JPH08240562A - Hydrogen peroxide sensor for reactor water - Google Patents

Hydrogen peroxide sensor for reactor water

Info

Publication number
JPH08240562A
JPH08240562A JP7043812A JP4381295A JPH08240562A JP H08240562 A JPH08240562 A JP H08240562A JP 7043812 A JP7043812 A JP 7043812A JP 4381295 A JP4381295 A JP 4381295A JP H08240562 A JPH08240562 A JP H08240562A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
reactor water
sensor
peroxide sensor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7043812A
Other languages
Japanese (ja)
Inventor
Keiko Ishizuka
恵子 石塚
Yoshitaka Nishino
由高 西野
Masao Endo
正男 遠藤
Hidefumi Ibe
英史 伊部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7043812A priority Critical patent/JPH08240562A/en
Publication of JPH08240562A publication Critical patent/JPH08240562A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE: To grasp an accurate water quality environment in reactor water by directly measuring a hydrogen peroxide concentration. CONSTITUTION: Two electrodes are mounted on both sides of an ion conductive substance 1, where sews an sensor one a electrode 2 for detecting hydrogen peroxide, and the other a reference electrode 3 having a constant electric potential. A difference between the sensor electrode 2 in hydrogen peroxide concentration and the reference electrode 3 is measured as an electromotive force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、沸騰水型原子炉に係
り、特に、炉水中の過酸化水素濃度を直接測定する炉水
用過酸化水素センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiling water reactor, and more particularly to a hydrogen peroxide sensor for reactor water which directly measures the concentration of hydrogen peroxide in the reactor water.

【0002】[0002]

【従来の技術】沸騰水型原子炉では炉水が炉心近傍で中
性子・ガンマ線等の強い放射線照射を受ける結果、酸素
・過酸化水素をはじめとする水の分解生成物が形成され
る。特に過酸化水素に関しては、原子炉内構造材料の腐
食加速因子として、その定量は重要視されている。従来
の原子炉一次冷却系の炉水水質は、原子炉再循環系、あ
るいは原子炉冷却材浄化系に設けられた試料採取点から
炉水をサンプリングし、常温に冷却した後、例えば、特
願昭58−48686 号明細書に示す測定装置を用いて溶存酸
素,水素,過酸化水素を測定している。しかしこの手法
では冷却過程での過酸化水素の分解や測定までの時間遅
れによって、正確な過酸化水素の濃度を把握することが
できない。炉水の主配管における過酸化水素の直接測定
が可能なセンサは確立されていない。また特開平3−140
589 号公報に示される様に、イオン導電体にLaF3
BiO3−MoO3,SrCl2,β−PbF2,PbSn
4,Sb25・4H2O を用いた酸素センサが検討さ
れているが、過酸化水素の測定及び原子炉炉水への応用
はなされていない。
2. Description of the Related Art In a boiling water nuclear reactor, as a result of strong irradiation of reactor water near the core with neutrons and gamma rays, decomposition products of water such as oxygen and hydrogen peroxide are formed. Especially, regarding hydrogen peroxide, its quantitative determination is regarded as important as a corrosion acceleration factor for the structural materials in the reactor. The water quality of reactor water in the conventional primary reactor cooling system is measured by sampling the reactor water from a sampling point provided in the reactor recirculation system or the reactor coolant purification system and cooling it to room temperature. Dissolved oxygen, hydrogen, and hydrogen peroxide are measured using the measuring device shown in Japanese Patent Publication No. 58-48686. However, this method cannot accurately determine the concentration of hydrogen peroxide due to the decomposition of hydrogen peroxide in the cooling process and the time delay until measurement. No sensor has been established that enables direct measurement of hydrogen peroxide in the main piping of reactor water. In addition, JP-A-3-140
As shown in Japanese Patent No. 589, the ionic conductor has LaF 3 ,
BiO 3 —MoO 3 , SrCl 2 , β-PbF 2 , PbSn
Oxygen sensors using F 4 , Sb 2 O 5 .4H 2 O have been studied, but neither hydrogen peroxide measurement nor application to reactor water has been made.

【0003】[0003]

【発明が解決しようとする課題】従来の過酸化水素の測
定は、炉水をサンプリングし常温に冷却した後の測定に
よるものであった。しかし、この方法では冷却過程で過
酸化水素が分解し、成分相互のバランスが変化するた
め、正確な濃度を把握することはできなかった。
The conventional measurement of hydrogen peroxide is based on the measurement after the reactor water is sampled and cooled to room temperature. However, in this method, hydrogen peroxide was decomposed in the cooling process and the balance between the components was changed, so that it was not possible to grasp the exact concentration.

【0004】本発明の目的は、従来のサンプリング後の
測定では対応できなかった炉水主配管における過酸化水
素濃度の直接測定を可能とする炉水用過酸化水素センサ
を提供することにある。
An object of the present invention is to provide a hydrogen peroxide sensor for reactor water, which enables direct measurement of the hydrogen peroxide concentration in the reactor water main pipe, which cannot be dealt with by the conventional measurement after sampling.

【0005】[0005]

【課題を解決するための手段】本発明は、過酸化水素の
化学反応により電極電位が発生するイオン導電性物質の
両側に電極を取り付け、外部環境に影響を受けない基準
電極と,炉水中の過酸化水素によって電極電位が変化す
る検知電極との間の電位差、すなわち、起電力を測定す
る機能を備えた過酸化水素センサを骨子とする。本発明
により、炉水中の過酸化水素濃度を直接測定することが
可能となる。
According to the present invention, electrodes are attached to both sides of an ionic conductive material whose electrode potential is generated by a chemical reaction of hydrogen peroxide, and a reference electrode which is not affected by the external environment and a reactor water. A skeleton is a hydrogen peroxide sensor having a function of measuring an electromotive force, that is, a potential difference between a detection electrode and an electrode potential which changes due to hydrogen peroxide. According to the present invention, it becomes possible to directly measure the hydrogen peroxide concentration in the reactor water.

【0006】[0006]

【作用】固体電解質をはじめとするイオン導電性物質に
二つの電極を設け、一方を外部環境より影響を受けない
基準電極とし、他方を炉水中の過酸化水素濃度によって
電位が変化する検知電極とする。センサ全体の電位は基
準電極の電位と検知電極の電位との差によるものであ
り、センサの使用可能な過酸化水素の濃度範囲では、過
酸化水素濃度の対数に対して直線関係を示す。これを応
用し、未知濃度の過酸化水素に対するセンサ全体の電位
(起電力)を測定することによって、過酸化水素濃度を
算出することができる。
[Function] Two electrodes are provided on an ion conductive material such as a solid electrolyte, one of which serves as a reference electrode that is not affected by the external environment, and the other of which serves as a detection electrode whose potential changes depending on the hydrogen peroxide concentration in the reactor water. To do. The electric potential of the whole sensor is due to the difference between the electric potential of the reference electrode and the electric potential of the detection electrode, and shows a linear relationship with the logarithm of the hydrogen peroxide concentration in the usable hydrogen peroxide concentration range of the sensor. By applying this, the hydrogen peroxide concentration can be calculated by measuring the potential (electromotive force) of the entire sensor with respect to hydrogen peroxide of unknown concentration.

【0007】[0007]

【実施例】以下、本発明を実施例により説明する。EXAMPLES The present invention will be described below with reference to examples.

【0008】図1は本発明の炉水用過酸化水素センサの
一例である。
FIG. 1 shows an example of a hydrogen peroxide sensor for reactor water according to the present invention.

【0009】図1において、イオン導電性物質1、例え
ば固体電解質フッ化ランタンの単結晶体である。1の両
側にはそれぞれ検知電極2,基準電極3を取り付けてい
る。例えば2は白金をフッ化ランタンの表面に蒸着して
いる。3はスズとフッ化スズの混合し溶融したものを接
着している。ここで基準電極3は外部環境、すなわち、
水に接触しないために絶縁材4、例えばエポキシ系樹脂
等によって3をシールしている。電極2,3はリード線
5例えば白金線によってポテンシャルスタット6に接続
されている。6によって出力される電位信号は指示変換
計7によって過酸化水素濃度に変換される。
In FIG. 1, an ion conductive material 1, for example, a solid crystal of lanthanum fluoride solid electrolyte is shown. A detection electrode 2 and a reference electrode 3 are attached to both sides of the electrode 1. For example, 2 has platinum deposited on the surface of lanthanum fluoride. In No. 3, a mixture of tin and tin fluoride mixed and melted is bonded. Here, the reference electrode 3 is an external environment, that is,
In order to prevent contact with water, the insulating material 4, such as an epoxy resin, seals the material 3. The electrodes 2 and 3 are connected to a potential stat 6 by a lead wire 5, for example, a platinum wire. The potential signal output by 6 is converted into hydrogen peroxide concentration by the indicator converter 7.

【0010】過酸化水素センサの原理を図2に示す。こ
こではイオン導電性物質1、例えばフッ化ランタンの固
体電解質が用いられる。ここでフッ化ランタンと検知電
極、例えば白金の蒸着膜と水との3層の界面では次の様
な電極反応が起こる。
The principle of the hydrogen peroxide sensor is shown in FIG. Here, a solid electrolyte of ion conductive material 1, for example, lanthanum fluoride is used. Here, the following electrode reaction occurs at the three-layer interface between lanthanum fluoride and the detection electrode, for example, a platinum deposition film and water.

【0011】[0011]

【化1】 Embedded image

【0012】またはOr

【0013】[0013]

【化2】 Embedded image

【0014】このような電極反応が起こる際に検知電極
では検知電極電位が発生する。これをEsen.とする。一
方、検知電極2の反対側には基準電極3、例えばスズと
フッ化スズの混合物がフッ化ランタンに接触している。
イオン導電性物質1のフッ化ランタンと基準電極3のス
ズとフッ化スズの混合物との間には次の様な電極反応が
起こる。
When such an electrode reaction occurs, a detection electrode potential is generated at the detection electrode. This is called Esen. On the other hand, on the opposite side of the detection electrode 2, a reference electrode 3, for example, a mixture of tin and tin fluoride is in contact with lanthanum fluoride.
The following electrode reaction occurs between lanthanum fluoride as the ion conductive substance 1 and the mixture of tin and tin fluoride as the reference electrode 3.

【0015】[0015]

【化3】 Embedded image

【0016】そして検知電極と同様、基準電極では基準
電極電位が発生する。これをEref.とする。センサ全体
の起電力Eは検知電極電位Esen.と基準電極電位Eref.
との差によって表わされる。
Then, like the detection electrode, a reference electrode potential is generated at the reference electrode. This is designated as Eref. The electromotive force E of the entire sensor is detected electrode potential Esen. And reference electrode potential Eref.
It is represented by the difference between and.

【0017】[0017]

【数1】 E=Esen.−Eref. …(数1) 但し、基準電極電位Eref.は一定の温度の下では常に一
定の電位を示すことを前提としている。
(Equation 1) E = Esen.-Eref. (Equation 1) However, it is premised that the reference electrode potential Eref. Always exhibits a constant potential under a constant temperature.

【0018】また起電力Eと過酸化水素濃度との間に
は、次のネルンスト式が成立する。
The following Nernst equation holds between the electromotive force E and the hydrogen peroxide concentration.

【0019】[0019]

【数2】 E=E0+(RT/nF)ln[H22] …(数2) すなわち、[Equation 2] E = E 0 + (RT / nF) ln [H 2 O 2 ] (Equation 2) That is,

【0020】[0020]

【数3】 E=E0+2.303(RT/nF)log[H22] …(数3) E0:標準酸化還元電位 R :気体定数 T :絶対温度(K) F :ファラデー定数 であり、センサの使用可能な範囲では、起電力Eと過酸
化水素濃度の対数との間には直線関係が成り立つ。従っ
て、起電力Eを測定することによって未知濃度の過酸化
水素濃度を算出することができる。起電力Eはポテンシ
ャルスタット6によって測定される。
[Equation 3] E = E 0 +2.303 (RT / nF) log [H 2 O 2 ] (Equation 3) E 0 : Standard redox potential R: Gas constant T: Absolute temperature (K) F: Faraday constant Therefore, in the usable range of the sensor, a linear relationship is established between the electromotive force E and the logarithm of the hydrogen peroxide concentration. Therefore, the hydrogen peroxide concentration of unknown concentration can be calculated by measuring the electromotive force E. The electromotive force E is measured by the potential stat 6.

【0021】図3にセンサの基準電極におけるシール材
としてねじ型の治具8,9、例えば耐薬品性樹脂ポリイ
ミドを使用した一例を示す。ここではイオン導電体1と
基準電極3はセンサ治具ねじ蓋9のねじによって圧着さ
れている。イオン導電体1の検知電極2はO−リング1
0で固定されているので、センサ内部に水が浸入しない
構造になっている。治具8を使用することにより、イオ
ン導電体1及び基準電極3の交換が容易にできる様にな
る。またセンサ治具8,9に耐放射線性材料を使用する
ことにより、炉内への応用が可能となる。
FIG. 3 shows an example in which screw type jigs 8 and 9, for example, chemical resistant resin polyimide is used as a sealing material in the reference electrode of the sensor. Here, the ionic conductor 1 and the reference electrode 3 are pressure-bonded by the screw of the sensor jig screw lid 9. The detection electrode 2 of the ionic conductor 1 is an O-ring 1
Since it is fixed at 0, it has a structure in which water does not enter the inside of the sensor. By using the jig 8, the ion conductor 1 and the reference electrode 3 can be easily replaced. Further, by using a radiation resistant material for the sensor jigs 8 and 9, application in a furnace becomes possible.

【0022】図4にセンサの過酸化水素濃度に対する起
電力Eの変化について示す。
FIG. 4 shows the change of the electromotive force E with respect to the hydrogen peroxide concentration of the sensor.

【0023】この場合の測定の結果により、センサの使
用可能な過酸化水素の濃度の範囲、すなわち、数3に従
う応答濃度範囲は直線部分の約2ppbから1000ppmで
あることが分かる。
From the result of the measurement in this case, it can be seen that the range of usable hydrogen peroxide concentration of the sensor, that is, the response concentration range according to Equation 3 is about 2 ppb to 1000 ppm in the linear portion.

【0024】図5は原子炉内に本発明であるセンサを設
置したものである。図6はボトムドレイン系に本発明で
あるセンサを設置したものである。これらの様に本セン
サを炉内または主配管に設置することにより炉水中の過
酸化水素濃度を正確に把握することができ、水素注入制
御技術の向上にもつながる。
FIG. 5 shows the sensor of the present invention installed in a nuclear reactor. FIG. 6 shows the bottom drain system provided with the sensor of the present invention. By installing this sensor inside the furnace or in the main pipe like this, it is possible to accurately grasp the hydrogen peroxide concentration in the reactor water, which leads to improvement of hydrogen injection control technology.

【0025】[0025]

【発明の効果】本発明によれば、沸騰水型原子炉一次冷
却水中の過酸化水素の濃度を主配管中で直接測定でき
る。従って本発明によれば、炉水中の正確な水質環境を
把握することができる。従って、炉内腐食環境の定量化
の確立につながり、原子炉の健全性及び安全性を確保
し、ひいては原子炉の長寿命化にもつながるため、エネ
ルギ資源確保の上でメリットが大きい。
According to the present invention, the concentration of hydrogen peroxide in the boiling water reactor primary cooling water can be directly measured in the main pipe. Therefore, according to the present invention, an accurate water quality environment in the reactor water can be grasped. Therefore, the quantification of the in-reactor corrosion environment is established, the soundness and safety of the nuclear reactor are ensured, and the life of the nuclear reactor is prolonged, which is a great advantage in securing energy resources.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る炉水用過酸化水素セン
サの断面図。
FIG. 1 is a sectional view of a hydrogen peroxide sensor for reactor water according to an embodiment of the present invention.

【図2】本センサの原理を示す説明図。FIG. 2 is an explanatory diagram showing the principle of this sensor.

【図3】本発明の実施例を示す系統図。FIG. 3 is a system diagram showing an embodiment of the present invention.

【図4】本発明によるセンサの過酸化水素に対する応答
の特性図。
FIG. 4 is a characteristic diagram of the response of a sensor according to the present invention to hydrogen peroxide.

【図5】本発明の実施例を示す系統図。FIG. 5 is a system diagram showing an embodiment of the present invention.

【図6】本発明の実施例を示す系統図。FIG. 6 is a system diagram showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…イオン導電体、2…検知電極、3…基準電極、4…
絶縁体、5…リード線、6…ポテンシャルスタット、7
…指示変換計。
1 ... Ionic conductor, 2 ... Detection electrode, 3 ... Reference electrode, 4 ...
Insulator, 5 ... Lead wire, 6 ... Potential stat, 7
… Indicating converter.

フロントページの続き (72)発明者 伊部 英史 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所エネルギー研究所内Front Page Continuation (72) Inventor Hidefumi Ibe 7-2 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Energy Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】沸騰水型原子炉において、炉水中の過酸化
水素の分解反応によって生成する各種イオンが拡散する
イオン導電性物質を用いることを特徴とする炉水用過酸
化水素センサ。
1. A hydrogen peroxide sensor for reactor water, which uses an ion conductive substance in which various ions produced by a decomposition reaction of hydrogen peroxide in the reactor water are diffused in a boiling water reactor.
【請求項2】請求項1において、前記イオン導電性物質
としてLaF3,β−PbF2,PbSnF4等の金属フ
ッ素化合物やSrCl2等の金属塩素化合物や安定化ジ
ルコニア等の金属酸化物または各種ペロプスカイト型金
属を用いる炉水用過酸化水素センサ。
2. The ionic conductive material according to claim 1, wherein a metal fluorine compound such as LaF 3 , β-PbF 2 , PbSnF 4 or the like, a metal chlorine compound such as SrCl 2 or a metal oxide such as stabilized zirconia or various kinds thereof. Hydrogen peroxide sensor for reactor water using perovskite type metal.
【請求項3】請求項2において、前記金属化合物とし
て、Sc,Ti,V,Cr,Mn,Fe,Co,Ni,
Cu,Y,Zr,Nb,Mo,Tc,Ru,Rh,P
d,Ag,La,Ce,Pr,Nd,Pm,Sm,E
u,Gd,Tb,Dy,Ho,Er,Tm,Yb,L
u,Hf,Ta,W,Re,Os,Ir,Ac,Th,
Pa,U,Np,Pu,Am,Cm,Bk,Cf,E
s,Fm,Md,No,Lr,Sb,Bi,Srの金属
のいずれかを含む金属化合物を用いる炉水用過酸化水素
センサ。
3. The metal compound according to claim 2, wherein the metal compound is Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
Cu, Y, Zr, Nb, Mo, Tc, Ru, Rh, P
d, Ag, La, Ce, Pr, Nd, Pm, Sm, E
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
u, Hf, Ta, W, Re, Os, Ir, Ac, Th,
Pa, U, Np, Pu, Am, Cm, Bk, Cf, E
A hydrogen peroxide sensor for reactor water, which uses a metal compound containing any of s, Fm, Md, No, Lr, Sb, Bi, and Sr metals.
【請求項4】請求項1において、前記イオン導電性物質
の両側に電極を取り付け、それぞれの電極電位の差をセ
ンサの起電力として測定する炉水用過酸化水素センサ。
4. The hydrogen peroxide sensor for reactor water according to claim 1, wherein electrodes are attached to both sides of the ionic conductive material, and a difference in electrode potential between the electrodes is measured as an electromotive force of the sensor.
【請求項5】請求項4において、前記電極として、S
c,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,
Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,A
g,La,Ce,Pr,Nd,Pm,Sm,Eu,G
d,Tb,Dy,Ho,Er,Tm,Yb,Lu,H
f,Ta,W,Re,Os,Ir,Ac,Th,Pa,
U,Np,Pu,Am,Cm,Bk,Cf,Es,F
m,Md,No,Lr,Sb,Bi,Srの金属の単体
及びその化合物を用いる炉水用過酸化水素センサ。
5. The S according to claim 4, wherein the electrode is S.
c, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, A
g, La, Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm, Yb, Lu, H
f, Ta, W, Re, Os, Ir, Ac, Th, Pa,
U, Np, Pu, Am, Cm, Bk, Cf, Es, F
A hydrogen peroxide sensor for reactor water that uses a simple substance of metal of m, Md, No, Lr, Sb, Bi, Sr and a compound thereof.
【請求項6】請求項4において、前記電極の一方を基準
電極とし、常に外部環境の影響を受けない電極電位を保
持する炉水用過酸化水素センサ。
6. The hydrogen peroxide sensor for reactor water according to claim 4, wherein one of the electrodes is used as a reference electrode and an electrode potential that is not affected by the external environment is always maintained.
【請求項7】請求項6において、前記基準電極が外部環
境より遮へいされている炉水用過酸化水素センサ。
7. The hydrogen peroxide sensor for reactor water according to claim 6, wherein the reference electrode is shielded from the external environment.
【請求項8】請求項6において、前記基準電極として、
無機固体を用いる炉水用過酸化水素センサ。
8. The reference electrode according to claim 6,
Hydrogen peroxide sensor for reactor water using inorganic solid.
JP7043812A 1995-03-03 1995-03-03 Hydrogen peroxide sensor for reactor water Pending JPH08240562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7043812A JPH08240562A (en) 1995-03-03 1995-03-03 Hydrogen peroxide sensor for reactor water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7043812A JPH08240562A (en) 1995-03-03 1995-03-03 Hydrogen peroxide sensor for reactor water

Publications (1)

Publication Number Publication Date
JPH08240562A true JPH08240562A (en) 1996-09-17

Family

ID=12674161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7043812A Pending JPH08240562A (en) 1995-03-03 1995-03-03 Hydrogen peroxide sensor for reactor water

Country Status (1)

Country Link
JP (1) JPH08240562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060878A1 (en) * 2007-11-07 2009-05-14 Nec Corporation Electrode for electrochemical measurement device, and electrode for biosensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060878A1 (en) * 2007-11-07 2009-05-14 Nec Corporation Electrode for electrochemical measurement device, and electrode for biosensor
JP5061375B2 (en) * 2007-11-07 2012-10-31 日本電気株式会社 Electrodes for electrochemical measuring devices and electrodes for biosensors
US8568578B2 (en) 2007-11-07 2013-10-29 Nec Corporation Electrode for electrochemical measurement apparatus and electrode for biosensor

Similar Documents

Publication Publication Date Title
Sorokin et al. Nonstoichiometric fluorides—Solid electrolytes for electrochemical devices: A review
US9028671B2 (en) Hydrogen sensing apparatus and method
Booman et al. Coulometric determination of uranium (VI) at controlled potential
US3378478A (en) Apparatus for continuous oxygen monitoring of liquid metals
JPH0473095B2 (en)
Lehmani et al. Oxidation kinetics of water and organic compounds by silver (II) using a potentiometric method
US4985130A (en) Amperometric method and apparatus
Chubb et al. Diffusion in uranium monocarbide
JPH08240562A (en) Hydrogen peroxide sensor for reactor water
EP0096417B1 (en) Apparatus for measuring dissolved hydrogen concentration
Kim In-situ electrochemical impedance measurement of oxide film formed on type 304 stainless steel in high-temperature water
Etienne et al. Local Evolution of pH with Time Determined by Shear Force‐based Scanning Electrochemical Microscopy: Surface Reactivity of Anodized Aluminium
Matsuda et al. HYDROGEN OVERVOLTAGE ON PLATINUM IN AQUEOUS SODIUM HYDROXIDE: Part Ⅰ. Rate of The Discharge Step
Kurita et al. Measuring apparatus for hydrogen permeation using oxide proton conductor
JPH06265514A (en) Sensor for water quality
Tetot et al. High temperature thermodynamics of the vanadium-oxygen system for 0≤ OV≤ 1.5: I. Determination of ΔG (O2)(OV) by electromotive force measurements
RU2053506C1 (en) Solid electrolyte sensor for gas analysis
Kondo et al. Development of electrochemical oxygen demand measurement cells using a diamond electrode
JP3290809B2 (en) Chlorine compound gas sensor
Cao et al. Study of Potentiometry for Monitoring Activity of GdCl3 in Molten LiCl-KCl Salt
RU2774309C1 (en) DEVICE FOR MEASURING THE REDOX POTENTIAL OF MOLTEN MIXTURES BASED ON THE LiF-BeF2 SYSTEM
Marv et al. Investigation of the corrosion of valve metals and alloys under the influence of plutonium
Kalinina et al. Determination of the conduction type and activity of solid electrolytes in the CaNd {sub 2} S {sub 4}-Nd {sub 2} S {sub 3} system
Dutina The Current State of the Art of Alkali Metal Analysis
JPS61191978A (en) Measurement for concentration of tritium in gaseous phase