JPH08236152A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPH08236152A
JPH08236152A JP7061666A JP6166695A JPH08236152A JP H08236152 A JPH08236152 A JP H08236152A JP 7061666 A JP7061666 A JP 7061666A JP 6166695 A JP6166695 A JP 6166695A JP H08236152 A JPH08236152 A JP H08236152A
Authority
JP
Japan
Prior art keywords
solvent
chain
organic electrolyte
carbonate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7061666A
Other languages
Japanese (ja)
Other versions
JP3002111B2 (en
Inventor
Akihiro Anegawa
彰博 姉川
Hajime Kinoshita
肇 木下
Yukinori Hadou
之規 羽藤
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP7061666A priority Critical patent/JP3002111B2/en
Publication of JPH08236152A publication Critical patent/JPH08236152A/en
Application granted granted Critical
Publication of JP3002111B2 publication Critical patent/JP3002111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide an organic electrolyte battery which has a large capacity even at low temperature and has little capacity decrease against heavy load discharge by using an insoluble and infusible base body having a polyacene skeletal structure for electrode active material, and using organic electrolyte utilizing specific mixed solvent as electrolyte solvent. CONSTITUTION: An organic electrolyte battery is provided with a positive electrode 1, a negative electrode 2, and the aprotic organic solvent of lithium salt as electrolyte 4. The negative electrode 2 is the heat treated substance of an aromatic condensation polymer, and an insoluble and infusible base body (PAS) having a polyacene skeletal structure whose hydrogen atom/carbon atom atomic ratio (H/C) is 0.5 to 0.05. The mixed solvent of cyclic ester carbonate chain ester carbonate, and chain ster is contained as electrolyte solvent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機電解質電池に係り、
更に詳しくは電極活物質に上記特定の不溶不融性基体及
び上記特定の電解液を用いた有機電解質電池に関する。
FIELD OF THE INVENTION The present invention relates to an organic electrolyte battery,
More specifically, it relates to an organic electrolyte battery using the above-mentioned specific insoluble and infusible substrate and the above-mentioned specific electrolytic solution as an electrode active material.

【0002】[0002]

【従来の技術】近年、導電性高分子、遷移金属酸化物等
を正極とし、負極にリチウム金属或いはリチウム合金を
用いた二次電池がエネルギー密度が高いことから、Ni
−Cd電池、鉛電池に代る電池として提案されている。
しかし、これら二次電池は繰り返し充放電を行うと正
極、或いは負極の劣化による容量低下が大きく、実用上
問題が残されている。特に負極の劣化は充放電の繰り返
しによりデントライトと呼ばれる苔状のリチウム結晶の
生成を伴い、このデンドライトに起因する内部短絡や充
放電効率の低下が、電池の長寿命や高エネルギー密度に
対して障害となっている。また、上記デンドライト起因
の電池内部の短絡は、終局的にはデントライトによるセ
パレーターの貫通を招き、場合によっては電池が発火、
破裂する等、安全面においても問題があった。
2. Description of the Related Art In recent years, a secondary battery using a conductive polymer, a transition metal oxide or the like as a positive electrode and a lithium metal or a lithium alloy as a negative electrode has a high energy density.
-Proposed as an alternative to Cd batteries and lead batteries.
However, when these secondary batteries are repeatedly charged and discharged, the capacity is greatly reduced due to the deterioration of the positive electrode or the negative electrode, and a problem remains in practical use. In particular, the deterioration of the negative electrode is accompanied by the formation of mossy lithium crystals called dendrites due to repeated charge and discharge, and internal short circuits and reductions in charge and discharge efficiency due to the dendrites cause long battery life and high energy density. It is an obstacle. Further, the short circuit inside the battery due to the dendrite eventually leads to the penetration of the separator by the dendrite, and in some cases the battery ignites,
There were also safety issues such as bursting.

【0003】近年、グラファイト等の炭素材、ポリアセ
チレン、ポリパラフェニレン等の導電性高分子にリチウ
ムを担持させたリチウム電池の研究が進められている。
しかしながら、例えば炭素材にリチウムを担持させた場
合、デントライトの発生は著しく少ないものの、その利
用率はC6 Li、即ち炭素原子に対してモル百分率で1
6.7%程度である。更に、炭素材を負極に用いた場合
リチウムの出し入れに対して構造の変化があることか
ら、サイクル特性が低下するという問題があった。
In recent years, research on lithium batteries in which lithium is supported on a carbon material such as graphite or a conductive polymer such as polyacetylene or polyparaphenylene has been advanced.
However, for example, when lithium is supported on a carbon material, although the generation of dendrite is remarkably small, the utilization rate thereof is C 6 Li, that is, 1% by mol with respect to carbon atoms.
It is about 6.7%. Further, when a carbon material is used for the negative electrode, there is a problem in that the cycle characteristics are deteriorated because the structure changes due to lithium in and out.

【0004】一方、特公平1−44212号公報、特公
平3−24024号公報等にはポリアセン系骨格構造を
有する不溶不融性基体(ポリアセン系有機半導体)が記
載されている。ポリアセン系有機半導体は、多環芳香族
系炭化水素が適度に発達したアモルファス有機半導体で
あり、リチウムをドーピング、即ち担持できることか
ら、上記電池の負極活物質になる事が知られている。一
般に電池用電極は生産性、寸法安定性等の観点から、電
極活物質粉末にバインダーを加え、成形したものが好ま
しく用いられる。更に特開平3−233860号公報に
は、該不溶不融性基体と熱硬化性樹脂より成る電極を負
極に用いる有機電解質電池が記載されている。該電池は
リチウムをドープした時の電極の緩みを抑止することに
より、サイクル特性、急速充放電特性に優れた電池が得
られるが、低温における容量は電解液の凝固、電導度の
低下等の問題があり充分ではなかった。また特開平6−
203833号公報に記載されている有機電解質電池
は、該不溶不融性基体を特定のバインダーで成形した電
極を負極に用い、該電池は電池容量の大幅な向上を達成
しているが、低温における容量は上述した様な問題が依
然未解決のままであり充分ではなかった。
On the other hand, Japanese Examined Patent Publication No. 1-44212 and Japanese Examined Patent Publication No. 3-24024 disclose insoluble and infusible substrates (polyacene organic semiconductors) having a polyacene skeleton structure. It is known that a polyacene-based organic semiconductor is an amorphous organic semiconductor in which polycyclic aromatic hydrocarbons are appropriately developed, and can be doped with lithium, that is, can carry lithium, and thus can be used as a negative electrode active material of the battery. In general, from the viewpoint of productivity, dimensional stability, etc., a battery electrode is preferably formed by adding a binder to the electrode active material powder and molding. Further, JP-A-3-233860 describes an organic electrolyte battery in which an electrode composed of the insoluble and infusible substrate and a thermosetting resin is used as a negative electrode. By suppressing loosening of the electrode when the battery is doped with lithium, a battery having excellent cycle characteristics and rapid charging / discharging characteristics can be obtained, but the capacity at low temperatures causes problems such as solidification of the electrolytic solution and reduction of electrical conductivity. It was not enough. In addition, JP-A-6-
The organic electrolyte battery described in No. 203833 uses an electrode formed by molding the insoluble and infusible substrate with a specific binder as a negative electrode, and the battery achieves a significant improvement in battery capacity, but at low temperature. The capacity was not sufficient because the above-mentioned problems remained unsolved.

【0005】一般に電池の低温特性の改善に対しては電
極の改良等による解決法もあるが、電解液の効果が大き
い。電解液溶媒に求められる条件としては低粘度、高誘
電率等が挙げられるが、単独溶媒として電解液溶媒に必
要なこれらの条件を満たしているものは殆どなく、通常
低粘度溶媒と高誘電率溶媒を混合する等、2種類以上の
溶媒を混合し用いられている。しかしながら、これら混
合電解液に於いても、用いる電解液溶媒と電極活物質の
種類によっては、充電時に溶媒の分解等があり、また低
温時の電解液の凍結及びこれらに起因する電池容量の大
幅な低下等の問題があり、実用系を考慮した低温領域で
の容量、特に高負荷特性等に対して、満足できる特性を
持つ電解液は殆ど報告されていないのが実状である。
Generally, there is a solution for improving the low temperature characteristics of the battery by improving the electrode, but the effect of the electrolytic solution is great. Conditions required for the electrolytic solution solvent include low viscosity, high dielectric constant, etc., but almost none satisfy these conditions required for the electrolytic solution solvent as a single solvent, usually a low viscosity solvent and a high dielectric constant. Two or more kinds of solvents are mixed and used, such as mixing solvents. However, even in these mixed electrolytic solutions, depending on the type of the electrolytic solution solvent and the electrode active material used, the solvent may decompose during charging, and the electrolytic solution freezes at low temperatures and the battery capacity greatly increases due to these. However, in reality, almost no electrolytic solution has been reported that has satisfactory characteristics with respect to the capacity in the low temperature range, especially high load characteristics, etc., considering practical systems.

【0006】[0006]

【本発明が解決しようとする課題】本発明の目的は高容
量かつ高電圧を有し、長期に亘って充電、放電が可能で
あり、特に低温に於ける高負荷放電でも容量の低下の少
ない有機電解質二次電池の提供である。本発明の更に他
の目的は安全性に優れた二次電池の提供である。本発明
の更に他の目的は製造が容易な二次電池の提供である。
The object of the present invention is to have a high capacity and a high voltage, which can be charged and discharged for a long period of time, and the capacity is less likely to decrease even under a high load discharge at a low temperature. It is the provision of an organic electrolyte secondary battery. Still another object of the present invention is to provide a secondary battery having excellent safety. Still another object of the present invention is to provide a secondary battery that is easy to manufacture.

【0007】[0007]

【問題点を解決するための手段】本発明者らは、電極活
物質にポリアセン系骨格構造を有する不溶不融性基体を
用い、電解液溶媒として特定の混合溶媒を用いた有機電
解液を用いると、室温及び低温に於いても高容量であ
り、且つ高負荷放電に対して容量低下を改善できること
を見いだし本発明を完成した。
The present inventors have used an insoluble and infusible substrate having a polyacene skeleton structure as an electrode active material, and an organic electrolytic solution using a specific mixed solvent as an electrolytic solution solvent. The present invention has been completed by discovering that the capacity is high at room temperature and low temperature, and the capacity decrease can be improved against high load discharge.

【0008】即ち、本発明は正極、負極並びに電解液と
してリチウム塩の非プロトン性有機溶媒を備えた有機電
解質電池であって、(1)負極が芳香族系縮合ポリマーの
熱処理物であって水素原子/炭素原子の原子比(H/
C)が0.5〜0.05であるポリアセン系骨格構造を
有する不溶不融性基体(PAS)であり、(2)電解液溶
媒として環状炭酸エステルと鎖状炭酸エステルと鎖状エ
ステルの混合溶媒を含むことを特徴とする有機電解質電
池である。
That is, the present invention is an organic electrolyte battery comprising a positive electrode, a negative electrode, and an aprotic organic solvent of a lithium salt as an electrolytic solution, wherein (1) the negative electrode is a heat-treated product of an aromatic condensation polymer and hydrogen. Atom / carbon atom atomic ratio (H /
C) is an insoluble infusible substrate (PAS) having a polyacene skeleton structure of 0.5 to 0.05, and (2) a mixture of cyclic carbonate, chain carbonate and chain ester as an electrolyte solution solvent. An organic electrolyte battery containing a solvent.

【0009】本発明における芳香族系縮合ポリマーと
は、フェノール性水酸基を有する芳香族炭化水素化合物
とアルデヒド類との縮合物である。芳香族炭化水素化合
物としては、例えばフェノール、クレゾール、キシレノ
ールの如き所謂フェノール類が好ましいが、これらに限
られない。例えば下記式
The aromatic condensation polymer in the present invention is a condensate of an aromatic hydrocarbon compound having a phenolic hydroxyl group and an aldehyde. As the aromatic hydrocarbon compound, so-called phenols such as phenol, cresol, and xylenol are preferable, but not limited to these. For example, the following formula

【化1】 (ここで、x及びyはそれぞれ独立に、0、1又は2で
ある)で表されるメチレン・ビスフェノール類であるこ
とができ、或いはヒドロキシ・ビフェニル類、ヒドロキ
シナフタレン類であることもできる。これらのうち、実
用的にはフェノール類特にフェノールが好ましい。本発
明に於ける芳香族系縮合ポリマーとして、上記のフェノ
ール性水酸基を有する芳香族炭化水素化合物の1部をフ
ェノール性水酸基を有さない芳香族炭化水素化合物、例
えばキシレン、トルエン、アニリン等で置換した変成芳
香族系縮合ポリマー、例えばフェノールとキシレンとホ
ルムアルデヒドとの縮合物が好ましく用いられる。また
フラン樹脂も好ましい。またアルデヒドとしてはホルム
アルデヒド、アセトアルデヒド、フルフラール等のアル
デヒドを使用することができるが、ホルムアルデヒドが
好ましい。フェノールホルムアルデヒド縮合物として
は、ノボラック型又はレゾール型或はそれらの混合物の
いずれであってもよい。
Embedded image (Wherein x and y are each independently 0, 1 or 2), or may be hydroxy biphenyls or hydroxynaphthalenes. Of these, phenols are particularly preferable for practical use. As the aromatic condensation polymer in the present invention, a part of the above-mentioned aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, for example, xylene, toluene, aniline and the like. The modified aromatic condensation polymer described above, for example, a condensation product of phenol, xylene and formaldehyde is preferably used. Furan resin is also preferable. Aldehydes such as formaldehyde, acetaldehyde and furfural may be used as the aldehyde, but formaldehyde is preferred. The phenol-formaldehyde condensate may be a novolac type, a resol type, or a mixture thereof.

【0010】本発明における不溶不融性基体は、上記芳
香族系ポリマーを熱処理する事により得られ、特公平1
−44212号公報、特公平3−24024号公報等に
記載されているポリアセン系骨格構造を有する不溶不融
性基体は全て用いることができ、例えば、次のようにし
て製造することもできる。該芳香族系縮合ポリマーを、
非酸化性雰囲気下(真空も含む)で、400°C〜80
0°Cの適当な温度まで徐々に加熱する事により、水素
原子/炭素原子の原子比(以下H/Cと記す)が0.5
0〜0.05、好ましくは0.35〜0.10の不溶不
融性基体を得ることができる。
The insoluble and infusible substrate in the present invention is obtained by heat-treating the above aromatic polymer.
All of the insoluble and infusible substrates having a polyacene-based skeleton structure described in JP-A-44212, JP-B-3-24024, etc. can be used. For example, they can be produced as follows. The aromatic condensation polymer,
400 ° C to 80 in a non-oxidizing atmosphere (including vacuum)
By gradually heating to an appropriate temperature of 0 ° C, the atomic ratio of hydrogen atoms / carbon atoms (hereinafter referred to as H / C) is 0.5.
It is possible to obtain an insoluble and infusible substrate of 0 to 0.05, preferably 0.35 to 0.10.

【0011】本発明に用いる不溶不融性基体は、X線回
折(CuKα)によれば、メイン・ピークの位置は2θ
で表して24°以下に存在し、また該メイン・ピークの
他に41〜46°の間にブロードな他のピークが存在す
る。即ち、上記不溶不融性基体は芳香族系多環構造が適
度に発達したポリアセン系骨格構造を有し、且つアモル
ファス構造をとると示唆され、リチウムを安定にドーピ
ングできることから電池用活物質として有用である。H
/Cが0.50を越える場合、芳香族系多環構造が充分
に発達していないため、リチウムのドーピング、脱ドー
ピングがスムーズに行うことができず、電池を組んだ
時、充放電効率が低下する。また、H/Cが0.05以
下の場合、本発明の電極を用いた電池の容量が低下し好
ましくない。本発明で用いる不溶不融性基体の形状は、
粉末状、短繊維状等成形可能であれば特に限定されない
が、成形性を考慮すると、平均粒径が100μm以下の
粉末であることが好ましい。
The insoluble and infusible substrate used in the present invention has a main peak position of 2θ according to X-ray diffraction (CuKα).
In addition to the main peak, there is another broad peak between 41 and 46 °. That is, it is suggested that the insoluble and infusible substrate has a polyacene skeleton structure in which an aromatic polycyclic structure is appropriately developed, and has an amorphous structure, and is useful as a battery active material because it can be stably doped with lithium. Is. H
When / C exceeds 0.50, the aromatic polycyclic structure is not sufficiently developed, so that lithium doping and dedoping cannot be performed smoothly, and the charge / discharge efficiency is improved when the battery is assembled. descend. Further, when H / C is 0.05 or less, the capacity of the battery using the electrode of the present invention decreases, which is not preferable. The shape of the insoluble and infusible substrate used in the present invention is
It is not particularly limited as long as it can be formed into a powder form or a short fiber form, but in view of formability, a powder having an average particle size of 100 μm or less is preferable.

【0012】本発明における電極に用いるバインダーの
種類は、特に限定されないが、フッ素系バインダーが好
ましく、更にはフッ素原子/炭素原子の原子比(以下F
/Cと記す)が1.5未満0.75以上であるフッ素系
バインダーが好ましく、特に1.3未満0.75以上の
フッ素系バインダーが好ましい。
The type of binder used for the electrode in the present invention is not particularly limited, but a fluorine-based binder is preferable, and an atomic ratio of fluorine atom / carbon atom (hereinafter F)
/ C) is preferably less than 1.5 and 0.75 or more, more preferably less than 1.3 and 0.75 or more.

【0013】上記フッ素系バインダーとしては、例えば
ポリフッ化ビニリデン、フッ化ビニリデン−3フッ化エ
チレン共重合体、エチレン−4フッ化エチレン共重合
体、プロピレン−4フッ化エチレン共重合体等が挙げら
れ、更に主鎖の水素をアルキル基で置換した含フッ素系
ポリマーも用いる事ができる。ポリフッ化ビニリデンの
場合、F/Cは1でありフッ化ビニリデン−3フッ化エ
チレン共重合体の場合、フッ化ビニリデンのモル分率が
50%の時、80%の時、それぞれF/Cは1.25、
1.1となり、更にプロピレン−4フッ化エチレン共重
合体の場合、プロピレンのモル分率が50%の時、F/
Cは0.75となる。中でもポリフッ化ビニリデン、フ
ッ化ビニリデンのモル分率が50%以上のフッ化ビニリ
デン−3フッ化エチレン共重合体が好ましく、実用的に
はポリフッ化ビニリデンが好ましい。これらバインダー
を用いた場合、PASの有するリチウムのドープ能(容
量)を十分に利用することができる。
Examples of the fluorine-based binder include polyvinylidene fluoride, vinylidene fluoride-3 fluoroethylene copolymer, ethylene-4 fluoroethylene copolymer, propylene-4 fluoroethylene copolymer and the like. Further, a fluorine-containing polymer in which hydrogen in the main chain is replaced with an alkyl group can also be used. In the case of polyvinylidene fluoride, F / C is 1, and in the case of vinylidene fluoride-3 fluoroethylene copolymer, when the vinylidene fluoride mole fraction is 50% and 80%, respectively, F / C is 1.25,
1.1, and in the case of a propylene-4 fluoroethylene copolymer, when the propylene mole fraction is 50%, F /
C becomes 0.75. Among them, polyvinylidene fluoride and a vinylidene fluoride-3-fluoroethylene copolymer having a molar fraction of vinylidene fluoride of 50% or more are preferable, and polyvinylidene fluoride is practically preferable. When these binders are used, the dope capacity (capacity) of lithium that PAS has can be fully utilized.

【0014】本発明の有機電解質電池の正極としては、
特に限定されないが、例えばLiXCoO2 、 LiX
iO2 、 LiX MnO2 等のLiX y Z (Mは金
属、2種類以上の金属でもよい)の一般式で表されるリ
チウム含有金属酸化物、或いはコバルト、マンガン、ニ
ッケル等の遷移金属酸化物等を用いることができる。特
にリチウム金属に対して4V以上の電圧を有するリチウ
ム含有金属酸化物が好ましい。中でもリチウム含有コバ
ルト酸化物、リチウム含有ニッケル酸化物が好ましい。
本発明における正極は、上記活物質及び必要に応じて導
電剤、バインダーを加え成形したものであり、導電剤、
バインダーの種類、組成等は特に限定されるものではな
く、また電極形状は、目的とする電池により板状、フィ
ルム状、円柱状或いは、金属箔上に成形する等、種々の
形状をとることが出来る。特に、金属箔上に成形したも
のは、集電体一体電極として、種々の電池に応用できる
ことから好ましい。
As the positive electrode of the organic electrolyte battery of the present invention,
Although not particularly limited, for example, Li X CoO 2, Li X N
iO 2, Li Li X M y O Z (M is a metal, which may be a two or more metals) of X MnO 2, etc. In general lithium-containing metal oxide represented by formula, or cobalt, manganese, transition nickel A metal oxide or the like can be used. Particularly, a lithium-containing metal oxide having a voltage of 4 V or more with respect to lithium metal is preferable. Of these, lithium-containing cobalt oxide and lithium-containing nickel oxide are preferable.
The positive electrode in the present invention is formed by adding the above active material and, if necessary, a conductive agent and a binder.
The kind, composition, etc. of the binder are not particularly limited, and the electrode shape may take various shapes such as a plate shape, a film shape, a column shape, or a shape formed on a metal foil depending on the intended battery. I can. In particular, those formed on a metal foil are preferable because they can be applied to various batteries as a collector-integrated electrode.

【0015】本発明の電極は、特定の細孔構造を有する
PASを電極活物質とし、特定の電解液を用いることに
より、室温、低温に於ける該電極及び電解液を用いた電
池の容量を、従来の電池に比べ大幅に向上することがで
きる。
In the electrode of the present invention, PAS having a specific pore structure is used as an electrode active material and a specific electrolytic solution is used, so that the capacity of a battery using the electrode and the electrolytic solution at room temperature and low temperature can be increased. , Can be improved significantly compared to conventional batteries.

【0016】本発明に用いる電解液の溶媒は環状炭酸エ
ステルと鎖状炭酸エステルと鎖状エステルの混合溶媒を
含むものであれば特に限定されるものではない。環状炭
酸エステルと鎖状炭酸エステルと鎖状エステルのそれぞ
れは必ず1種類ずつ用いられる必要は無く、例えば2種
類の環状炭酸エステルと1種類ずつの鎖状炭酸エステル
と鎖状エステルから混合溶媒を構成させる、また環状炭
酸エステルと鎖状炭酸エステルと鎖状エステルの混合溶
媒に添加剤を加える等によっても本発明の効果を得るこ
とができる。環状炭酸エステルとしてはエチレンカーボ
ネート、プロピレンカーボネート、2,3−ブチレンカ
ーボネート、1,2−ブチレンカーボネート、2,3−
ペンテンカーボネート、1,2−ペンテンカーボネー
ト、ビニレンカーボネート、2−メチル−プロピレンカ
ーボネート等が挙げられるが、その中でもプロピレンカ
ーボネート、エチレンカーボネート、2,3−ブチレン
カーボネート、ビニレンカーボネートが好ましい。更に
プロピレンカーボネート、エチレンカーボネートが誘電
率が大きく、多量の電解質を溶解できることからより好
ましく、凝固点等を考慮するとプロピレンカーボネート
が最も好ましい。プロピレンカーボネートは充電時に分
解反応を起こす等の問題点があるが、PASを電極活物
質として用いた場合、その隙間の多い構造により殆ど分
解反応を起こさず、電解液溶媒として用いることが可能
である。
The solvent of the electrolytic solution used in the present invention is not particularly limited as long as it contains a mixed solvent of cyclic carbonate, chain carbonate and chain ester. It is not always necessary to use one kind of each of the cyclic carbonic acid ester, the chain carbonic acid ester, and the chained ester, and for example, a mixed solvent is composed of two kinds of cyclic carbonic acid ester and one kind of chain carbonic acid ester and chained ester. The effect of the present invention can also be obtained by adding an additive to a mixed solvent of cyclic carbonic acid ester, chain carbonic acid ester, and chain carbonic acid ester. As the cyclic carbonic acid ester, ethylene carbonate, propylene carbonate, 2,3-butylene carbonate, 1,2-butylene carbonate, 2,3-
Examples thereof include pentene carbonate, 1,2-pentene carbonate, vinylene carbonate, and 2-methyl-propylene carbonate. Among them, propylene carbonate, ethylene carbonate, 2,3-butylene carbonate and vinylene carbonate are preferable. Further, propylene carbonate and ethylene carbonate are more preferable because they have a large dielectric constant and can dissolve a large amount of electrolyte, and propylene carbonate is most preferable in consideration of the freezing point and the like. Propylene carbonate has a problem of causing a decomposition reaction at the time of charging, but when PAS is used as an electrode active material, it hardly causes a decomposition reaction due to the structure having many gaps and can be used as an electrolyte solution solvent. .

【0017】また鎖状エステルとしてはジエチルカーボ
ネート、ジメチルカーボネートやメチルエチルカーボネ
ート等が挙げられるが、凝固点等を考慮するとその中で
もジエチルカーボネートやメチルエチルカーボネートが
より好ましい。これらは先の環状炭酸エステルと混合す
ることにより、混合溶媒の粘度低下による低温特性の向
上が期待される。更に本発明に示す様に、鎖状エステル
を環状炭酸エステルと鎖状炭酸エステルの混合溶媒に加
えることにより、低温に於ける高負荷放電に対し容量の
低下の少ない有機電解質二次荷電池を提供することがで
きる。これは鎖状エステルの持つ低凝固点及び低粘度の
ためであり、また単独では安定性が十分ではない鎖状エ
ステルが環状炭酸エステルと鎖状炭酸エステルの混合溶
媒と同時に存在することにより安定性が向上するためで
あり、この効果により低温特性に於いて良好な結果を得
ることができる。
Examples of the chain ester include diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate and the like. Among them, diethyl carbonate and methyl ethyl carbonate are more preferable in consideration of the freezing point and the like. By mixing these with the above-mentioned cyclic carbonic acid ester, it is expected that the low temperature characteristics are improved due to the decrease in the viscosity of the mixed solvent. Further, as shown in the present invention, by adding a chain ester to a mixed solvent of a cyclic carbonic acid ester and a chain carbonic acid ester, it is possible to provide an organic electrolyte secondary rechargeable battery with a small decrease in capacity against high load discharge at low temperature. can do. This is because the chain ester has a low freezing point and a low viscosity, and the stability is not sufficient by itself. Stability is improved because a chain ester is present at the same time as a mixed solvent of cyclic carbonic acid ester and chain carbonic acid ester. This is because of the improvement, and this effect makes it possible to obtain good results in low-temperature characteristics.

【0018】このような鎖状エステルとして蟻酸メチ
ル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸ブチ
ル、酢酸プロピル、プロピオン酸メチル、酪酸メチル等
が挙げられるが、リチウムとの反応性や充電時の分解等
を考慮すると、エチルカルボシキル基を有するプロピオ
ン酸メチル、プロピオン酸エチルが安定性の面から好ま
しく、また同様の理由から酪酸メチルも好ましい。
Examples of such a chain ester include methyl formate, ethyl formate, methyl acetate, ethyl acetate, butyl acetate, propyl acetate, methyl propionate, methyl butyrate, and the like. Reactivity with lithium and decomposition during charging In consideration of the above, methyl propionate and ethyl propionate having an ethylcarboxyl group are preferable from the viewpoint of stability, and methyl butyrate is also preferable for the same reason.

【0019】また本発明で用いる電解液においては、環
状炭酸エステルが全溶媒に占める体積の割合は10%以
上70%以下が好ましく、更には20%以上40%以下
がより好ましい、鎖状炭酸エステルが全溶媒に占める体
積の割合は10%以上70%以下が好ましく、更には1
0%以上40%以下がより好ましい、鎖状エステルが全
溶媒に占める体積の割合は10%以上70%以下が好ま
しく、更には10%以上40%以下がより好ましい。ま
た、環状炭酸エステルの体積に対する鎖状炭酸エステル
と鎖状エステルの体積和の比は、(環状炭酸エステルの
体積)/(鎖状炭酸エステルの体積+鎖状エステルの体
積)=1/5〜1/2であるのが好ましい。これによ
り、室温及び低温に於いても高容量で、且つ高負荷特性
に優れた有機電解質電池が提供できる。
In the electrolytic solution used in the present invention, the ratio of the volume of the cyclic carbonic acid ester to the total solvent is preferably 10% or more and 70% or less, more preferably 20% or more and 40% or less. Is preferably 10% or more and 70% or less, more preferably 1%.
0% or more and 40% or less is more preferable, and the volume ratio of the chain ester to the whole solvent is preferably 10% or more and 70% or less, and more preferably 10% or more and 40% or less. Further, the ratio of the volume sum of the chain carbonic acid ester and the chain carbonic acid ester to the volume of the cyclic carbonic acid ester is (volume of the cyclic carbonic acid ester) / (volume of the chain carbonic acid ester + volume of the chain carbonic ester) = 1/5 to It is preferably 1/2. As a result, it is possible to provide an organic electrolyte battery that has a high capacity even at room temperature and low temperature and is excellent in high load characteristics.

【0020】また上記の混合溶媒に溶解させる電解質
は、リチウムイオンを生成しうる電解質のいずれでもよ
い。このような電解質としては、例えばLiI、LiC
lO4、LiAsF6 、LiBF4 、LiPF6 、Li
CF3 SO 3またはLiHF2等が挙げられる。上記の
電解質及び溶媒は十分に脱水された状態で混合され、電
解液とするのであるが、電解液中の電解質の濃度は電解
液による内部抵抗を小さくするため少なくとも0.1モ
ル/l以上とするのが好ましく、通常0.2〜1.5モ
ル/lとするのが更に好ましい。
The electrolyte to be dissolved in the above mixed solvent may be any electrolyte capable of producing lithium ions. Examples of such an electrolyte include LiI and LiC.
lO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , Li
CF 3 SO 3 or LiHF 2, and the like. The above-mentioned electrolyte and solvent are mixed in a sufficiently dehydrated state to form an electrolytic solution, and the concentration of the electrolyte in the electrolytic solution is at least 0.1 mol / l or more in order to reduce the internal resistance of the electrolytic solution. It is preferable that the amount is usually 0.2 to 1.5 mol / l.

【0021】電池外部に電流を取り出すための集電体と
しては、例えば炭素、白金、ニッケル、ステンレス、ア
ルミニウム、銅等を用いることができ、箔状、ネット状
の集電体を用いる場合、電極を集電体上に成形すること
により集電体一体型電極として用いることもできる。
As the current collector for extracting the current to the outside of the battery, for example, carbon, platinum, nickel, stainless steel, aluminum, copper or the like can be used. When a foil-shaped or net-shaped current collector is used, an electrode is used. It can also be used as a collector-integrated electrode by molding on a collector.

【0022】次に図面により本発明の実施態様の一例を
説明する。図1は本発明に係る電池の基本構成説明図で
ある。図1において、(1)は正極であり、(2)は負
極である。(3)、(3′)は集電体であり、各電極及
び外部端子(7)、(7′)に電圧降下を生じないよう
に接続されている。(4)は電解液であり、ドーピング
されうるイオンを生成しうる前述の化合物が非プロトン
性有機溶媒に溶解されている。(5)は正負両極の接触
を阻止する事及び電解液を保持する事を目的として配置
されたセパレータである。
Next, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating the basic configuration of a battery according to the present invention. In FIG. 1, (1) is a positive electrode and (2) is a negative electrode. Current collectors (3) and (3 ') are connected to the electrodes and the external terminals (7) and (7') so as not to cause a voltage drop. (4) is an electrolytic solution, in which the above-mentioned compound capable of generating ions that can be doped is dissolved in an aprotic organic solvent. (5) is a separator arranged for the purpose of preventing contact between the positive and negative electrodes and holding the electrolytic solution.

【0023】該セパレータは、電解液或は電極活物質等
に対し、耐久性のある連通気孔を有する電子伝導性のな
い多孔体であり、通常ガラス繊維、ポリエチレン或はポ
リプロピレン等からなる布、不織布或は合成樹脂微多孔
膜等が用いられる。セパレータの厚さは電池の内部抵抗
を小さくするため薄い方が好ましいが、電解液の保持
量、流通性、強度等を考慮して決定される。正負極及び
セパレータは電池ケース(6)内に実用上問題が生じな
いように固定される。電極の形状、大きさ等は目的とす
る電池の形状、性能により適宜決められる。
[0023] The separator is a porous material having continuous ventilation holes that are durable to an electrolytic solution or an electrode active material and has no electron conductivity, and is usually a cloth or non-woven fabric made of glass fiber, polyethylene or polypropylene. Alternatively, a synthetic resin microporous membrane or the like is used. The thickness of the separator is preferably thin in order to reduce the internal resistance of the battery, but is determined in consideration of the amount of electrolyte retained, flowability, strength and the like. The positive and negative electrodes and the separator are fixed in the battery case (6) so that there is no practical problem. The shape and size of the electrode are appropriately determined according to the shape and performance of the target battery.

【発明の効果】上記PASを電極活物質とし、上記特定
の電解液を用いた有機電解質電池は、室温及び低温に於
いても高容量且つ高電圧の有機電解質二次電池である。
The organic electrolyte battery using PAS as an electrode active material and the above-mentioned specific electrolyte is a high capacity and high voltage secondary battery at room temperature and low temperature.

【0024】以下実施例を挙げて本発明を具体的に説明
する。
The present invention will be specifically described below with reference to examples.

【実施例】【Example】

実施例1 厚さ0.5mmのフェノール樹脂成形板をシリコニット
電気炉中に入れ、窒素雰囲気下で10℃/時間の速度で
昇温し、650℃まで熱処理し、PASを合成した。か
くして得られたPAS板をディスクミルで粉砕すること
により平均粒径15μmのPAS粉体を得た。このPA
SのH/C比は0.22であった。次に上記PAS粉末
100重量部と、ポリフッ化ビニリデン粉末10重量部
をN,N−ジメチルホルムアミド90重量部に溶解した
溶液100重量部を充分に混合する事によりスラリーを
得た。該スラリーをアプリケーターを用い厚さ50μm
の銅箔(負極集電体)上に塗布し、乾燥、プレスし厚さ
200μmのPAS負極を得た。
Example 1 A 0.5 mm-thick phenol resin molding plate was placed in a silicon knit electric furnace, heated in a nitrogen atmosphere at a rate of 10 ° C./hour, and heat-treated to 650 ° C. to synthesize PAS. The PAS plate thus obtained was pulverized with a disc mill to obtain PAS powder having an average particle size of 15 μm. This PA
The H / C ratio of S was 0.22. Next, 100 parts by weight of the above PAS powder and 100 parts by weight of a solution prepared by dissolving 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide were sufficiently mixed to obtain a slurry. The slurry is 50 μm thick using an applicator.
On a copper foil (negative electrode current collector), dried and pressed to obtain a PAS negative electrode having a thickness of 200 μm.

【0025】市販のLiCoO2 (ストレム社製)10
0重量部に対し、ポリ4フッ化エチレン5重量部、アセ
チレンブラック10重量部を良く混合し、ローラーを用
いて厚さ700μmの正極シートを得た。
Commercially available LiCoO 2 (made by Strem Co.) 10
5 parts by weight of polytetrafluoroethylene and 10 parts by weight of acetylene black were thoroughly mixed with 0 parts by weight, and a roller was used to obtain a positive electrode sheet having a thickness of 700 μm.

【0026】上記正、負極(1×1cm2 )を用い図1
のような電池を組み立てた。正極負極集電体としてはス
テンレス金網、セパレータとしては厚さ25μmのポリ
プロピレン製セパレータを用いた。電解液としてはエチ
レンカーボネート(以下EC)/ジエチルカーボネート
(以下DEC)/プロピオン酸メチル(以下MPR)=
1:2:2の混合溶媒に1モル/lの濃度にLiPF6
を溶解した溶液を用いた。
Using the positive and negative electrodes (1 × 1 cm 2 ) shown in FIG.
Assembled a battery like. A stainless wire mesh was used as the positive and negative electrode current collector, and a polypropylene separator having a thickness of 25 μm was used as the separator. As an electrolyte, ethylene carbonate (hereinafter EC) / diethyl carbonate (DEC) / methyl propionate (MPR) =
LiPF 6 at a concentration of 1 mol / l in a 1: 2: 2 mixed solvent.
The solution which melt | dissolved was used.

【0027】上記電池を3個用意し、以下の検討を行っ
た。まず1個目は25℃に於いて0.25mA/cm2
の定電流充電を行い、開路電圧(充電回路開放後、1時
間放置した時の電池電圧として測定)が3.9Vになる
まで充電し、続いて0.25mA/cm2 の定電流放電
を行い、開路電圧が3.0Vになるまで放電した。この
電池に対して3.9V〜3.0Vのサイクルを繰り返
し、3回目の放電に於いて容量を評価した。この容量値
をAとした。2個目は25℃に於いて0.25mA/c
2 の定電流充電を行い、開路電圧が3.9Vになるま
で充電し、続いて−20℃に於いて2.0mA/cm2
の定電流放電を行い、開路電圧が3.0Vになるまで放
電した。この電池に対して3.9V〜3.0Vのサイク
ルを繰り返し、3回目の放電に於いて容量を評価した。
この容量値をBとした。3個目は25℃に於いて0.2
5mA/cm2 の定電流充電を行い、開路電圧が3.9
Vになるまで充電し、続いて−20℃に於いて0.25
mA/cm2 の定電流放電を行い、開路電圧が3.0V
になるまで放電した。この電池に対して3.9V〜3.
0Vのサイクルを繰り返し、3回目の放電に於いて評価
した。この容量値をCとした。これら3つの電池に対し
てその容量値を比較した。結果を表1に示す。 実施例2 電解液をプロピレンカーボネート(以下PC)/DEC
/MPR=1:2:2の混合溶媒に1モル/lの濃度に
LiPF6 を溶解した溶液とした以外は実施例1と同様
にし、3回目の容量で評価した。 実施例3 電解液をPC/DEC/酪酸メチル(以下MBU)=
1:2:2の混合溶媒に1モル/lの濃度にLiPF6
を溶解した溶液とした以外は実施例1と同様にし、3回
目の容量で評価した。 実施例4 電解液をEC/メチルエチルカーボネート(以下ME
C)/MPR=1:2:2の混合溶媒に1モル/lの濃
度にLiPF6 を溶解した溶液とした以外は実施例1と
同様にし、3回目の容量で評価した。 実施例5 電解液をEC/ジメチルカーボネート(以下DMC)/
MPR=1:2:2の混合溶媒に1モル/lの濃度にL
iPF6 を溶解した溶液とした以外は実施例1と同様に
し、3回目の容量で評価した。
Three of the above batteries were prepared and the following studies were conducted. The first one is 0.25 mA / cm 2 at 25 ° C.
The battery is charged until the open circuit voltage (measured as the battery voltage when left for 1 hour after opening the charging circuit) becomes 3.9 V, and then the constant current discharge of 0.25 mA / cm 2 is performed. , Was discharged until the open circuit voltage became 3.0V. A cycle of 3.9 V to 3.0 V was repeated on this battery, and the capacity was evaluated in the third discharge. This capacitance value was set to A. The second is 0.25mA / c at 25 ℃
A constant current charge of m 2 is performed until the open circuit voltage becomes 3.9 V, and then 2.0 mA / cm 2 at −20 ° C.
Was discharged until the open circuit voltage reached 3.0V. A cycle of 3.9 V to 3.0 V was repeated on this battery, and the capacity was evaluated in the third discharge.
This capacitance value was defined as B. The third is 0.2 at 25 ℃
Constant current charging of 5 mA / cm 2 was performed and open circuit voltage was 3.9.
Charge to V, then 0.25 at -20 ° C
Constant current discharge of mA / cm 2 and open circuit voltage of 3.0V
It was discharged until. 3.9V to 3.V for this battery.
The 0 V cycle was repeated, and evaluation was performed on the third discharge. This capacitance value was designated as C. The capacity values of these three batteries were compared. The results are shown in Table 1. Example 2 Electrolyte solution was propylene carbonate (hereinafter PC) / DEC
The third volume was evaluated in the same manner as in Example 1 except that a solution in which LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent of / MPR = 1: 2: 2 was used. Example 3 The electrolytic solution was PC / DEC / methyl butyrate (hereinafter MBU) =
LiPF 6 at a concentration of 1 mol / l in a 1: 2: 2 mixed solvent.
Was evaluated in the same manner as in Example 1 except that the solution was dissolved. Example 4 The electrolytic solution was EC / methyl ethyl carbonate (hereinafter ME
C) / MPR = 1: 2: 2 In the same manner as in Example 1 except that a solution of LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent, evaluation was performed in the third volume. Example 5 The electrolytic solution was EC / dimethyl carbonate (hereinafter DMC) /
L at a concentration of 1 mol / l in a mixed solvent of MPR = 1: 2: 2
The third evaluation was performed in the same manner as in Example 1 except that a solution in which iPF 6 was dissolved was used.

【0028】比較例1 電解液をPCに1モル/lの濃度にLiPF6 を溶解し
た溶液とした以外は実施例1と同様にし、3回目の容量
で評価した。 比較例2 電解液をEC/DEC=1:1の混合溶媒に1モル/l
の濃度にLiPF6 を溶解した溶液とした以外は実施例
1と同様にし、3回目の容量で評価した。 比較例3 グラファイト粉末(平均粒径6μm)100重量部とポ
リフッ化ビニリデン粉末10重量部をN,N−ジメチル
ホルムアミド90重量部に溶解した溶液100重量部を
充分に混合する事によりスラリーを得た。該スラリーを
アプリケーターを用い厚さ50μmの銅箔(負極集電
体)上に塗布し、乾燥、プレスし厚さ200μmのグラ
ファイト電極を得た。該電極を負極として用い、電解液
をPC/DEC/MPR=1:2:2の混合溶媒に1モ
ル/lの濃度にLiPF6 を溶解した溶液とした以外は
実施例1と同様にし、3回目の容量で評価した。以上の
結果を纏めて表1に示す。
Comparative Example 1 Evaluation was carried out in the same manner as in Example 1 except that the electrolytic solution was a solution in which LiPF 6 was dissolved in PC at a concentration of 1 mol / l. Comparative Example 2 1 mol / l of the electrolytic solution in a mixed solvent of EC / DEC = 1: 1
Evaluation was performed in the third capacity in the same manner as in Example 1 except that a solution in which LiPF 6 was dissolved in the above concentration was used. Comparative Example 3 A slurry was obtained by thoroughly mixing 100 parts by weight of graphite powder (average particle size 6 μm) and 10 parts by weight of polyvinylidene fluoride powder in 90 parts by weight of N, N-dimethylformamide, and 100 parts by weight of a solution. . The slurry was applied onto a copper foil (negative electrode current collector) having a thickness of 50 μm using an applicator, dried and pressed to obtain a graphite electrode having a thickness of 200 μm. The same procedure as in Example 1 was performed except that the electrode was used as a negative electrode and the electrolytic solution was a solution in which LiPF 6 was dissolved in a mixed solvent of PC / DEC / MPR = 1: 2: 2 at a concentration of 1 mol / l. It was evaluated by the capacity of the second time. The above results are summarized in Table 1.

【表1】 [Table 1]

【0029】表1より明らかな様に、本発明の有機電解
質電池は、ポリアセン系骨格構造を有する不溶不融性基
体を活物質として用い、特定の電解液を用いる事によ
り、室温に於いて高容量で且つ低温に於ける高負荷放電
に対しても電池の容量の低下が少ない優れた有機電解質
二次電池を提供することができる。また、実施例2及び
比較例3についてその後10サイクル程度まで上記と同
様の充放電をそれぞれ行ったところ、実施例2に於いて
は安定した容量値が得られたが、比較例3に於いては容
量値は徐々に低下した。
As is clear from Table 1, the organic electrolyte battery of the present invention uses an insoluble and infusible substrate having a polyacene skeleton structure as an active material and a specific electrolytic solution to increase the temperature at room temperature. It is possible to provide an excellent organic electrolyte secondary battery which has a small capacity and a small decrease in battery capacity even under high load discharge at low temperature. Further, when the same charge and discharge as described above were carried out for about 10 cycles for Example 2 and Comparative Example 3, a stable capacity value was obtained in Example 2, but in Comparative Example 3. The capacity value gradually decreased.

【0030】なお、本検討では電解質として上記のLi
PF6 以外にLiI、LiClO4、LiAsF6 、L
iBF4 、LiCF3 SO 3、LiHF2 等を用いて検
討を行ったが、上記の実施例とほぼ同様の結果が得られ
た。また、上記の混合溶媒に於いて溶媒の体積比を変え
たり、溶媒としてプロピオン酸エチルを用いて、或いは
正極活物質として他のリチウム含有複合酸化物、例えば
LiNiO2 等を用いて検討を行ったが、上記の実施例
とほぼ同様の結果が得られた。
In the present study, the above-mentioned Li was used as the electrolyte.
Other than PF 6 , LiI, LiClO 4 , LiAsF 6 , L
A study was conducted using iBF 4 , LiCF 3 SO 3 , LiHF 2, etc., but almost the same results as in the above-mentioned examples were obtained. Further, the volume ratio of the solvent in the above mixed solvent was changed, ethyl propionate was used as the solvent, or other lithium-containing composite oxide such as LiNiO 2 was used as the positive electrode active material. However, almost the same result as that of the above-mentioned example was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電池の基本構成説明図である。FIG. 1 is an explanatory diagram of a basic configuration of a battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 3’集電体 4 電解液 5 セパレ−タ 6 電池ケ−ス 7 7’ 外部端子 1 positive electrode 2 negative electrode 3 3'collector 4 electrolyte 5 separator 6 battery case 7 7'external terminal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極並びに電解液としてリチウム
塩の非プロトン性有機溶媒を備えた有機電解質電池であ
って、(1)負極が芳香族系縮合ポリマーの熱処理物であ
って水素原子/炭素原子の原子比(H/C)が0.5〜
0.05であるポリアセン系骨格構造を有する不溶不融
性基体(PAS)であり、(2)電解液溶媒として環状炭
酸エステルと鎖状炭酸エステルと鎖状エステルの混合溶
媒を含むことを特徴とする有機電解質電池。
1. An organic electrolyte battery comprising a positive electrode, a negative electrode, and an aprotic organic solvent of a lithium salt as an electrolytic solution, wherein (1) the negative electrode is a heat-treated product of an aromatic condensation polymer and contains hydrogen atoms / carbon. Atomic ratio (H / C) of atoms is 0.5-
An insoluble and infusible substrate (PAS) having a polyacene skeleton structure of 0.05, and (2) comprising a mixed solvent of a cyclic carbonic acid ester, a chain carbonic acid ester, and a chain ester as an electrolyte solution solvent, Organic electrolyte battery.
【請求項2】 鎖状炭酸エステルがジエチルカーボネー
ト、メチルエチルカーボネートの中の少なくともいずれ
か1つである請求項1に記載の有機電解質電池。
2. The organic electrolyte battery according to claim 1, wherein the chain carbonic acid ester is at least one of diethyl carbonate and methyl ethyl carbonate.
【請求項3】 鎖状エステルがプロピオン酸メチル、プ
ロピオン酸エチル、酪酸メチルの中の少なくともいずれ
か1つである請求項1に記載の有機電解質電池。
3. The organic electrolyte battery according to claim 1, wherein the chain ester is at least one of methyl propionate, ethyl propionate, and methyl butyrate.
【請求項4】 環状炭酸エステルがプロピレンカーボネ
ートであり、鎖状炭酸エステルがジエチルカーボネート
であり、鎖状エステルがプロピオン酸メチル、プロピオ
ン酸エチル、酪酸メチルの中の少なくともいずれか1つ
である請求項1に記載の有機電解質電池。
4. The cyclic carbonate is propylene carbonate, the chain carbonate is diethyl carbonate, and the chain ester is at least any one of methyl propionate, ethyl propionate, and methyl butyrate. 1. The organic electrolyte battery according to 1.
JP7061666A 1995-02-24 1995-02-24 Organic electrolyte battery Expired - Lifetime JP3002111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7061666A JP3002111B2 (en) 1995-02-24 1995-02-24 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7061666A JP3002111B2 (en) 1995-02-24 1995-02-24 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH08236152A true JPH08236152A (en) 1996-09-13
JP3002111B2 JP3002111B2 (en) 2000-01-24

Family

ID=13177791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7061666A Expired - Lifetime JP3002111B2 (en) 1995-02-24 1995-02-24 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3002111B2 (en)

Also Published As

Publication number Publication date
JP3002111B2 (en) 2000-01-24

Similar Documents

Publication Publication Date Title
KR102192087B1 (en) Anode active material, lithium battery comprising the same, and preparation method thereof
JP2948205B1 (en) Method for producing negative electrode for secondary battery
US20040185341A1 (en) Electrode and cell comprising the same
US20120045696A1 (en) Negative electrode materials for non-aqueous electrolyte secondary battery
JP2003303585A (en) Battery
KR20140053451A (en) Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material
KR20170042937A (en) Composite electrode active material, lithium battery including the same, and method for preparing the composite electrode active material
KR20120104930A (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
JP3218285B2 (en) Organic electrolyte battery
JP3403856B2 (en) Organic electrolyte battery
JP2920079B2 (en) Organic electrolyte battery
KR102415160B1 (en) Positive electrode active material for lithium secondary battery including vanadium oxide coated with carbon and method for preparing the same
CN113678297A (en) Lithium secondary battery
JPH08162161A (en) Organic electrolytic battery
KR101701415B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP3002111B2 (en) Organic electrolyte battery
JP3002112B2 (en) Organic electrolyte battery
JPH09102328A (en) Organic electrolyte battery
JPH08162159A (en) Organic elctrolytic battery
JPH0864251A (en) Organic electrolyte battery
EP3817094A1 (en) Functional separator, manufacturing method therefor, and lithium secondary battery comprising same
JP2869355B2 (en) Organic electrolyte battery
JP3078229B2 (en) Organic electrolyte battery
JP3403857B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term