG. 1B). FIG. 1B shows an enlarged view of the windows 7 and 8 described above. When the mark 9 on the substrate 4 is seen through the reduction lens 3 and the window 7 of the reticle 2, it becomes like a mark 9 ', and when the substrate 4 is moved by a predetermined distance l and seen from the window 8, it becomes like a mark 9 ". (See FIG. 1B).

【0012】パターン検出器5はレティクル2の窓7内
におけるマーク9′の位置を、またパターン検出器6は
レティクル2の窓8内におけるマーク9″の位置を各々
測長することができ、2つのマーク9′と9″との相対
距離がレティクル2の窓7と8との間隔Lに比べてずれ
ている量ΔLを演算することができる。
The pattern detector 5 can measure the position of the mark 9 'in the window 7 of the reticle 2, and the pattern detector 6 can measure the position of the mark 9 "in the window 8 of the reticle 2. It is possible to calculate the amount ΔL in which the relative distance between the two marks 9 ′ and 9 ″ is deviated from the distance L between the windows 7 and 8 of the reticle 2.

【0013】今、縮小投影光学系の縮小倍率をm(m<
1)とすると、l=mLとなるように、基板4のマーク
9を移動したにもかかわらずΔLだけ大きくずれたとす
ると、l=(m+Δm)(L+ΔL)なる関係を満す。
Δmだけ縮小倍率誤差となり、光学系によって縮小しす
ぎていることになる。
Now, the reduction magnification of the reduction projection optical system is set to m (m <m <
Assuming that 1), assuming that the mark 9 on the substrate 4 is largely displaced by ΔL so that 1 = mL, the relationship of 1 = (m + Δm) (L + ΔL) is satisfied.
The reduction magnification error is Δm, which means that the image is excessively reduced by the optical system.

【0014】一方、図1(c)に示したように、縮小投
影光学系において、レティクル2と縮小レンズ3との間
隔bがΔbだけ大きくなっている時には、上述のように
マーク9をlだけ移動させた時に、ΔL/Δb=L/b
なる関係を満すΔLだけ、マーク9′と9″とがずれる
ことになる。
On the other hand, as shown in FIG. 1C, when the distance b between the reticle 2 and the reduction lens 3 is increased by Δb in the reduction projection optical system, the mark 9 is changed by 1 as described above. When moved, ΔL / Δb = L / b
The marks 9 'and 9 "are shifted by ΔL satisfying the following relationship.

【0015】従って、第1,第2のパターン検出器5,
6で検出されたマーク9の位置ずれ量ΔLからΔb=Δ
L・b/Lなる関係を満す量だけ縮小レンズ3とレティ
クル2との相対距離を狭くすれば縮小倍率誤差Δmが零
になる。ΔLが負の値の時はΔbだけ縮小レンズ3とレ
ティクル2との間隔を大きくすれば良い。
Therefore, the first and second pattern detectors 5,
From the displacement amount ΔL of the mark 9 detected in step 6, Δb = Δ
If the relative distance between the reduction lens 3 and the reticle 2 is reduced by an amount that satisfies the relationship L · b / L, the reduction magnification error Δm becomes zero. When ΔL is a negative value, the distance between the reduction lens 3 and the reticle 2 may be increased by Δb.

【0016】実施例としては、1/10縮小投影露光装
置の場合として、m=0.1,f=49.2mm,a=5
4.127mm,b=541.27mm,l=10mmなる値と
なる。この時,Δm=0.000001(10-4%)だ
け大きい縮小倍率誤差があると、L0=100mmのパタ
ーンは、L0(m+Δm)から(10mm−0.1μm)の
寸法となり0.1μmだけ小さな寸法誤差を生じてしま
う。このような状態を第1,第2のパターン検出器5,
6で測定すると、長さl=10mmはL+ΔL=l/(m
+Δm),L=100mmに対してΔL=1μm大きく検
出される。
As an embodiment, assuming a 1/10 reduction projection exposure apparatus, m = 0.1, f = 49.2 mm, a = 5
The values are 4.127 mm, b = 541.27 mm, and l = 10 mm. At this time, if there is a large reduction error by Δm = 0.000001 (10 −4 %), the pattern of L 0 = 100 mm becomes the dimension of L 10 (m + Δm) to (10 mm-0.1 μm). Only a small dimensional error will occur. In such a state, the first and second pattern detectors 5,
When measured with 6, the length l = 10 mm is L + ΔL = 1 / (m
+ Δm) and L = 100 mm, ΔL = 1 μm is detected larger.

【0017】この際、Δb=5.4μmだけ縮小レンズ
3とレティクル2との間隔を狭くすれば、縮小倍率誤差
は消えることになる。
At this time, if the distance between the reduction lens 3 and the reticle 2 is reduced by Δb = 5.4 μm, the reduction magnification error disappears.

【0018】以上述べたことから判るように、所定間隔
L離れたレティクル2上から縮小レンズ3を通して所定
量lだけ移動した基板4上のマーク9の位置ずれ量ΔL
を測定するだけで、縮小倍率誤差が求まり、Δb=ΔL
・b/Lなる関係を満すように縮小レンズ3とレティク
ル2との間隔を微調することにより、縮小倍率誤差が補
正できる。
As can be seen from the above description, the positional deviation ΔL of the mark 9 on the substrate 4 moved by a predetermined amount 1 through the reduction lens 3 from the reticle 2 separated by a predetermined distance L.
, The reduction magnification error is obtained, and Δb = ΔL
The reduction magnification error can be corrected by finely adjusting the distance between the reduction lens 3 and the reticle 2 so as to satisfy the relationship of b / L.

【0019】ところで、従来の縮小投影露光装置では、
一度正確にレティクル2と縮小レンズ3との距離bを固
定すれば、縮小倍率は変化することはなかった。
In a conventional reduction projection exposure apparatus,
Once the distance b between the reticle 2 and the reduction lens 3 was accurately fixed, the reduction magnification did not change.

【0020】しかし、近年、半導体素子の高精度化に伴
って原画、つまりレティクル2面に塵埃が付着すること
を防ぐため、レティクル2をカバーガラスでおおった
り、縮小レンズ3と基板4との間に空気以外の媒体物を
介在させて作動させる縮小投影露光装置が開発されてい
る。このように、縮小投影光学系に空気以外の媒体物を
介在させる場合、その媒体物の屈折率やその媒体物の厚
さが一定値を保つ限りにおいては、一度、屈折率の異な
ることによって生じる縮小倍率誤差を修正すれば良いの
であるが、通常は、媒体物の屈折率や厚さを一定に保持
することは極めて困難であり、そのために縮小倍率誤差
を生じてしまうことになる。
However, in recent years, in order to prevent dust from adhering to the original image, that is, the surface of the reticle 2 due to the higher precision of semiconductor elements, the reticle 2 is covered with a cover glass, or between the reduction lens 3 and the substrate 4. There has been developed a reduction projection exposure apparatus which operates by interposing a medium other than air in it. As described above, when a medium object other than air is interposed in the reduction projection optical system, as long as the refractive index of the medium object and the thickness of the medium object maintain a constant value, it is caused by the once different refractive index. It is sufficient to correct the reduction magnification error. However, it is usually extremely difficult to keep the refractive index and the thickness of the medium object constant, and therefore, a reduction magnification error occurs.

【0021】そこで、本発明では、上述したような、縮
小露光光学系の間に任意の屈折率や厚さの媒体物が存在
しても、常に上述したようなパターン検出器5,6を用
いて縮小倍率誤差を検出し、補正することを可能とする
点に特徴がある。
Therefore, in the present invention, the above-described pattern detectors 5 and 6 are always used even if a medium having an arbitrary refractive index or thickness exists between the reduction exposure optical system as described above. It is characterized in that a reduction magnification error can be detected and corrected.

【0022】ここで、図2の実施例にもどって本発明を
さらに詳細に説明する。パターン検出器25はレティク
ル22、縮小レンズ23を通して、基板24上のマーク
29の位置を検出し、検出信号は検出回路37、演算回
路36に送られ、レンズ上下制御回路38によって、モ
ータ33等の駆動系により、縮小レンズ23が光軸方向
に微動されることになる。
Now, the present invention will be described in more detail by returning to the embodiment shown in FIG. The pattern detector 25 detects the position of the mark 29 on the substrate 24 through the reticle 22 and the reduction lens 23, and a detection signal is sent to a detection circuit 37 and an arithmetic circuit 36. The driving system causes the reduction lens 23 to be slightly moved in the optical axis direction.

【0023】任意の屈折率や厚さの媒体物は、図示して
いないが、レティクル22と縮小レンズ23および基板
24との間のどこに存在していても、本発明の機能が生
かされる。
Although a medium having an arbitrary refractive index or thickness is not shown, the function of the present invention can be utilized wherever it exists between the reticle 22 and the reduction lens 23 and the substrate 24.

【0024】なお、本発明の実施例では、基板4(2
4)上の1つのマーク9(29)を所定距離lだけ移動
させ、レティクル2(22)のLだけ離れた窓7,8に
対する位置を計測しているが、基板4(24)上のマー
ク9は、所定距離lだけ離れた2つのマークを、同時に
パターン検出することも可能である。また、同時にパタ
ーン検出し、そのレティクル2(22)の窓7,8に対
するずれ量ΔLを測長せず、所定の2つの窓7,8の決
められた位置に基板4(24)上のマーク9が合うよう
に、縮小レンズ3(23)を上下動させて制御すること
も応用例として考えられる。さらに、レティクル2(2
2)上の2ヶ所の窓7,8の位置は、所定の距離Lさえ
判れば、任意の場所で良く、2つのパターン検出器5,
6の原点の精度が良ければ、基板4(24)上のマーク
9をレティクル2(22)上の窓7,8に対して検出せ
ず、パターン検出器5,6の原点に対して検出しても良
い。
In the embodiment of the present invention, the substrate 4 (2
4) One mark 9 (29) on the substrate 4 (24) is moved by a predetermined distance 1 to measure the position of the reticle 2 (22) with respect to the windows 7 and 8 separated by L. It is also possible for 9 to simultaneously detect the patterns of two marks separated by a predetermined distance l. Further, the pattern is detected at the same time, and the amount of deviation ΔL of the reticle 2 (22) with respect to the windows 7 and 8 is not measured, and the mark on the substrate 4 (24) is set at a predetermined position of the two predetermined windows 7 and 8. It is also considered as an application example to control the reduction lens 3 (23) by moving it up and down so that 9 is matched. In addition, reticle 2 (2
2) The positions of the upper two windows 7 and 8 may be arbitrary as long as the predetermined distance L is known, and the two pattern detectors 5 and
If the accuracy of the origin of 6 is good, the mark 9 on the substrate 4 (24) is not detected with respect to the windows 7 and 8 on the reticle 2 (22), but is detected with respect to the origin of the pattern detectors 5 and 6. May be.

【0025】また、パターン検出器5,6は独立に2台
設けなくても、1台のパターン検出器を所定距離Lだけ
移動させ、あるいは、そのような機能や検出範囲を1台
のパターン検出器にもたせることも可能である。
Further, even if two pattern detectors 5 and 6 are not provided independently, one pattern detector is moved by a predetermined distance L, or such function and detection range are detected by one pattern detector. It is also possible to put it in a container.

【0026】本発明の実施例では、縮小レンズ3(2
3)とレティクル2(22)との相対間隔調整を縮小レ
ンズ3(23)を上下させることで達しているが、両者
の相対距離を調整すれば良いのであるから、縮小レンズ
3(23)と同様に、光軸方向のみに可動な公知の案内
駆動手段でレティクル2(22)を上下することで目的
を達することも可能である。
In the embodiment of the present invention, the reduction lens 3 (2
3) and the reticle 2 (22) are adjusted by moving the reduction lens 3 (23) up and down, but it is sufficient to adjust the relative distance between the two. Similarly, it is possible to achieve the purpose by moving the reticle 2 (22) up and down by a known guide driving means that is movable only in the optical axis direction.

【0027】なお、縮小倍率の調整によって、結像面の
最適焦点位置までの距離aが変わり、それに伴って縮小
倍率も若干変わるが、通常、縮小レンズ3(23)は、
テレセントリックな結像光学レンズを用いるため距離a
の変化による縮小倍率誤差や焦点ボケはわずかである。
従って、先ず、媒体物が変化した際には、基板4(2
4)上のマーク9(29)への焦点合わせを行なった後
に、上述の方法で、縮小倍率誤差の補正を行ない、さら
に、高精度な補正を必要とする場合には、再度、焦点合
わせを行った後、縮小倍率の補正を繰返せば良いこと
は、容易に考えられる。
It should be noted that the adjustment of the reduction magnification changes the distance a to the optimum focus position on the image forming surface, and accordingly the reduction magnification also slightly changes.
Distance a due to use of telecentric imaging optical lens
There is little reduction magnification error and defocus due to changes in.
Therefore, first, when the medium object changes, the substrate 4 (2
4) After focusing on the upper mark 9 (29), the reduction magnification error is corrected by the above-described method, and if high-precision correction is required, the focusing is performed again. It is easily conceivable that the correction of the reduction ratio should be repeated after the operation.

【0028】また、本発明の応用例としては、基板の位
置にパターン検出器を設置して、原画であるレティクル
の所定間隔のマークを計測して、縮小倍率を調整するこ
とも、既述の縮小倍率誤差を補正する方法を縮小投影レ
ンズを介して逆さに考えれば、容易に類推できる。
As an application example of the present invention, it is also possible to install a pattern detector at the position of a substrate, measure marks at predetermined intervals on a reticle as an original image, and adjust the reduction magnification. If the method of correcting the reduction magnification error is considered upside down via a reduction projection lens, it can be easily analogized.

【0029】[0029]

【発明の効果】本発明によれば、投影露光光学系の距離
の変動や、任意の屈折率や厚さの媒体物が介在すること
等により生じる、基板上に縮小投影される原画パターン
の縮小倍率誤差を検出して、自動的に焦点位置を補正し
縮小倍率を補正することができるので、従来よりさらに
解像度を劣化されることなく、またパターンの高精度な
重ね合わせ精度を達成することにより高精度な半導体素
子を本発明の縮小投影露光方法により製造できることに
なる。
According to the present invention, the reduction of the original image pattern which is reduced and projected on the substrate is caused by the fluctuation of the distance of the projection exposure optical system or the presence of a medium having an arbitrary refractive index or thickness. Since the magnification error can be detected and the focal position can be automatically corrected to correct the reduction magnification, the resolution is not degraded even more than before, and by achieving a highly accurate pattern overlay A highly accurate semiconductor device can be manufactured by the reduction projection exposure method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明するための説明図。FIG. 1 is an explanatory diagram for explaining the principle of the present invention.

【図2】本発明による縮小投影露光装置の実施例の概略
構成図である。
FIG. 2 is a schematic configuration diagram of an embodiment of a reduction projection exposure apparatus according to the present invention.

【図3】縮小投影光学系の原理説明図である。FIG. 3 is a diagram illustrating the principle of a reduction projection optical system.

【符号の説明】[Explanation of symbols]

1,21…コンデンサレンズ、2,22,42…レティ
クル、3,23,43…縮小レンズ、4,24,44…
基板、5,6,25…パターン検出器、7,8…窓、
9,9′,9″,29…パターン、30…Z移動台、3
1…XY移動台、32…案内部材、33…駆動モータ、
34…差動コイル、35,36…演算回路、37…検出
回路、38…レンズ上下制御回路。
1, 21 ... Condenser lens, 2, 22, 42 ... Reticle, 3, 23, 43 ... Reduction lens, 4, 24, 44 ...
Substrate, 5, 6, 25 ... pattern detector, 7, 8 ... window,
9, 9 ', 9 ", 29 ... Pattern, 30 ... Z moving base, 3
1: XY movable table, 32: guide member, 33: drive motor,
34: differential coil, 35, 36: arithmetic circuit, 37: detection circuit, 38: lens up / down control circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 黒崎 利栄 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 寺澤 恒男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 保坂 純男 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Riei Kurosaki 1-280, Higashi Koikeku, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (72) Tsuneo Terasawa 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Ltd. Central Research Laboratory (72) Inventor Sumio Hosaka 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside Hitachi Central Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板と原画とを所定の倍率の縮小投影露光
装置のそれぞれの位置に装着する工程と、 上記基板のマ−クを上記縮小投影露光装置の縮小レンズ
を通して検出し、縮小投影倍率を補正する工程とを含む
ことを特徴とする投影露光方法。
1. A step of mounting a substrate and an original image at respective positions of a reduction projection exposure apparatus having a predetermined magnification, and a mark of the substrate is detected through a reduction lens of the reduction projection exposure apparatus to obtain a reduction projection magnification. And a step of correcting the projection exposure method.
【請求項2】基板と原画とを所定の倍率の縮小投影露光
装置のそれぞれの位置に装着する工程と、 上記基板のマ−クと上記原画のマ−クとの合わせ誤差を
測定して縮小投影露光倍率を補正する工程とを含むこと
を特徴とする投影露光方法。
2. A step of mounting a substrate and an original image at respective positions of a reduction projection exposure apparatus having a predetermined magnification, and measuring and reducing an alignment error between the mark of the substrate and the mark of the original image. And a step of correcting the projection exposure magnification.
【請求項3】基板と原画とを所定の倍率の縮小投影露光
装置のそれぞれの位置に装着する工程と、 上記所定の倍率の誤差を検出し、該所定の倍率を維持す
るように該誤差を補正する工程とを含むことを特徴とす
る投影露光方法。
3. A step of mounting a substrate and an original image at respective positions of a reduction projection exposure apparatus having a predetermined magnification, and detecting an error of the predetermined magnification, and keeping the predetermined magnification by the error. A projection exposure method comprising the step of:
JP8012513A 1996-01-29 1996-01-29 Projection exposure method Expired - Lifetime JP2653356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8012513A JP2653356B2 (en) 1996-01-29 1996-01-29 Projection exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8012513A JP2653356B2 (en) 1996-01-29 1996-01-29 Projection exposure method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4054756A Division JPH0712019B2 (en) 1992-03-13 1992-03-13 Projection exposure method and projection exposure apparatus

Publications (2)

Publication Number Publication Date
JPH08241859A true JPH08241859A (en) 1996-09-17
JP2653356B2 JP2653356B2 (en) 1997-09-17

Family

ID=11807438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8012513A Expired - Lifetime JP2653356B2 (en) 1996-01-29 1996-01-29 Projection exposure method

Country Status (1)

Country Link
JP (1) JP2653356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240044A (en) * 2018-10-10 2019-01-18 德淮半导体有限公司 Exposure system and the method for reducing mask plate three-dismensional effect in exposure process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922587A (en) * 1972-06-26 1974-02-28
JPS5384278U (en) * 1976-12-14 1978-07-12
JPS53132270A (en) * 1977-04-20 1978-11-17 Thomson Csf Optical device for projecting pattern
JPS5541739A (en) * 1978-09-20 1980-03-24 Hitachi Ltd Micro-projection type mask alignment device
JPS56130707A (en) * 1980-03-18 1981-10-13 Canon Inc Photo-printing device
JPS58108745A (en) * 1981-12-23 1983-06-28 Canon Inc Erroneous transcription adjusting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922587A (en) * 1972-06-26 1974-02-28
JPS5384278U (en) * 1976-12-14 1978-07-12
JPS53132270A (en) * 1977-04-20 1978-11-17 Thomson Csf Optical device for projecting pattern
JPS5541739A (en) * 1978-09-20 1980-03-24 Hitachi Ltd Micro-projection type mask alignment device
JPS56130707A (en) * 1980-03-18 1981-10-13 Canon Inc Photo-printing device
JPS58108745A (en) * 1981-12-23 1983-06-28 Canon Inc Erroneous transcription adjusting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109240044A (en) * 2018-10-10 2019-01-18 德淮半导体有限公司 Exposure system and the method for reducing mask plate three-dismensional effect in exposure process

Also Published As

Publication number Publication date
JP2653356B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US6538740B1 (en) Adjusting method for position detecting apparatus
US5309197A (en) Projection exposure apparatus
US4506977A (en) Transfer apparatus provided with an auto-focusing mechanism
JP3387075B2 (en) Scanning exposure method, exposure apparatus, and scanning exposure apparatus
JP3308063B2 (en) Projection exposure method and apparatus
US6525817B1 (en) Inspection method and apparatus for projection optical systems
EP2466384A2 (en) Plane position detecting apparatus, exposure apparatus and device manufacturing method
TWI534558B (en) Detection device, exposure apparatus, and device manufacturing method using same
KR19980042558A (en) Projection exposure apparatus and projection exposure method
CN103309169A (en) Detection apparatus, exposure apparatus, and method of manufacturing device
JP2001035784A (en) Device for detecting alignment of first member and second member and determining method and lithography apparatus
US6124601A (en) Position sensor having a reflective projecting system and device fabrication method using the sensor
KR100308608B1 (en) Alignment system and projection exposure apparatus
US6169602B1 (en) Inspection method and apparatus for projection optical systems
US4941745A (en) Projection aligner for fabricating semiconductor device having projection optics
JP2653356B2 (en) Projection exposure method
JPH0328809B2 (en)
JPH1050600A (en) Method and device for projection exposure
JPH0574680A (en) Projection exposing method
US20050128455A1 (en) Exposure apparatus, alignment method and device manufacturing method
JPS60177625A (en) Projection exposure device
JP5622126B2 (en) Surface position detection apparatus, exposure apparatus, and device manufacturing method
US20230176489A1 (en) Detecting apparatus, substrate processing apparatus, and article manufacturing method
JPH01286418A (en) Projection aligner
JPS62200724A (en) Projection and exposure device