JPH0823929B2 - Perpendicular magnetic recording media - Google Patents

Perpendicular magnetic recording media

Info

Publication number
JPH0823929B2
JPH0823929B2 JP61244927A JP24492786A JPH0823929B2 JP H0823929 B2 JPH0823929 B2 JP H0823929B2 JP 61244927 A JP61244927 A JP 61244927A JP 24492786 A JP24492786 A JP 24492786A JP H0823929 B2 JPH0823929 B2 JP H0823929B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
coercive force
perpendicular magnetic
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61244927A
Other languages
Japanese (ja)
Other versions
JPS6398827A (en
Inventor
浩 内山
直樹 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61244927A priority Critical patent/JPH0823929B2/en
Publication of JPS6398827A publication Critical patent/JPS6398827A/en
Publication of JPH0823929B2 publication Critical patent/JPH0823929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、記録媒体磁性面に対して垂直方向の残留磁
化を用いて信号の記録を行う,いわゆる垂直磁化記録方
式において使用される垂直磁気記録媒体に関するもので
ある。
The present invention relates to a perpendicular magnetic recording method used in a so-called perpendicular magnetization recording method for recording a signal by using remanent magnetization perpendicular to a magnetic surface of a recording medium. The present invention relates to a recording medium.

〔発明の概要〕[Outline of Invention]

本発明は、二層構造垂直磁気記録媒体において、 高透磁率磁性層とCo-Cr系垂直磁化層の間に中間膜とし
てCo-Cr系非磁性酸化物層を設けることにより、 高透磁率磁性層の抗磁力の増加を防ぎ、再生出力の高
い垂直磁気記録媒体を実現しようとするものである。
According to the present invention, in a double-layered perpendicular magnetic recording medium, by providing a Co-Cr nonmagnetic oxide layer as an intermediate film between the high magnetic permeability magnetic layer and the Co-Cr vertical magnetic layer, The present invention intends to realize a perpendicular magnetic recording medium with high reproduction output by preventing an increase in the coercive force of the layer.

〔従来の技術〕[Conventional technology]

磁気記録媒体の記録層の厚さ方向の磁化により記録再
生を行う垂直磁化記録方式では、記録密度が高くなるに
したがい減磁界が小さくなり、したがって特に短波長記
録,高密度記録において面内方向磁化による記録よりも
有利であることから、 実用化に向けて開発が進められている。
In the perpendicular magnetization recording method in which recording / reproduction is performed by magnetization in the thickness direction of the recording layer of the magnetic recording medium, the demagnetizing field becomes smaller as the recording density becomes higher. Since it is more advantageous than the recording by, it is being developed for practical use.

特に、Fe-Ni系合金よりなる高透磁率磁性層上にCo-Cr
系合金よりなる垂直磁化層を重ねた,いわゆる二層構造
の垂直磁気記録媒体は、記録効率や再生効率等に優れ、
垂直磁気記録に最適のものと考えられている。
In particular, Co-Cr on the high permeability magnetic layer made of Fe-Ni alloy
A so-called double-layered perpendicular magnetic recording medium in which perpendicular magnetization layers made of a system alloy are stacked is excellent in recording efficiency and reproduction efficiency.
It is considered optimal for perpendicular magnetic recording.

ところで、この二層構造の垂直磁気記録媒体において
は、面内磁化層である高透磁率磁性層の磁気特性が重要
で、特にその抗磁力が大きいと磁気抵抗が増して記録効
率や再生効率の低下を招来する。
By the way, in this double-layered perpendicular magnetic recording medium, the magnetic characteristics of the high-permeability magnetic layer, which is an in-plane magnetized layer, are important. Invite decline.

しかしながら、かかる二層構造の媒体では、その二層
構造化故にFe-Ni系合金よりなる高透磁率磁性層の抗磁
力の増加が起こることがわかってきた。
However, in such a two-layer structure medium, it has been found that the coercive force of the high-permeability magnetic layer made of an Fe-Ni alloy increases due to the two-layer structure.

このため、この抗磁力の増加を抑えるために、Co-Cr
系垂直磁化層の飽和磁化を小さくすることが提案されて
いる。ところが、Co-Cr系垂直磁化層の飽和磁化をあま
り小さくすると、やはり再生出力が低下する。
Therefore, in order to suppress this increase in coercive force, Co-Cr
It has been proposed to reduce the saturation magnetization of the system perpendicular magnetization layer. However, if the saturation magnetization of the Co—Cr based perpendicular magnetic layer is made too small, the reproduction output also decreases.

一方、生産性の点から二層構造の垂直磁気記録媒体の
連続作製を効率良く行うためには、高透磁率磁性層を被
着するための真空状態を解除しないで続けてCo-Cr系垂
直磁化層を被着形成することが好ましい。
On the other hand, from the viewpoint of productivity, in order to efficiently perform continuous production of a perpendicular magnetic recording medium having a double-layer structure, the vacuum state for depositing the high-permeability magnetic layer is not released and the Co-Cr-based perpendicular magnetic recording medium is continuously released. It is preferred to deposit a magnetic layer.

しかしながら、高透磁率磁性層を被着した後、真空状
態を破らずにCo-Cr系垂直磁化層を形成した場合には、
高透磁率磁性層作製後一時真空状態を破ってCo-Cr系垂
直磁化層を形成した場合に比べて、二層構造化による高
透磁率磁性層の抗磁力の増加が大きいことが明らかにな
った。
However, in the case where a Co--Cr based perpendicular magnetization layer is formed without breaking the vacuum state after depositing the high permeability magnetic layer,
It was clarified that the coercive force of the high-permeability magnetic layer was increased by the two-layer structure as compared with the case of breaking the temporary vacuum state after forming the high-permeability magnetic layer and forming the Co-Cr perpendicular magnetic layer. It was

そこで、この対策として高透磁率磁性層とCo-Cr系垂
直磁化層の間に中間層を設けることが考えられる。
Therefore, as a countermeasure against this, it is possible to provide an intermediate layer between the high-permeability magnetic layer and the Co—Cr based perpendicular magnetization layer.

従来、高透磁率磁性層とCo-Cr系垂直磁化層の間に中
間層を設けた例は、例えば特開昭58-169334号公報、特
開昭61-110329号公報等に記載されるように数多く存在
するが、これらはその目的の違いから次のような欠点を
有している。
Conventionally, an example in which an intermediate layer is provided between a high-permeability magnetic layer and a Co-Cr-based perpendicular magnetic layer is described in, for example, JP-A-58-169334 and JP-A-61-110329. However, they have the following drawbacks because of their different purposes.

すなわち、従来の目的のほとんどが高透磁率磁性層の
抗磁力の増加を防ぐことよりも、Co-Cr系垂直磁化層に
対する高透磁率磁性層の結晶配向の影響を無くし、Co-C
r系垂直磁化層の結晶配向を良くすることにある。この
ため、比較的膜厚の大きな中間層が用いられているが、
中間層がスペーシングロスの原因となるため、却って再
生出力が低下するという現象が見られる。また、中間層
を設けるためには、蒸発源(ターゲット)あるいは装置
の新設を必要とし、設備投資や生産性等の点で不利であ
る。
That is, most of the conventional purposes are to prevent the increase of the coercive force of the high-permeability magnetic layer and to eliminate the influence of the crystal orientation of the high-permeability magnetic layer on the Co-Cr system perpendicular magnetization layer,
It is to improve the crystal orientation of the r-type perpendicular magnetization layer. Therefore, although an intermediate layer having a relatively large film thickness is used,
Since the intermediate layer causes spacing loss, a phenomenon in which the reproduction output is rather reduced is seen. Further, in order to provide the intermediate layer, it is necessary to newly install an evaporation source (target) or a device, which is disadvantageous in terms of capital investment and productivity.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述のように、高透磁率磁性層の抗磁力の増加による
再生出力の低下に対しての検討は未だ不十分で、その解
消が課題となっている。
As described above, the study on the reduction of the reproduction output due to the increase of the coercive force of the high-permeability magnetic layer is still insufficient, and its elimination is a problem.

そこで本発明は、かかる実情に鑑みて提案されたもの
であって、二層構造の垂直磁気記録媒体におけるスペー
シングロスを増加させず高透磁率磁性層の抗磁力が二層
膜化によって増加するのを防止することを目的とし、こ
れにより再生出力の高い垂直磁気記録媒体を提供するこ
とを目的とする。
Therefore, the present invention has been proposed in view of such circumstances, and the coercive force of the high-permeability magnetic layer is increased by the double-layered film without increasing the spacing loss in the double-layered perpendicular magnetic recording medium. It is an object of the present invention to provide a perpendicular magnetic recording medium having a high reproduction output.

また本発明は、生産性や設備投資等の点からも好適な
垂直磁気記録媒体を提供することを目的とする。
Another object of the present invention is to provide a perpendicular magnetic recording medium which is suitable in terms of productivity, capital investment and the like.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、再生出力の高い垂直磁気記録媒体を開
発せんものと長期に亘り鋭意研究を重ねた結果、Co-Cr
系非磁性酸化物層を中間層として設けることによりスペ
ーシングロスをあまり増加させることなく高透磁率磁性
層の抗磁力を小さくできること、またこのCo-Cr系非磁
性酸化物層はCo-Cr系垂直磁化層の結晶配向度や磁気特
性にほとんど影響を与えないこと、等の知見を得るに至
った。
The present inventors have developed a perpendicular magnetic recording medium with a high reproduction output and have conducted extensive research over a long period of time.
The coercive force of the high-permeability magnetic layer can be reduced without increasing the spacing loss by providing the system-based non-magnetic oxide layer as the intermediate layer. We have come to the knowledge that it has almost no influence on the crystal orientation and magnetic properties of the perpendicular magnetization layer.

本発明は、これらの知見に基づいて完成されたもので
あって、非磁性支持体上に高透磁率磁性層、Co-Cr系非
磁性酸化物層、Co-Cr系垂直磁化層が順次積層形成され
ていることを特徴とするものである。
The present invention has been completed based on these findings, and a high-permeability magnetic layer, a Co-Cr nonmagnetic oxide layer, and a Co-Cr perpendicular magnetic layer are sequentially laminated on a nonmagnetic support. It is characterized by being formed.

Co-Cr系非磁性酸化物層は、Co-Cr系垂直磁化層を作製
する時と同じターゲットを用い、スパッタ中に酸素を導
入するだけで簡単に作成することが可能である。
The Co-Cr-based nonmagnetic oxide layer can be easily formed by using the same target as when the Co-Cr-based perpendicularly magnetized layer is formed and introducing oxygen during sputtering.

上記Co-Cr系非磁性酸化物層の膜厚としては、10〜400
Åの範囲内であることが好ましく、上記膜厚が400Åを
越えるとスペーシングロスの増加による再生出力の低下
が抗磁力の低下による再生出力の増加を上回り、却って
再生出力が低下する。
The film thickness of the Co-Cr-based nonmagnetic oxide layer is 10 to 400.
It is preferably in the range of Å, and when the film thickness exceeds 400 Å, the reduction of the reproduction output due to the increase of the spacing loss exceeds the increase of the reproduction output due to the decrease of the coercive force, and the reproduction output is rather decreased.

また、Co-Cr系非磁性酸化物層の膜厚の制御は、バッ
チ式の作成方法では膜堆積速度と堆積時間により、また
連続式の作成方法では膜堆積速度と非磁性支持体の送り
速度により行うが、信頼できる膜厚制御が可能な膜厚下
限は10Åである。
The film thickness of the Co-Cr non-magnetic oxide layer is controlled by the film deposition rate and the deposition time in the batch method and by the continuous method in the film deposition rate and the feed rate of the non-magnetic support. The lower limit of film thickness is 10Å, which allows reliable film thickness control.

〔作用〕[Action]

高透磁率磁性層とCo-Cr系垂直磁化層の間に中間膜と
して設けられるCo-Cr系非磁性酸化物層は、スペーシン
グロスをあまり増加させず高透磁率磁性層の抗磁力が二
層化によって増加するのを防ぎ、再生出力向上に貢献す
る。
The Co-Cr-based nonmagnetic oxide layer provided as an intermediate film between the high-permeability magnetic layer and the Co-Cr-based perpendicular magnetic layer does not increase the spacing loss so much that the coercive force of the high-permeability magnetic layer is two. Prevents increase due to layering and contributes to improvement of playback output.

また、このCo-Cr系非磁性酸化物層は、Co-Cr系垂直磁
化層を作製するためのターゲットをそのまま用いて形成
される。
Further, this Co—Cr based non-magnetic oxide layer is formed using the target for producing the Co—Cr based perpendicular magnetization layer as it is.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果に従って説明する。 Hereinafter, the present invention will be described according to specific experimental results.

先ず、バッチ式RFスパッタリング装置を用い、高透磁
率磁性層(パーマロイ層,膜厚0.5μm)及びCo-Cr系垂
直磁化層(Co-Cr層,膜厚0.2μm)からなる二層構造垂
直磁気記録媒体を作製し、Co-Cr層の飽和磁化に対する
パーマロイ層の抗磁力の変化について調べた。なお、各
層のスパッタリング条件は下記の通りである。
First, using a batch type RF sputtering device, a two-layer structure perpendicular magnetic layer composed of a high magnetic permeability magnetic layer (permalloy layer, film thickness 0.5 μm) and a Co-Cr system perpendicular magnetization layer (Co-Cr layer, film thickness 0.2 μm) A recording medium was prepared and the change of the coercive force of the permalloy layer with respect to the saturation magnetization of the Co-Cr layer was investigated. The sputtering conditions for each layer are as follows.

パーマロイ層 ターゲット Ni78Fe17.5Mo4.5(数値は重量%) 直径310mm アルゴン圧 2×10-3Torr 投入パワー 300W 基板ホルダ 水冷 基板 ポリアミドフィルム Co−Cr層 ターゲット コバルト板(直径310mm)上にCrペレットを
必要量配置 アルゴン圧 3×10-3Torr 投入パワー 300W 基板ホルダ 水冷 結果を第1表ならびに第1図に示す。なお、この場合、
パーマロイ層作製後真空状態を一時解除してCo-Cr層を
作製した。また、試料5はパーマロイ層の単層膜であ
る。
Permalloy layer target Ni 78 Fe 17.5 Mo 4.5 (numerical values are% by weight) Diameter 310 mm Argon pressure 2 × 10 -3 Torr Input power 300 W Substrate holder Water-cooled substrate Polyamide film Co-Cr layer target Cobalt plate (diameter 310 mm) with Cr pellets Arrangement of required amount Argon pressure 3 × 10 -3 Torr Input power 300W Substrate holder Water cooling results are shown in Table 1 and Fig. 1. In this case,
After producing the permalloy layer, the vacuum state was temporarily released to produce a Co-Cr layer. Sample 5 is a single layer film of permalloy layer.

この第1表及び第1図より、Co-Cr層の飽和磁化の増
加に伴って、パーマロイ層の抗磁力が急激に増加するこ
とがわかった。
From this Table 1 and FIG. 1, it was found that the coercive force of the Permalloy layer drastically increases as the saturation magnetization of the Co—Cr layer increases.

また、真空状態を解除せず、連続DCマグネトロンスパ
ッタリング装置を用いて二層構造垂直磁気記録媒体を作
製した場合、パーマロイ単層膜の抗磁力が0.6(Oe)で
あったのに対して、二層膜〔Co-Cr層の飽和磁化は320em
u/cc〕の抗磁力は2.1(Oe)とおよそ3.5倍にも増え、真
空状態を解除したときよりも抗磁力の増加が顕著である
ことがわかった。
When a two-layered perpendicular magnetic recording medium was manufactured using a continuous DC magnetron sputtering device without releasing the vacuum state, the coercive force of the permalloy single-layer film was 0.6 (Oe). Layer film [Saturation magnetization of Co-Cr layer is 320em
It was found that the coercive force of [u / cc] was 2.1 (Oe), about 3.5 times higher, and the coercive force was more remarkable than when the vacuum state was released.

次に、連続DCマグネトロンスパッタリング装置を用
い、Co-Cr系非磁性酸化物層の作製を行った。条件は下
記の通りである。
Next, a Co—Cr-based nonmagnetic oxide layer was prepared using a continuous DC magnetron sputtering device. The conditions are as follows.

スパッタ条件 ターゲット Co-Cr(150mm×250mm×15mm) Crの割合 22重量% アルゴン圧 1×10-3Torr 投入パワー 1kW キャンロール温度 130℃ 基板 ポリエチレンテレフタレート (厚さ50μm,5インチ幅) 以上の条件に従い、スパッタ中の酸素圧力を変化させた
ときのスパッタ膜の膜厚及び飽和磁化の変化を第2図に
示す。なお、膜厚は触針式膜厚計を用いて測定し、飽和
磁化は振動試料型磁力計(VSM)を用いて測定した。
Sputtering conditions Target Co-Cr (150mm × 250mm × 15mm) Cr ratio 22% by weight Argon pressure 1 × 10 -3 Torr Input power 1kW Can roll temperature 130 ℃ Substrate polyethylene terephthalate (thickness 50μm, 5 inch width) or more 2 shows changes in the film thickness and the saturation magnetization of the sputtered film when the oxygen pressure during sputtering was changed. The film thickness was measured using a stylus type film thickness meter, and the saturation magnetization was measured using a vibrating sample magnetometer (VSM).

その結果、酸素圧力を2×10-4Torr以上とすることに
よりスパッタ膜が非磁性となることがわかった。
As a result, it was found that the sputtered film became non-magnetic by setting the oxygen pressure to 2 × 10 −4 Torr or more.

第2表に、酸素圧力を1×10-4Torr,2×10-4Torr,4×
10-4Torrと変えたときの、スパッタ膜の組成の変化を示
す。
Table 2 shows the oxygen pressure at 1 × 10 -4 Torr, 2 × 10 -4 Torr, 4 ×
The change in composition of the sputtered film when changed to 10 -4 Torr is shown.

なお、酸素圧力2×10-4Torrの場合、深さ方向に組成
分布が見られた。
When the oxygen pressure was 2 × 10 −4 Torr, a composition distribution was found in the depth direction.

このように、非磁性のCo-Cr系非磁性酸化物層は、Co-
Cr層を作製する時と同じテーゲットを用いてスパッタ中
に酸素を導入するだけで簡単に作製することが可能であ
ることがわかる。
Thus, the non-magnetic Co-Cr non-magnetic oxide layer is Co-
It can be seen that the Cr target can be easily manufactured by using the same target as the Cr target and introducing oxygen during the sputtering.

そこで次に、連続DCマグネトロンスパッタリング装置
を用い、50μm厚のポリエチレンテレフタレート基板上
に、パーマロイ層,Co-Cr系非磁性酸化物層,Co-Cr層を真
空状態を破らずにこの順に被着し、垂直磁気記録媒体を
作製した。なお、パーマロイ層の膜厚は0.5μm、テー
ゲット組成はNi80.5Fe15Mo4.5(数値は重量%)とし
た。またCo-Cr層の膜厚は0.5μmとし、ターゲットのCr
の割合は22重量%とした。これらのスパッタ条件は先に
示した通りである。Co-Cr系非磁性酸化物層のスパッタ
条件は試料8と同様である。
Then, next, using a continuous DC magnetron sputtering device, a permalloy layer, a Co-Cr-based nonmagnetic oxide layer, and a Co-Cr layer were deposited in this order on a polyethylene terephthalate substrate having a thickness of 50 μm without breaking the vacuum state. A perpendicular magnetic recording medium was produced. The film thickness of the permalloy layer was 0.5 μm, and the composition of the target was Ni 80.5 Fe 15 Mo 4.5 (numerical values are weight%). The thickness of the Co-Cr layer is 0.5 μm, and the target Cr
Was 22% by weight. These sputtering conditions are as described above. The sputtering conditions for the Co—Cr-based nonmagnetic oxide layer are the same as those for Sample 8.

かかる方法に従い、Co-Cr系非磁性酸化物層の膜厚を
変えて試料(実施例1〜実施例5)を作製し、さらに比
較例としてCo-Cr系非磁性酸化物層を被着形成しないも
のも同時に作製し、これら試料よりパーマロイ膜の抗磁
力に対するCo-Cr系非磁性酸化物層の膜厚依存性を調べ
た。結果を第3図に示す。
According to this method, samples (Examples 1 to 5) were prepared by changing the film thickness of the Co—Cr based nonmagnetic oxide layer, and as a comparative example, a Co—Cr based nonmagnetic oxide layer was formed by deposition. The non-magnetic ones were also prepared at the same time, and the thickness dependence of the Co-Cr based non-magnetic oxide layer on the coercive force of the permalloy film was investigated from these samples. Results are shown in FIG.

この第3図より、Co-Cr系非磁性酸化物層の膜厚が13
Åでもパーマロイ層の抗磁力を小さくする効果があり、
Co-Cr系非磁性酸化物層の膜厚が大きくなるに従ってパ
ーマロイ層の抗磁力が小さくなることがわかった。
From FIG. 3, the film thickness of the Co-Cr non-magnetic oxide layer is 13
Å even has the effect of reducing the coercive force of the permalloy layer,
It was found that the coercive force of the permalloy layer decreases as the thickness of the Co-Cr-based nonmagnetic oxide layer increases.

さらに、上記方法により作製した垂直磁気記録媒体の
うち、Co-Cr系非磁性酸化物層の膜厚が0Åのもの(比
較例),13Åのもの(実施例1),300Åのもの(実施例
5)について、Co-Cr層の垂直抗磁力と結晶配向度を示
すΔθ50を測定した。結果を第3表に示す。なお、垂直
抗磁力はカー効果測定により、またΔθ50はX線回折に
よりそれぞれ測定した。
Further, among the perpendicular magnetic recording media manufactured by the above method, those having a Co—Cr-based nonmagnetic oxide layer with a film thickness of 0 Å (comparative example), 13 Å (example 1), and 300 Å (example) For 5), the perpendicular coercive force of the Co—Cr layer and Δθ 50 indicating the degree of crystal orientation were measured. The results are shown in Table 3. The perpendicular coercive force was measured by Kerr effect measurement, and Δθ 50 was measured by X-ray diffraction.

この第3表から明らかなように、中間層としてCo-Cr
系非磁性酸化物層を設けても、垂直抗磁力の低下は見ら
れず、またCo-Cr層の結晶配向度にほとんど影響を与え
ない。
As is clear from Table 3, Co-Cr as the intermediate layer
The perpendicular coercive force is not decreased even when the non-magnetic oxide layer is provided, and the crystal orientation degree of the Co—Cr layer is hardly affected.

次に、記録波長10μmとし、上述の各垂直磁気記録媒
体の再生出力を調べ、再生出力のCo-Cr系非磁性酸化物
層膜厚依存性を調べた。結果を第4図に示す。
Next, with the recording wavelength set to 10 μm, the reproduction output of each of the above perpendicular magnetic recording media was examined, and the dependence of the reproduction output on the film thickness of the Co—Cr-based nonmagnetic oxide layer was examined. Results are shown in FIG.

その結果、Co-Cr系非磁性酸化物層の膜厚が400Å以下
で再生出力の増加が見られることがわかった。Co-Cr系
非磁性酸化物層の膜厚が400Åを越えると中間層を設け
ない場合よりも再生出力が低下するのは、抗磁力の低下
による再生出力の増加よりもスペーシングロスの増加に
よる再生出力の低下が上回るためと考えられる。
As a result, it was found that the reproduction output increased when the thickness of the Co-Cr-based nonmagnetic oxide layer was 400 Å or less. When the thickness of the Co-Cr-based non-magnetic oxide layer exceeds 400Å, the reproduction output is lower than that without the intermediate layer, because the spacing loss increases rather than the reproduction output due to the decrease in coercive force. It is thought that this is because the decrease in playback output exceeds that.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、高透磁率磁性層を
下地とする二層構造垂直磁気記録媒体において、高透磁
率磁性層とCo-Cr系垂直磁化層との間に中間層としてCo-
Cr系非磁性酸化物層を設けることにより、スペーシング
ロスを増加させることなく高透磁率磁性層の抗磁力を小
さくすることができ、その結果再生出力の高い垂直磁気
記録媒体を提供することが可能となる。
As is clear from the above description, in a double-layered perpendicular magnetic recording medium having a high-permeability magnetic layer as an underlayer, a Co- layer as a middle layer is provided between the high-permeability magnetic layer and the Co-Cr-based perpendicular magnetic layer.
By providing the Cr-based non-magnetic oxide layer, the coercive force of the high-permeability magnetic layer can be reduced without increasing spacing loss, and as a result, a perpendicular magnetic recording medium with high reproduction output can be provided. It will be possible.

また、中間層として被着されるCo-Cr系非磁性酸化物
層は、Co-Cr系垂直磁化層と同一のターゲットを用いス
パッタ中に酸素を導入することにより簡単に作製するこ
とができ、生産性や設備投資等の点でも有利である。
Further, the Co-Cr nonmagnetic oxide layer deposited as the intermediate layer can be easily prepared by introducing oxygen into the sputtering using the same target as the Co-Cr perpendicular magnetization layer, It is also advantageous in terms of productivity and capital investment.

さらに、Co-Cr系非磁性酸化物層を中間層として設け
ても、Co-Cr系垂直磁化層の結晶配向度や磁気特性はほ
とんど変化せず、良好な垂直磁気特性が保たれる。
Further, even if a Co—Cr based non-magnetic oxide layer is provided as an intermediate layer, the crystal orientation degree and magnetic characteristics of the Co—Cr based perpendicularly magnetized layer are hardly changed, and good perpendicular magnetic characteristics are maintained.

【図面の簡単な説明】[Brief description of drawings]

第1図はCo-Cr層の飽和磁化に対するパーマロイ層の抗
磁力の変化を示す特性図である。 第2図はスパッタ中の酸素圧力を変化させたときのスパ
ッタ膜の膜厚及び飽和磁化の変化を示す特性図である。 第3図はパーマロイ層の抗磁力のCo-Cr系非磁性酸化物
層膜厚依存性を示す特性図である。 第4図は再生出力のCo-Cr系非磁性酸化物層膜厚依存性
を示す特性図である。
FIG. 1 is a characteristic diagram showing changes in the coercive force of the Permalloy layer with respect to the saturation magnetization of the Co—Cr layer. FIG. 2 is a characteristic diagram showing changes in the film thickness and the saturation magnetization of the sputtered film when the oxygen pressure during sputtering is changed. FIG. 3 is a characteristic diagram showing the dependence of the coercive force of the permalloy layer on the thickness of the Co—Cr-based nonmagnetic oxide layer. FIG. 4 is a characteristic diagram showing the dependence of the reproduction output on the thickness of the Co—Cr nonmagnetic oxide layer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非磁性支持体上に高透磁率性層、Co-Cr系
非磁性酸化物層、Co-Cr系垂直磁化層が順次積層形成さ
れていることを特徴とする垂直磁気記録媒体。
1. A perpendicular magnetic recording medium comprising a high-permeability layer, a Co—Cr based non-magnetic oxide layer, and a Co—Cr based perpendicular magnetization layer sequentially laminated on a non-magnetic support. .
JP61244927A 1986-10-15 1986-10-15 Perpendicular magnetic recording media Expired - Fee Related JPH0823929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61244927A JPH0823929B2 (en) 1986-10-15 1986-10-15 Perpendicular magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61244927A JPH0823929B2 (en) 1986-10-15 1986-10-15 Perpendicular magnetic recording media

Publications (2)

Publication Number Publication Date
JPS6398827A JPS6398827A (en) 1988-04-30
JPH0823929B2 true JPH0823929B2 (en) 1996-03-06

Family

ID=17126038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61244927A Expired - Fee Related JPH0823929B2 (en) 1986-10-15 1986-10-15 Perpendicular magnetic recording media

Country Status (1)

Country Link
JP (1) JPH0823929B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557381B2 (en) * 1987-05-12 1996-11-27 株式会社東芝 Perpendicular magnetic recording media
US7862913B2 (en) 2006-10-23 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Oxide magnetic recording layers for perpendicular recording media

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114329A (en) * 1981-12-26 1983-07-07 Seiko Epson Corp Magnetic recording medium
JPS618719A (en) * 1984-06-20 1986-01-16 Matsushita Electric Ind Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS6398827A (en) 1988-04-30

Similar Documents

Publication Publication Date Title
JP2728498B2 (en) Magnetic recording media
JPH04228105A (en) High-coercive-force thin-film recording medium and its production
JPH0262890B2 (en)
JP4102221B2 (en) Method for manufacturing magnetic recording medium
JPH0313646B2 (en)
JPS59140629A (en) Vertical magnetic recording medium and its production
JPH0823929B2 (en) Perpendicular magnetic recording media
JPH0814889B2 (en) Perpendicular magnetic recording media
JP3308239B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing device
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JP2579184B2 (en) Magnetic recording media
JPS59228705A (en) Vertical magnetic recording medium and manufacture of the same
JP3045797B2 (en) Perpendicular magnetic recording media
JPH0582653B2 (en)
JPH0315245B2 (en)
Cord et al. Application of magnetic thin films for high-density data storage
JPS61110328A (en) Vertical magnetic recording medium and its production
JPH0311531B2 (en)
JPS59157833A (en) Magnetic recording medium
JPS63124213A (en) Perpendicular magnetic recording medium
JPS63119017A (en) Perpendicular magnetic recording medium
JPH06103555A (en) Perpendicular magnetic recording medium
JP2002109714A (en) Information recording medium and information recording device
JPH07122931B2 (en) Perpendicular magnetic recording medium
JPS5975428A (en) Vertically magnetized magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees