JPH08239737A - Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance - Google Patents

Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance

Info

Publication number
JPH08239737A
JPH08239737A JP6351395A JP6351395A JPH08239737A JP H08239737 A JPH08239737 A JP H08239737A JP 6351395 A JP6351395 A JP 6351395A JP 6351395 A JP6351395 A JP 6351395A JP H08239737 A JPH08239737 A JP H08239737A
Authority
JP
Japan
Prior art keywords
hot workability
ferrite
stainless steel
steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6351395A
Other languages
Japanese (ja)
Inventor
Yoshihiro Uematsu
美博 植松
Manabu Oku
学 奥
Naoto Hiramatsu
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP6351395A priority Critical patent/JPH08239737A/en
Publication of JPH08239737A publication Critical patent/JPH08239737A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE: To produce an austenitic stainless steel combinedly satisfying high temp. strength at >=800 deg.C, immunity to high temp. oxidation, and σ-embrittlement resistance and excellent in hot workability. CONSTITUTION: This steel has a composition which consists of, by mass, 0.03-0.10% C, 1.0-2.5% Si, <=2.0% Mn, <=0.0030% S, 7.0-14.0% Ni, 15.0-25.0% Cr, 0.02-0.20% Nb, 0.05-0.20% N, and the balance Fe with the impurities inevitably contained at manufacture and also contains, if necessary, >0.03-O.1%, in total, of one or >=2 kinds among rare earth metals and Y and Ca and in which 3<=Cr+1.5Si+0.5Nb-[Ni+0.5Mn+30(C+N)]<7 is satisfied. By this method, the austenitic stainless steel, in which the Charpy impact value at ordinary temp. after aging at 900 deg.C for 1000hr is regulated to <=60J/cm<2> , can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として燃焼ガス流路
部材に使用される、800 ℃以上での耐熱性に優れ、か
つ、熱間加工性および耐σ脆化性に優れた耐熱用オース
テナイト系ステンレス鋼に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a heat-resistant austenite mainly used for combustion gas flow path members, which has excellent heat resistance at 800 ° C. or higher, and has excellent hot workability and σ embrittlement resistance. System stainless steel.

【0002】[0002]

【従来の技術】ステンレス鋼は、その優れた耐食性およ
び耐熱性から、これらの特性が要求される非常に広い分
野に使用されている。耐熱分野において最も重要な特性
は、高温強度および高温酸化特性である。フェライト系
ステンレス鋼は、オーステナイト系ステンレス鋼に比
べ、熱膨張係数が小さいことおよび保護皮膜生成元素の
拡散が速いことから、耐酸化性に非常に優れており、耐
酸化性が必要な用途,例えば、各種燃焼器具の外筒や自
動車排ガスの触媒コンバーター等に用いられている。ま
た、熱応力の繰り返しを受ける用途,例えば自動車排ガ
ス部材などに対しては、熱膨張係数が小さいことから、
高温高強度フェライト系ステンレス鋼が使用されてい
る。しかしながら、フェライト系ステンレス鋼は、高温
での強度がオーステナイト系ステンレス鋼に比べて本質
的に低いため、構造材としては、650 ℃程度が使用限界
温度となる。
2. Description of the Related Art Due to its excellent corrosion resistance and heat resistance, stainless steel is used in a very wide range of fields where these characteristics are required. The most important properties in the field of heat resistance are high temperature strength and high temperature oxidation properties. Ferrite-based stainless steel is very excellent in oxidation resistance because of its smaller coefficient of thermal expansion and faster diffusion of protective film-forming elements than austenitic stainless steel, and applications requiring oxidation resistance, such as It is used in outer cylinders of various combustion appliances and catalytic converters of automobile exhaust gas. In addition, since the thermal expansion coefficient is small for applications that are repeatedly subjected to thermal stress, such as automobile exhaust gas components,
High temperature high strength ferritic stainless steel is used. However, the strength of ferritic stainless steel at high temperature is essentially lower than that of austenitic stainless steel, so the structural limit is about 650 ° C.

【0003】オーステナイト系ステンレス鋼は、高温強
度が高いため、使用温度が700 ℃を超える構造材などの
用途にも幅広く使用されている。高温強度が要求される
用途に対しては、例えば特公昭57-45823に開示されてい
るように、Nb,Si,C,N 等の元素が、高温酸化特性が要求
される用途に対しては、例えば特公昭54-12890に開示さ
れているように、Cr,Si,Al,REM,Ca 等の元素が、それぞ
れ積極的に添加されている。しかし、一般にオーステナ
イト単相鋼は、溶接施工時にビード部分に高温割れを発
生しやすく、溶接作業が困難となる。また、単相である
から熱間加工時に割れが発生しやすく、製造上にも困難
が伴う。
Since austenitic stainless steel has a high strength at high temperature, it is widely used in applications such as structural materials whose operating temperature exceeds 700 ° C. For applications requiring high-temperature strength, for example, as disclosed in Japanese Patent Publication No. 57-45823, Nb, Si, C, N and other elements are used for applications requiring high-temperature oxidation characteristics. For example, as disclosed in Japanese Patent Publication No. 54-12890, elements such as Cr, Si, Al, REM, and Ca are positively added. However, in general, austenitic single-phase steel is likely to cause hot cracking at the bead portion during welding, which makes welding work difficult. Further, since it is a single phase, cracks are likely to occur during hot working, which causes difficulties in manufacturing.

【0004】この対策として、溶接高温割れに対して
は、特公昭51-29858や特開平5-93895で開示されている
ように、フェライト生成元素を多く含み、鋳造時に若干
のδフェライトを有するオーステナイト系ステンレス鋼
が開発されている。また、熱間加工割れに対しては、特
開昭59-182956 で開示しているように、若干のフェライ
ト相を生成させ、なおかつS量およびO量を極力低減し
た鋼が開発されている。しかしながら、δフェライトを
含む鋼は、長時間使用後にσ脆化を起こしやすいことが
知られており、とくにSiやNbを含む鋼はその傾向が大き
い。長時間使用後の脆化、つまり靱性の低下は、Cおよ
びNを多く含む鋼についても同様であり、これらは使用
中に粒界析出物が多量に生成することにより、常温での
靱性が10〜20J/cm2 程度にまで低下することがある。
As a countermeasure against this, as disclosed in Japanese Patent Publication No. 51-29858 and Japanese Patent Laid-Open No. 5-93895, austenite containing a large amount of ferrite-forming elements and having a slight amount of δ-ferrite at the time of casting is proposed against hot cracking in welding. System stainless steel has been developed. Regarding hot work cracking, as disclosed in Japanese Patent Laid-Open No. 59-182956, a steel has been developed in which a small amount of ferrite phase is formed and the S and O contents are reduced as much as possible. However, it is known that steel containing δ-ferrite is apt to cause σ embrittlement after long-term use, and the tendency is particularly large in steel containing Si and Nb. The embrittlement after use for a long time, that is, the decrease in toughness is the same for steels containing a large amount of C and N, and these have a toughness at room temperature of 10 due to the formation of a large amount of grain boundary precipitates during use. It may decrease to about 20 J / cm 2 .

【0005】上述のような劣化を生じる鋼種は、耐熱用
途に対しては、起動および停止が繰り返される部材で大
きな問題となる。例えば、火力発電プラントの構造部材
は、常温にて起動する場合に、定常使用状態よりも大き
な振動や燃焼ガス圧を瞬時に受ける。したがって、この
用途に対しては、800 ℃〜900 ℃の燃焼ガス雰囲気で長
時間使用した後の常温での靱性を確保する必要がある。
上述のような靱性低下を促進する析出物やσ相を多量に
生成した場合、900 ℃で1000時間時効後の常温でのシャ
ルピー衝撃値は10〜20J/cm2 にまで低下する。したが
って、耐σ脆化性を十分有するためには、60J/cm2
上の靱性が要求されている。
The steel grade that causes the above-mentioned deterioration poses a serious problem for members that are repeatedly started and stopped for heat resistant applications. For example, the structural members of a thermal power plant, when started at room temperature, are instantly subjected to vibrations and combustion gas pressures that are larger than those in steady use. Therefore, for this purpose, it is necessary to secure the toughness at room temperature after long-term use in a combustion gas atmosphere of 800 ° C to 900 ° C.
When a large amount of precipitates or σ phase that promotes the deterioration of toughness as described above is formed, the Charpy impact value at room temperature after aging at 900 ° C. for 1000 hours drops to 10 to 20 J / cm 2 . Therefore, to have sufficient σ embrittlement resistance, a toughness of 60 J / cm 2 or more is required.

【0006】[0006]

【発明が解決しようとする課題】このように、高温強度
および高温酸化特性のいずれにも優れ、かつ、溶接性,
熱間加工性と耐σ脆化性といった相反する特性を兼ね備
えた耐熱用オーステナイトステンレス鋼が開発されれ
ば、本鋼種の800 ℃以上の高温域における用途への幅広
い適用が期待できる。
As described above, the high temperature strength and the high temperature oxidation characteristics are excellent, and the weldability,
If a heat-resistant austenitic stainless steel that has contradictory properties such as hot workability and σ embrittlement resistance is developed, it can be expected to be widely applied to applications of this steel type in the high temperature range of 800 ℃ or higher.

【0007】本発明は、高温強度および高温酸化特性の
いずれにも優れたSi,Nを含む耐熱用オーステナイト系ス
テンレス鋼において、耐熱性を損なうことなしに溶接
性,熱間加工性および耐σ脆化性を改善することを目的
としたものである。
The present invention provides a heat-resistant austenitic stainless steel containing Si and N, which is excellent in both high-temperature strength and high-temperature oxidation characteristics, in weldability, hot workability and σ embrittlement resistance without impairing heat resistance. It is intended to improve the chemical conversion property.

【0008】[0008]

【課題を解決するための手段】本発明は質量%として、
C:0.03〜0.10%,Si:1.0 〜2.5 %,Mn:2.0%
以下,S:0.0030%以下,Ni:7.0 〜14.0%,Cr:
15.0〜25.0%,Nb:0.02〜0.20%,N:0.05〜0.20
%,を含有し、上記の範囲において、 3≦Cr+1.5Si +0.5Nb −{Ni+0.5Mn +30(C+N)}<7 の関係を満足するようにこれらの元素を含有し、場合に
よっては、REMおよびYの一種または二種以上とCa
を合計で0.03%を超え〜0.1 %含有し、残部がFeおよ
び製造上の不可避的な不純物からなり、900 ℃で1000時
間時効後の常温でのシャルピー衝撃値が、60J/cm2 以上
であることを特徴とする熱間加工性および耐σ脆化性に
優れた耐熱用オーステナイト系ステンレス鋼を提供する
ものである。
According to the present invention, the mass% is
C: 0.03 to 0.10%, Si: 1.0 to 2.5%, Mn: 2.0%
Below, S: 0.0030% or less, Ni: 7.0 to 14.0%, Cr:
15.0 to 25.0%, Nb: 0.02 to 0.20%, N: 0.05 to 0.20
%, And in the above range, these elements are contained so as to satisfy the relation of 3 ≦ Cr + 1.5Si + 0.5Nb- {Ni + 0.5Mn + 30 (C + N)} <7. In some cases, REM And one or more of Y and Ca
Content of more than 0.03% to 0.1%, the balance consisting of Fe and unavoidable impurities in production, and the Charpy impact value at room temperature after aging at 900 ° C for 1000 hours is 60 J / cm 2 or more. The present invention provides a heat-resistant austenitic stainless steel excellent in hot workability and σ embrittlement resistance.

【0009】[0009]

【作用】本発明者らは、前記の目的を達成すべく試験研
究を重ね、下記の知見を得ることができた。
The inventors of the present invention have been able to obtain the following findings by conducting trials and studies to achieve the above object.

【0010】図1は、Fe−Cr−Ni−1.7 Si−0.
1 Nb−0.15N−REM−Caを基本成分とし、C量お
よびNi量を種々変化させ、成分値から計算したδフェ
ライト量と実測値との関係を示したものである。δca
l.(計算値)と、鋳造時のδフェライト量(実測値)
には相関関係があり、計算値を用いて実際のδフェライ
ト量を精度良く推定できることが可能である。
FIG. 1 shows Fe-Cr-Ni-1.7 Si-0.
1 shows the relationship between the δ-ferrite amount calculated from the component values and the actually measured value, with 1 Nb-0.15 N-REM-Ca as the basic component, the C amount and the Ni amount being variously changed. δca
l. (Calculated value) and δ-ferrite amount during casting (measured value)
Has a correlation, and it is possible to accurately estimate the actual amount of δ-ferrite by using the calculated value.

【0011】図1には、鋼の熱間加工性に及ぼすδフェ
ライト量およびS量の影響を調査した結果も示してい
る。図1縦軸の鋳造時のδフェライト量とは、常温での
鋳塊におけるδフェライト量の実測値を意味する。S量
が30ppm を超える鋼種(図中△および▲印)についてみ
ると、鋳造時のδフェライト量(実測値)が2%以下に
なると、熱延の1パス目に高温割れを生じている。これ
に対し、S量が30ppm 以下の鋼種(図中○および●印)
では、δフェライト(実測値)が非常に少ない領域(δ
cal.が3付近に対応)でも良好な熱間加工性を示し
ている。熱間加工初期に高温で発生する割れは、γ粒界
またはγとδの境界にSが濃縮しているためとされてお
り、この成分系でも、従来知られているように、Sの低
減が熱間加工性に有効であることがわかる。しかしなが
ら、本成分系においては、Sを十分低減しても、鋳造時
のδフェライト量(実測値)が8%以上になると、仕上
げ熱延時の最終パスにて割れが発生する。以上の結果か
ら、本成分系において良好な熱間加工性を得るために
は、S量を30ppm 以下とし、かつ、δフェライトの計算
値(δcal.)を3以上9以下とする必要があること
が明らかとなった。
FIG. 1 also shows the results of an investigation of the effects of the amount of δ ferrite and the amount of S on the hot workability of steel. The δ-ferrite amount at the time of casting on the vertical axis in FIG. 1 means the measured value of the δ-ferrite amount in the ingot at room temperature. Regarding steel grades in which the amount of S exceeds 30 ppm (marked with Δ and ▲ in the figure), when the amount of δ ferrite (measured value) during casting was 2% or less, hot cracking occurred in the first pass of hot rolling. On the other hand, steel grades with S content of 30ppm or less (marked with ○ and ● in the figure)
Then, in the region where δ ferrite (measured value) is very small (δ
cal. (Corresponding to around 3) shows good hot workability. It is said that the cracks that occur at high temperature in the initial stage of hot working are due to the concentration of S at the γ grain boundary or the boundary between γ and δ. Is effective for hot workability. However, in this component system, even if S is sufficiently reduced, if the amount of δ ferrite (actually measured value) during casting becomes 8% or more, cracking occurs in the final pass during finish hot rolling. From the above results, in order to obtain good hot workability in this component system, it is necessary to set the amount of S to 30 ppm or less and the calculated value (δcal.) Of δ ferrite to 3 or more and 9 or less. Became clear.

【0012】次に、本発明鋼を900 ℃程度の温度で使用
する際のσ脆化性について検討した結果を図2に示す。
1000時間時効後のシャルピー衝撃値は、δフェライト量
(δcal.)の増大にともない低下している。これ
は、鋳造時に存在したδフェライトがσ相の生成を促進
するためであり、本成分系のようにNbやSiを含む鋼では
この傾向がより顕著になる。しかし、δcal.(計算
値)が7%未満となるような成分とすると、シャルピー
衝撃値で60J/cm2 以上の良好な靱性を有し、本成分系に
おいても十分な耐σ脆化性を有することが明らかとなっ
た。
Next, FIG. 2 shows the results of examination of σ embrittlement when the present invention steel is used at a temperature of about 900 ° C.
The Charpy impact value after 1000-hour aging decreases with an increase in the amount of δ ferrite (δ cal.). This is because the δ ferrite that was present during casting promotes the formation of the σ phase, and this tendency becomes more pronounced in steels containing Nb and Si such as this component system. However, δcal. It is clear that if the composition is such that the (calculated value) is less than 7%, it has a good toughness of 60 J / cm 2 or more in Charpy impact value and sufficient σ embrittlement resistance even in this composition system. Became.

【0013】図1,図2の結果をまとめたのが図3であ
る。これまで、耐熱性が優れたオーステナイト系ステン
レス鋼で、熱間加工性(もしくはこれと特性が類似した
溶接性)または耐σ脆化性のみを検討した例は、多く開
示されてるものの、本成分系においては、両者を考慮し
た例はなく、本検討結果からわかるように、δフェライ
ト量を厳しく規制する必要があることがわかる。また、
熱間加工性および耐σ脆化性に影響を及ぼす合金元素
(S,Si,Nb など)についても、上述のように各々の添加
量を厳密に規定する必要がある。
FIG. 3 is a summary of the results shown in FIGS. So far, many examples of hot workability (or weldability with similar characteristics) or σ embrittlement resistance of austenitic stainless steel with excellent heat resistance have been disclosed, but this component In the system, there is no example that considers both, and it can be seen from the results of this study that the amount of δ ferrite needs to be strictly regulated. Also,
As for the alloying elements (S, Si, Nb, etc.) that affect the hot workability and the σ embrittlement resistance, it is necessary to strictly specify the respective addition amounts as described above.

【0014】次に、本発明鋼において成分範囲を上述の
ように限定した理由について述べる。
Next, the reason why the composition range of the steel of the present invention is limited as described above will be described.

【0015】C:高温強度を上昇させる元素の1つであ
るが、0.03%未満ではその効果が小さい。また、0.10%
を超えると炭化物の析出による脆化や溶接施工時のビー
ド割れを誘発しやすくなる。したがって、Cの範囲は0.
03%以上0.10%以下とする。
C: One of the elements for increasing the high temperature strength, but if less than 0.03%, its effect is small. Also, 0.10%
If it exceeds, brittleness due to the precipitation of carbides and bead cracking during welding are likely to be induced. Therefore, the range of C is 0.
03% or more and 0.10% or less.

【0016】Si:本発明の重要な元素の1つであり、
1.0 %以上の添加で、高温酸化特性を向上させる。ま
た、Nb,Nとの複合添加により、高温強度を上昇させ
る。一方、Siを多量に添加すると、σ脆化の促進が顕
著となり、また、溶接性および熱間加工性の低下も懸念
される。Siの高いオーステナイト系ステンレス鋼で
は、特開平5-93895 に開示されているように、δフェラ
イトを計算値で7〜9に調整すればよいが、後述の実施
例で述べるように、本願成分系においてはSiが2.5 %
以下であれば、δフェライトの計算値が7未満でも良好
な溶接性を有する。したがって、Siの範囲は1.0 %以
上2.5 %以下とする。
Si: one of the important elements of the present invention,
Addition of 1.0% or more improves high temperature oxidation characteristics. Further, the high temperature strength is increased by the combined addition of Nb and N. On the other hand, when Si is added in a large amount, σ embrittlement is significantly promoted, and there is a concern that weldability and hot workability may be deteriorated. For an austenitic stainless steel having a high Si content, the δ ferrite may be adjusted to a calculated value of 7 to 9 as disclosed in Japanese Patent Laid-Open No. 5-93895. 2.5% Si
If it is below, good weldability is obtained even if the calculated value of δ ferrite is less than 7. Therefore, the range of Si is 1.0% or more and 2.5% or less.

【0017】Mn:δフェライト量の成分バランスの上
からは、Niを節減し得る元素である。しかし過剰の添
加は、高温酸化特性を低下させるので、Mnの範囲は、
2.0%以下とする。
Mn: An element that can reduce Ni in terms of the balance of the amount of δ ferrite. However, since excessive addition deteriorates the high temperature oxidation characteristics, the range of Mn is
2.0% or less.

【0018】S:熱間加工性に大きな影響を及ぼす元素
の1つである。図1にも示したように、0.0030%を超え
て含有すると、本発明が目的とする熱間加工性と耐σ脆
化性の両方に優れた鋼を得ることができないため、Sの
範囲は、0.0030%以下とする。
S: One of the elements that greatly affects the hot workability. As shown in FIG. 1, if the content exceeds 0.0030%, it is not possible to obtain a steel excellent in both hot workability and σ embrittlement resistance, which is the object of the present invention, so the range of S is , 0.0030% or less.

【0019】Ni:オーステナイト系ステンレス鋼に含
まれる基本元素の1つであるが、7.0 %未満では、多量
のδフェライトを生成し、熱間加工性を低下させる。ま
た、14.0%を超えるとオーステナイト単相となりやす
く、熱間加工性および溶接性を低下させる。したがっ
て、Niの範囲は、7.0 %以上14.0%以下とする。
Ni: One of the basic elements contained in austenitic stainless steel, but if it is less than 7.0%, a large amount of δ-ferrite is formed, and the hot workability is deteriorated. Further, if it exceeds 14.0%, an austenite single phase is likely to be formed, and hot workability and weldability are deteriorated. Therefore, the range of Ni is 7.0% or more and 14.0% or less.

【0020】Cr:ステンレス鋼に不可欠な元素である
が、15.0%未満では、十分な高温酸化特性が得られな
い。また、オーステナイト単相となりやすく、熱間加工
性および溶接性を低下させる。25.0%を超えると、多量
のδフェライトを生成し、熱間加工性を低下させる。ま
た、σ脆化も促進する。したがって、Crの範囲は、1
5.0%以上25.0%以下とする。
Cr: An essential element for stainless steel, but if it is less than 15.0%, sufficient high temperature oxidation characteristics cannot be obtained. Further, it is likely to be an austenite single phase, which deteriorates hot workability and weldability. If it exceeds 25.0%, a large amount of δ-ferrite is formed, and the hot workability is deteriorated. It also promotes σ embrittlement. Therefore, the range of Cr is 1
5.0% or more and 25.0% or less.

【0021】Nb:Siを含有する場合、Nとの複合添
加により、高温強度を著しく上昇させるが、0.02%未満
の添加ではその効果が非常に小さい。また、0.20%を超
えて添加すると、高温強化元素のNと析出物を生成し、
高温強度の低下を招く。さらにNbは、使用中にσ相の
生成を促進する元素でもある。高温強度を上昇し、か
つ、σ相の生成を抑制するよう、Nbの範囲は、0.02%
以上0.20%以下とする。
When Nb: Si is contained, the high temperature strength is remarkably increased by the combined addition with N, but the effect is very small when the content is less than 0.02%. Also, if added in excess of 0.20%, N of high temperature strengthening element and precipitate are formed,
This leads to a decrease in high temperature strength. Further, Nb is also an element that promotes the formation of the σ phase during use. The range of Nb is 0.02% so as to increase the high temperature strength and suppress the formation of σ phase.
Above 0.20%.

【0022】N :オーステナイト系ステンレス鋼の高
温強度を上昇させる最も重要な元素であり、とくに上述
のようにNbとの複合添加によって著しく上昇させる。
しかし、0.05%未満の添加では、強度上昇の効果が小さ
いこと,0.20%を超える添加では、加工性が劣化するこ
とおよびオーステナイト単相となり熱間加工性が低下す
ることから,Nの範囲は、0.05%以上0.20%以下とす
る。
N: The most important element for increasing the high temperature strength of austenitic stainless steel, and particularly, as described above, it is remarkably increased by the combined addition of Nb.
However, if the addition amount is less than 0.05%, the effect of increasing the strength is small, and if the addition amount exceeds 0.20%, the workability deteriorates and austenite becomes a single phase, and the hot workability decreases, so the range of N is 0.05% or more and 0.20% or less.

【0023】REM ,Y,およびCa:REM ,Y,および
Caは、Sと結合することにより、鋼中のSを低減し、
熱間加工性を改善する元素である。しかしながら、熱間
加工性を改善するためには、少なくともSと結合する量
以上、つまり、本願発明成分の範囲においては、0.03%
を超える量の添加が必要である。また、これらの効果
は、合計で0.1 %を超えると飽和し、逆に熱間加工性を
害する。したがって、REM ,Y,およびCaの範囲は、
合計で0.03%を超え、0.1 %以下とする。
REM, Y, and Ca: REM, Y, and Ca combine with S to reduce S in steel,
It is an element that improves hot workability. However, in order to improve the hot workability, 0.03% or more at least in the amount bonded to S, that is, in the range of the components of the present invention.
It is necessary to add an amount exceeding. Further, these effects are saturated when the total amount exceeds 0.1%, which adversely affects the hot workability. Therefore, the range of REM, Y, and Ca is
The total exceeds 0.03% and 0.1% or less.

【0024】以上のような成分組成に加えて、本発明の
目的を達成するためには、すなわち、通常のオーステナ
イト系ステンレス鋼と同ーの熱延条件で良好な熱間加工
性であること,および900 ℃で1000時間使用後のシャル
ピー衝撃値が、60J/cm2 以上の十分な耐σ脆化性を有す
ることの両方をともに満足するためには、図3で述べた
ようにδフェライト量を厳密に規定する必要がある。つ
まり、図3で示したδフェライト量の計算値(δca
l.)が3以上7未満,がすなわち、 3≦Cr+1.5Si +0.5Nb −{Ni+0.5Mn +30(C+N)}<7 の関係を満足するよう、これらの元素を含有すれば良
い。
In addition to the above component composition, in order to achieve the object of the present invention, that is, good hot workability under the same hot rolling conditions as that of ordinary austenitic stainless steel, And the Charpy impact value after 1000 hours of use at 900 ℃ have both sufficient σ embrittlement resistance of 60 J / cm 2 or more, in order to satisfy both δ-ferrite content as shown in Fig. 3. Must be strictly specified. That is, the calculated value of the δ ferrite amount shown in FIG. 3 (δca
l. ) Is 3 or more and less than 7, that is, 3≤Cr + 1.5Si + 0.5Nb- {Ni + 0.5Mn + 30 (C + N)} <7 is satisfied, these elements may be contained.

【0025】[0025]

【実施例】本発明鋼の熱間加工性および耐σ脆化性を各
種高温特性と合わせて,実施例にて説明する。
[Examples] The hot workability and the σ embrittlement resistance of the steel of the present invention will be described together with various high temperature characteristics in Examples.

【0026】表1に供試材の化学成分値を示した。G01
からG07 は、本発明鋼、G08 からG12 は比較鋼である。
いずれの鋼も、真空溶解炉にて溶製し、熱延および焼鈍
後、試験に供した。一部の試験片については、さらに冷
延および焼鈍を行い、2.0mmの冷延焼鈍板とし、試験に
供した。なお、熱延は、板厚50mmのインゴットを1230℃
で2時間加熱し、1パスあたりの圧下率を平均25% で圧
延し、熱延終了温度を900 ℃とし、その後水冷した。
Table 1 shows the chemical composition values of the test materials. G01
To G07 are inventive steels, and G08 to G12 are comparative steels.
Each steel was melted in a vacuum melting furnace, hot rolled and annealed, and then subjected to a test. Some of the test pieces were further cold-rolled and annealed to obtain 2.0 mm cold-rolled annealed plates, which were subjected to the test. In addition, hot rolling was performed at an ingot with a plate thickness of 50 mm at 1230 ° C.
The material was heated for 2 hours at a temperature of 25 ° C., rolled at an average rolling reduction of 25% per pass, the hot rolling finish temperature was 900 ° C., and then water-cooled.

【0027】[0027]

【表1】 [Table 1]

【0028】表2に本発明鋼および比較鋼の熱間加工性
および耐σ脆化性を示す。熱間加工性は、熱延時の割れ
発生状況を目視にて判断して評価した。また、耐σ脆化
性は、900 ℃で1000時間加熱した板厚5.0mm の熱延焼鈍
板を用い、常温でのシャルピー衝撃値で評価した。
Table 2 shows the hot workability and σ embrittlement resistance of the invention steels and comparative steels. The hot workability was evaluated by visually observing the crack occurrence during hot rolling. The σ embrittlement resistance was evaluated by a Charpy impact value at room temperature using a 5.0 mm thick hot rolled annealed plate heated at 900 ° C for 1000 hours.

【0029】本発明鋼および比較鋼の高温特性および溶
接性についても表2に併記した。高温強度は板厚2.0mm
の冷延焼鈍板を用い、「JIS G 0567」の高温引張試験方
法に準拠し、900 ℃の短時間引張試験で評価した。ま
た、高温酸化特性は、板厚2.0mm の冷延焼鈍板を用い、
1000℃で1000時間連続加熱後の酸化増量で評価した。さ
らに、溶接高温割れ性は、板厚1.2mm の冷延焼鈍板を用
い、あらかじめ 200N/mm2 の引張応力を試験片に負荷し
た状態でTIGのなめづけ溶接を行ない、溶接後の割れ
発生の有無で評価した。
Table 2 also shows the high temperature characteristics and weldability of the steels of the present invention and the comparative steels. High temperature strength is 2.0mm thick
Using the cold-rolled annealed sheet of No. 1 and conforming to the high-temperature tensile test method of "JIS G 0567", a short-time tensile test at 900 ° C was used for evaluation. For high temperature oxidation characteristics, a cold rolled annealed sheet with a thickness of 2.0 mm was used.
It was evaluated by the increase in oxidation after continuous heating at 1000 ° C. for 1000 hours. Furthermore, the hot cracking resistance of welds was measured by applying TIG tanning welding with a cold-rolled annealed sheet having a thickness of 1.2 mm and applying a tensile stress of 200 N / mm 2 to the test piece in advance. The presence or absence was evaluated.

【0030】[0030]

【表2】 [Table 2]

【0031】表2の結果にみられるように、本発明鋼
は、良好な熱間加工性を示しており、熱延初期および仕
上げ熱延時に割れを生じていない。また、900 ℃で1000
時間加熱後の靱性も良好で、いずれも60J/cm2 以上のシ
ャルピー衝撃値を示す。また、高温強度および高温酸化
特性もこれまでのN,Siを含有した耐熱用オーステナ
イト系ステンレス鋼と同等以上の特性を示す。
As can be seen from the results shown in Table 2, the steel of the present invention exhibits good hot workability and does not cause cracks at the initial stage of hot rolling and finish hot rolling. Also, 1000 at 900 ℃
The toughness after time heating is also good, and all show Charpy impact values of 60 J / cm 2 or more. Further, the high temperature strength and the high temperature oxidation characteristics are equal to or higher than those of the conventional heat-resistant austenitic stainless steels containing N and Si.

【0032】これに対し、比較鋼G08 およびG09 は、δ
フェライトの計算値が本発明から外れるため、熱延の5
パス目(圧延温度は約1000℃)で板の端面に耳割れを生
じた。G09 では、δフェライト量が少ないため、溶接高
温割れ性も悪い。また、比較鋼G10 は、Sの添加量が本
発明から外れるため、熱延の1パス目に板の表面に割れ
を生じた。このため、比較鋼G10 は、供試材としての試
験片の作製ができなかった。また、比較鋼G09 およびG1
1 は、熱延板の端部を10mm程度切削したため、試験片作
製までの歩留りが本発明鋼に比べ著しく劣った。さら
に、比較鋼のG11 は、Siの添加量が本発明から外れる
ため、熱間加工性は良好であっても、時効後の靱性が著
しく低下しており、本発明鋼に比べ耐σ脆化性が劣るこ
とがわかる。また、δフェライト量は本願発明鋼と同程
度生成しているものの、Siを多く含むため、溶接高温
割れ性も劣っている。さらに、REMおよびYとCaの
合計含有量が少ないため、高温での酸化特性が他の鋼種
に比べ劣っている。
On the other hand, the comparative steels G08 and G09 have δ
Since the calculated value of ferrite deviates from the present invention,
At the pass (rolling temperature is about 1000 ° C), edge cracks were formed on the edge surface of the plate. With G09, the amount of δ-ferrite is small, so the weld hot cracking property is also poor. Further, in Comparative Steel G10, the addition amount of S was out of the range of the present invention, so that cracking occurred on the surface of the plate in the first pass of hot rolling. For this reason, the comparative steel G10 could not be manufactured as a test piece as a test material. Also, comparative steels G09 and G1
In No. 1, since the end of the hot-rolled sheet was cut by about 10 mm, the yield until the production of test pieces was significantly inferior to that of the steel of the present invention. Further, in the comparative steel G11, since the amount of Si added deviates from the present invention, the hot workability is good, but the toughness after aging is significantly reduced, and σ embrittlement resistance is higher than that of the steels of the present invention. It turns out that the sex is inferior. Further, although the amount of δ ferrite is generated to the same extent as that of the steel of the present invention, since it contains a large amount of Si, the weld hot cracking property is also inferior. Furthermore, since the total content of REM and Y and Ca is small, the oxidation characteristics at high temperatures are inferior to other steel types.

【0033】[0033]

【発明の効果】以上説明したように、本発明の耐熱用オ
ーステナイト系ステンレス鋼は、800℃以上の高温強
度,高温酸化特性および耐σ脆化性を同時に要求される
用途に適用することができる。また、この鋼は熱間加工
時に割れを発生することなく製造することができる。
As described above, the heat-resistant austenitic stainless steel of the present invention can be applied to applications where high temperature strength of 800 ° C. or higher, high temperature oxidation property and σ embrittlement resistance are required at the same time. . Also, this steel can be manufactured without cracking during hot working.

【図面の簡単な説明】[Brief description of drawings]

【図1】δフェライト量の計算値と実測値の関係を示し
たものである。
FIG. 1 shows a relationship between a calculated value and an actually measured value of δ ferrite.

【図2】900 ℃および1000℃で1000時間時効した後の常
温におけるシャルピー衝撃値に及ぼすδフェライト量
(計算値)の影響を示したものである。
FIG. 2 shows the effect of the amount of δ ferrite (calculated value) on the Charpy impact value at room temperature after aging at 900 ° C. and 1000 ° C. for 1000 hours.

【図3】熱間加工性および耐σ脆化性に及ぼすδフェラ
イト量(計算値)の影響を示したものである。
FIG. 3 shows the effect of the amount of δ ferrite (calculated value) on hot workability and σ embrittlement resistance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%として、C :0.03〜0.10%,S
i:1.0 〜2.5 %,Mn:2.0 %以下,S :0.0030%
以下,Ni:7.0 〜14.0%,Cr:15.0〜25.0%,N
b:0.02〜0.20%,N :0.05〜0.20%,ただし、上記
の範囲において、 3≦Cr+1.5Si +0.5Nb −{Ni+0.5Mn +30(C+N)}<7 の関係を満足するようにこれらの元素を含有し、残部が
Feおよび製造上の不可避的な不純物からなり、900 ℃
で1000時間時効後の常温でのシャルピー衝撃値が、60J/
cm2 以上であることを特徴とする熱間加工性および耐σ
脆化性に優れた耐熱用オーステナイト系ステンレス鋼。
1. As a mass%, C: 0.03 to 0.10%, S
i: 1.0 to 2.5%, Mn: 2.0% or less, S: 0.0030%
Below, Ni: 7.0-14.0%, Cr: 15.0-25.0%, N
b: 0.02 to 0.20%, N: 0.05 to 0.20%, within the above range, so as to satisfy the relation of 3 ≦ Cr + 1.5Si + 0.5Nb− {Ni + 0.5Mn + 30 (C + N)} <7. 900 ℃, containing elements and the balance Fe and inevitable manufacturing impurities
After aging for 1000 hours, the Charpy impact value at room temperature is 60 J /
hot workability and resistance, characterized in that at cm 2 or more σ
Heat-resistant austenitic stainless steel with excellent brittleness.
【請求項2】質量%として、C :0.03〜0.10%,S
i:1.0 〜2.5 %,Mn:2.0 %以下,S :0.0030%
以下,Ni:7.0 〜14.0%,Cr:15.0〜25.0%,N
b:0.02〜0.20%,N :0.05〜0.20%,を含有し、か
つ、REMおよびYの一種または二種以上とCaを合計
で0.03%を超え〜0.1 %含有したうえ、上記の範囲にお
いて、 3≦Cr+1.5Si +0.5Nb −{Ni+0.5Mn +30(C+N)}<7 の関係を満足するようにこれらの元素を含有し、残部が
Feおよび製造上の不可避的な不純物からなり、900 ℃
で1000時間時効後の常温でのシャルピー衝撃値が、60J/
cm2 以上であることを特徴とする熱間加工性および耐σ
脆化性に優れた耐熱用オーステナイト系ステンレス鋼。
2. As a mass%, C: 0.03 to 0.10%, S
i: 1.0 to 2.5%, Mn: 2.0% or less, S: 0.0030%
Below, Ni: 7.0-14.0%, Cr: 15.0-25.0%, N
b: 0.02 to 0.20%, N: 0.05 to 0.20%, and one or more kinds of REM and Y and Ca in total in excess of 0.03% to 0.1%, and in the above range, 3≤Cr + 1.5Si + 0.5Nb- {Ni + 0.5Mn + 30 (C + N)} <7, these elements are contained so as to satisfy the relation, and the balance is Fe and inevitable impurities in the production, and the temperature is 900 ° C.
After aging for 1000 hours, the Charpy impact value at room temperature is 60 J /
hot workability and resistance, characterized in that at cm 2 or more σ
Heat-resistant austenitic stainless steel with excellent brittleness.
JP6351395A 1995-02-28 1995-02-28 Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance Pending JPH08239737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6351395A JPH08239737A (en) 1995-02-28 1995-02-28 Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6351395A JPH08239737A (en) 1995-02-28 1995-02-28 Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance

Publications (1)

Publication Number Publication Date
JPH08239737A true JPH08239737A (en) 1996-09-17

Family

ID=13231382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6351395A Pending JPH08239737A (en) 1995-02-28 1995-02-28 Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance

Country Status (1)

Country Link
JP (1) JPH08239737A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133320A1 (en) * 2007-04-19 2008-11-06 Nisshin Steel Co., Ltd. Exhaust guide part of turbocharger with nozzle vane
JP2010202936A (en) * 2009-03-04 2010-09-16 Nisshin Steel Co Ltd Austenitic stainless steel for heat-resistant member
CN103045956A (en) * 2012-12-26 2013-04-17 振石集团东方特钢股份有限公司 Economical heat-resisting austenitic stainless steel
JP2015040716A (en) * 2013-08-20 2015-03-02 日本特殊陶業株式会社 Gas sensor
KR20170002566A (en) 2014-06-11 2017-01-06 가부시키가이샤 고베 세이코쇼 Buildup welded metal and machine structure
CN113913707A (en) * 2021-09-27 2022-01-11 鹰普(中国)有限公司 Method for improving performance of austenitic heat-resistant stainless steel material
EP3995599A1 (en) * 2020-11-06 2022-05-11 Outokumpu Oyj Austenitic stainless steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133320A1 (en) * 2007-04-19 2008-11-06 Nisshin Steel Co., Ltd. Exhaust guide part of turbocharger with nozzle vane
US8206091B2 (en) 2007-04-19 2012-06-26 Nisshin Steel Co., Ltd. Exhaust guide member of nozzle vane-type turbocharger
JP2010202936A (en) * 2009-03-04 2010-09-16 Nisshin Steel Co Ltd Austenitic stainless steel for heat-resistant member
CN103045956A (en) * 2012-12-26 2013-04-17 振石集团东方特钢股份有限公司 Economical heat-resisting austenitic stainless steel
JP2015040716A (en) * 2013-08-20 2015-03-02 日本特殊陶業株式会社 Gas sensor
KR20170002566A (en) 2014-06-11 2017-01-06 가부시키가이샤 고베 세이코쇼 Buildup welded metal and machine structure
EP3995599A1 (en) * 2020-11-06 2022-05-11 Outokumpu Oyj Austenitic stainless steel
WO2022096656A1 (en) * 2020-11-06 2022-05-12 Outokumpu Oyj Austenitic stainless steel
CN113913707A (en) * 2021-09-27 2022-01-11 鹰普(中国)有限公司 Method for improving performance of austenitic heat-resistant stainless steel material

Similar Documents

Publication Publication Date Title
JP5138504B2 (en) Ferritic stainless steel for exhaust gas flow path members
TWI399443B (en) Heat-resistant fat iron-based stainless steel
EP2264202B1 (en) Ferritic stainless steel with excellent heat resistance and toughness
KR101673217B1 (en) Ferritic stainless steel
JP5609571B2 (en) Ferritic stainless steel with excellent oxidation resistance
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
WO1991014796A1 (en) Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
US10975459B2 (en) Ferritic stainless steel
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JPH08239737A (en) Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance
JP3219099B2 (en) Ferrite heat-resistant stainless steel with excellent heat resistance, low temperature toughness and weldability
JP2514367B2 (en) Automotive engine manifold steel
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JP2896077B2 (en) Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JP6665936B2 (en) Ferritic stainless steel
JP3705391B2 (en) Nb-containing ferritic stainless steel with excellent low temperature toughness of hot-rolled sheet
JP3234284B2 (en) Austenitic stainless steel for flexible tubes with excellent resistance to high-temperature salt damage and high-temperature fatigue
JP5428397B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP2562740B2 (en) Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength
JPH11256287A (en) Ferritic stainless steel excellent in high temperature oxidation resistance and scale adhesion
JPH0762497A (en) High cr ferritic heat resistant steel having excellent high temperature strength and toughness

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040322