JPH08228767A - Method for environmental cleanup - Google Patents

Method for environmental cleanup

Info

Publication number
JPH08228767A
JPH08228767A JP7040376A JP4037695A JPH08228767A JP H08228767 A JPH08228767 A JP H08228767A JP 7040376 A JP7040376 A JP 7040376A JP 4037695 A JP4037695 A JP 4037695A JP H08228767 A JPH08228767 A JP H08228767A
Authority
JP
Japan
Prior art keywords
environment
strain
degrading
tce
mutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7040376A
Other languages
Japanese (ja)
Inventor
Masanori Sakuranaga
昌徳 桜永
Takeshi Imamura
剛士 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7040376A priority Critical patent/JPH08228767A/en
Publication of JPH08228767A publication Critical patent/JPH08228767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: To accomplish degradative cleanup of pollptants by obtaining pollutant-degradative microbes from the environment polluted with organochlorine compounds followed by changing the microbes into oxygenase- manifestative microbes through mutation which are, in turn made to act on the original environment. CONSTITUTION: Corynebacterium sp. J1 strain (FERM P-14332), a kind of microbes capable of degrading organochlorine compounds, is obtained from the environment polluted with such organochlorine compounds, and then changed into an oxygenase-manifestative microbial strain through mutation, which is, in turn, made to act on the original environment. For the mutation, any means such as ultraviolet-light irradiation or nitrosoguanidine can be applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トリクロロエチレン
(TCE)あるいはジクロロエチレン(DCE)等の有
機塩素化合物に汚染された廃液あるいは土壌の微生物を
用いた浄化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for purifying waste liquid or soil contaminated with an organic chlorine compound such as trichlorethylene (TCE) or dichloroethylene (DCE) using microorganisms.

【0002】[0002]

【従来の技術】近年、生体に対し有害でかつ難分解性で
ある有機塩素化合物による環境汚染が大きな問題となっ
てきている。特に、国内外の紙・パルプ工業や半導体製
造工場内の土壌中にはテトラクロロエチレン(PC
E)、トリクロロエチレン、ジクロロエチレン等の有機
塩素化合物による汚染が広範囲に拡がっていると考えら
れており、実際に環境調査等で検出された事例が多数報
告されている。
2. Description of the Related Art In recent years, environmental pollution caused by organic chlorine compounds, which are harmful to living organisms and hardly decomposed, has become a serious problem. In particular, tetrachloroethylene (PC
E), trichlorethylene, dichloroethylene, and other organic chlorine compounds are considered to have spread to a wide range, and many cases have been reported that were actually detected in environmental surveys.

【0003】これらの有機塩素化合物は土壌中に残留し
たものが雨水等により、地下水中に溶解して周辺地帯一
帯に拡がっているとされている。このような化合物は有
害性が指摘されており、また環境中で安定であるため、
特に飲料水の水源として利用されている地下水の汚染は
大きな社会問題とされている。
It is said that these organic chlorine compounds, which remain in the soil, are dissolved in groundwater by rainwater or the like and spread over the surrounding area. Since such compounds have been pointed out to be harmful and are stable in the environment,
In particular, the pollution of groundwater, which is used as a water source for drinking water, is a major social problem.

【0004】このようなことから、有機塩素化合物の除
去分解による汚染地下水や土壌の浄化は、環境保全の視
点から重要な課題であり浄化に必要な技術の開発が行わ
れてきている。例えば、活性炭による吸着処理、光や熱
による分解処理等が検討されてきたが、コストや操作性
の面で必ずしも実用的であるとは言えない。
From the above, purification of contaminated groundwater and soil by removal and decomposition of organic chlorine compounds is an important issue from the viewpoint of environmental protection, and techniques necessary for purification have been developed. For example, adsorption treatment with activated carbon and decomposition treatment with light and heat have been studied, but they are not always practical in terms of cost and operability.

【0005】一方近年、環境中で安定であるTCE等の
有機塩素化合物に対して微生物による分解が報告され、
その実用化に向けた研究がされ始めている。
On the other hand, in recent years, microbial decomposition of organochlorine compounds such as TCE, which is stable in the environment, has been reported.
Research towards its practical application has begun.

【0006】即ち、微生物を用いた生物分解処理による
浄化方法では用いる微生物を適切に選択することで有機
塩素化合物を無害な物質までに分解できること、基本的
に特別な薬品が不要であること、メンテナンスにかかる
労力やコストを軽減できること等の利点が注目されてい
る。しかし、揮発性有機塩素化合物分解能を有する微生
物で単離された報告は多くない。
That is, in the purification method by biodegradation treatment using microorganisms, it is possible to decompose organic chlorine compounds into harmless substances by properly selecting the microorganisms to be used, basically no special chemicals are required, and maintenance is required. Attention has been paid to the advantages such as the reduction of labor and cost involved in However, there have been few reports of isolation in microorganisms capable of decomposing volatile organic chlorine compounds.

【0007】例えば、TCE分解菌としては、Welchia
alkenophila sero 5 (USP4877736,ATCC53570)、Welchia
alkenophila sero 33 (USP4877736, ATCC53571) 、Met
hylocystis sp. strain M (Agric. Biol. Chemi., 53,2
903 (1989) 、Biosci. Biotech. Biochem., 56,486 (19
92)、同 56,736 (1992)) 、Methylosinus trichosporiu
m OB3b (Am. Chem. Soc. Natl. Meet. Dev. Environ. M
icrobiol., 29,365 (1989) 、Appl. Environ. Microbio
l., 55,3155 (1989) 、Appl. Biochem. Biotechnol., 2
8,877 (1991) 、特開平02−92274号公報、特開
平03−292970号公報)、Methylomonas sp. MM2
(Appl. Environ. Microbiol., 57,236(1991)、Alcalig
enes denitrificans ssp. xylosoxidans JE75 (Arch. M
icrobiol., 154,410 (1990)) 、Alcaligenes eutrophus
JMP134 (Appl. Environ. Microbiol., 56,1179 (199
0))、Mycobacterium vaccae JOB5 (J. Gen, Microbio
l., 82,163 (1974)、Appl. Environ. Microbiol., 54,2
960 (1989) 、ATCC29678)、Pseudomonas putida BH
(下水道協会誌、24,27(1987))、Acinetob
actor sp. strain G4 (Appl. Environ. Microbiol., 5
2,383 (1986) 、同53,949 (1987) 、同54,951 (1989)
、同56,279 (1990) 、同57,193 (1991) 、USP4925802,
ATCC53617 、この菌は初めPseudomonas cepacia と分
類されていたが、Acinetobactor sp. に変更された)、
Pseudomonas mendocina KR-1 (Bio/Technol., 7,282 (1
989)) 、Pseudomonas putida Fl (Appl.Environ. Micro
biol., 54,1703 (1988) 、同 54,2578 (1988) 、Pseudo
monas fluorescens PFL12 (Appl. Environ. Microbio
l., 54,2578 (1988)) 、Pseudomonas putida KWI-9(特
開平06−70753号公報)、Pseudomonas cepacia
KK01(特開平06−227769号公報)、Nitrosomon
as europaea (Appl. Environ. Microbiol., 56,1169 (1
990))、Lactobacillus fructivorans RE (Int. J. Sys
t. Bacteriol., 30,313 (1980)、J.Appl. Bacteriol.,
34,541 (1971))、 Lactobacillus vaginalis sp. nov
(Int.J. Syst. Bacteriol., 39,368 (1989)、 ATCC4954
0) 等があるにすぎない。
For example, as TCE-degrading bacteria, Welchia
alkenophila sero 5 (USP4877736, ATCC53570), Welchia
alkenophila sero 33 (USP4877736, ATCC53571), Met
hylocystis sp. strain M (Agric. Biol. Chemi., 53,2
903 (1989), Biosci. Biotech. Biochem., 56,486 (19
92), ibid., 56,736 (1992)), Methylosinus trichosporiu
m OB3b (Am. Chem. Soc. Natl. Meet. Dev. Environ. M
icrobiol., 29,365 (1989), Appl. Environ. Microbio
l., 55, 3155 (1989), Appl. Biochem. Biotechnol., 2
8,877 (1991), JP-A No. 02-92274, JP-A No. 03-292970), Methylomonas sp. MM2.
(Appl. Environ. Microbiol., 57,236 (1991), Alcalig
enes denitrificans ssp. xylosoxidans JE75 (Arch. M
icrobiol., 154,410 (1990)), Alcaligenes eutrophus
JMP134 (Appl. Environ. Microbiol., 56,1179 (199
0)), Mycobacterium vaccae JOB5 (J. Gen, Microbio
l., 82,163 (1974), Appl. Environ. Microbiol., 54,2
960 (1989), ATCC29678), Pseudomonas putida BH
(Sewer Association Magazine, 24, 27 (1987)), Acinetob
actor sp. strain G4 (Appl. Environ. Microbiol., 5
2,383 (1986), 53,949 (1987), 54,951 (1989)
, Ibid., 56,279 (1990), ibid., 57,193 (1991), USP4925802,
ATCC53617, which was originally classified as Pseudomonas cepacia, but changed to Acinetobactor sp.),
Pseudomonas mendocina KR-1 (Bio / Technol., 7,282 (1
989)), Pseudomonas putida Fl (Appl.Environ. Micro
biol., 54,1703 (1988), ibid. 54,2578 (1988), Pseudo
monas fluorescens PFL12 (Appl. Environ. Microbio
L., 54, 2578 (1988)), Pseudomonas putida KWI-9 (JP 06-70753 A), Pseudomonas cepacia.
KK01 (Japanese Patent Laid-Open No. 06-227769), Nitrosomon
as europaea (Appl. Environ. Microbiol., 56,1169 (1
990)), Lactobacillus fructivorans RE (Int. J. Sys.
t. Bacteriol., 30,313 (1980), J. Appl. Bacteriol.,
34,541 (1971)), Lactobacillus vaginalis sp. Nov.
(Int.J.Syst.Bacteriol., 39,368 (1989), ATCC4954
0) There is nothing else.

【0008】また、さらに問題になることはこれらの分
解菌を実際の環境浄化処理に用いる場合には、これら全
ての分解菌が、TCE等を分解するためには、その分解
誘導物質として、芳香族化合物やメタン等の化学物質を
必要とするということである。
Further, a further problem is that when these decomposing bacteria are used for actual environmental purification treatment, all of these decomposing bacteria must be used as a decomposition inducer in order to decompose TCE and the like. It means that it requires chemical compounds such as group compounds and methane.

【0009】例えば、フェノールやトルエンといった芳
香族化合物は非常に有効な誘導物質であるが、その毒性
が高いから、環境中に放出することは論外である。ま
た、メタンも有効な誘導物質であるが、可燃性の気体で
あり、環境中に導入して制御することが多大な危険と困
難を伴う。
[0009] For example, aromatic compounds such as phenol and toluene are very effective inducers, but their toxicity is high, so it is out of the question to release them into the environment. Although methane is also an effective inducer, it is a flammable gas, and it is extremely dangerous and difficult to introduce and control it in the environment.

【0010】これらの問題を解決するため、ネルソンら
は揮発性有機塩素化合物の分解誘導物質としてアミノ酸
の一種であるトリプトファンを用いる方法を開発した
(特開平4−502277号)。
In order to solve these problems, Nelson et al. Developed a method using tryptophan, which is a kind of amino acid, as a decomposition inducer of volatile organic chlorine compounds (Japanese Patent Laid-Open No. 4-502277).

【0011】しかしトリプトファンは非常に高価な物質
であり、かつこの方法においても、その誘導物質固有の
問題である毒性及び危険性はある程度回避されるもの
の、特定の物質を環境中に導入し、その後それを制御し
ていくという煩雑さは何ら解決されていない。また、環
境中に過剰の炭素源及び窒素源を添加すること自体が環
境の富栄養化であるという意味で好ましくない。
However, tryptophan is a very expensive substance, and even in this method, toxicity and danger, which are problems inherent to the inducer, can be avoided to some extent, but after introducing a specific substance into the environment, The complexity of controlling it has never been solved. Further, it is not preferable to add excess carbon source and nitrogen source to the environment in the sense that it is eutrophication of the environment.

【0012】さらに言えば、このようなTCE分解酵素
は誘導酵素であるため、一旦誘導された後の酵素活性は
通常数時間から一日程度しか維持されず、その後はまた
誘導物質が必要となり、かつTCE分解が誘導物質の存
在により拮抗阻害を起こすという問題も抱えている。
Furthermore, since such a TCE degrading enzyme is an inducing enzyme, the enzyme activity after being once induced is usually maintained only for several hours to about one day, and then an inducer is required again. Moreover, there is also a problem that TCE decomposition causes competitive inhibition due to the presence of the inducer.

【0013】そこで現在、このようなTEC分解酵素で
あるオキシゲナーゼ或いはハイドロキシラーゼをコード
する遺伝子領域を含むDNA断片を組み込んだプラスミ
ドを宿主細菌に導入し、芳香族化合物を誘導物質が存在
しない状況でも構成的にTCE分解活性を発現させよう
とする試みがなされている。DNA断片由来菌株として
はシュードモナスメンドシナKR−1(特開平2−50
3866)、シュードモナスプチダKWI−9(特開平
6−105691)及びシュードモナスプチダBH(地
下水・土壌汚染とその防止対策に関する研究集会第3回
講演集、213(1994))が挙げられる。
Therefore, at present, a plasmid into which a DNA fragment containing a gene region encoding such an TEC-degrading enzyme such as oxygenase or hydroxylase is incorporated is introduced into a host bacterium, and an aromatic compound is formed even in the absence of an inducer. Attempts have been made to express TCE-degrading activity. As a DNA fragment-derived strain, Pseudomonas mendocina KR-1 (Japanese Patent Laid-Open No. 2-50 / 1990)
3866), Pseudomonas putida KWI-9 (Japanese Patent Laid-Open No. 6-105691) and Pseudomonas putida BH (Groundwater / Soil Contamination and 3rd Lecture Meeting 213 (1994)).

【0014】しかしこれらの組み換え菌株は、誘導物質
として非常に高価な物質であるIPTG(イソプロピル
チオガラクトピラノシド)が必要であったり、プラミス
ドの宿主菌株に対する安定性が充分でない等の様々な問
題を伴う。その上、組み換え菌株を環境中に放出するこ
とはパブリック・アクセプタンスの上からも規制は免れ
ない。
However, these recombinant strains require various problems such as the need for IPTG (isopropylthiogalactopyranoside), which is a very expensive substance as an inducer, and insufficient stability of prammised against the host strain. Accompanied by. Moreover, the release of recombinant strains into the environment is inevitable due to public acceptance.

【0015】これらの問題を解決するため、シールズ等
は、誘導物質(この場合フェノール或いはトルエン)を
必要としないでTCE分解能を有するシュードモナスセ
パシア(ATCCへの寄託においてはアシネトバクター
・スピーシズに名称変更されている)G4株の、変異株
を、トランスポゾンを用いた手法で取得した(Appl.Env
iron. Microbiol., 58,3977 (1992)、国際公開WO92
/19738号)。また、メタン資化性TCE分解菌で
あるメチロシナストリコスポリウムOB3b株でも、誘
導物質であるメタンを必要としないTCE分解変異株を
取得したと報告されている(米国特許第5,316,9
40号)。
In order to solve these problems, Shields et al. Was renamed Pseudomonas sepacia (in the case of depositing with ATCC, Acinetobacter species in the absence of an inducer (phenol or toluene in this case) and having TCE resolution. G4 strain, a mutant strain was obtained by a method using a transposon (Appl.Env
iron. Microbiol., 58,3977 (1992), International publication WO92
/ 19738). It has also been reported that the methylocinastricosporium OB3b strain, which is a methane-utilizing TCE-degrading bacterium, has acquired a TCE-degrading mutant that does not require methane, which is an inducer (US Pat. No. 5,316,16). 9
No. 40).

【0016】[0016]

【発明が解決しようとする課題】このように、有機塩素
化合物を分解浄化する分解菌株は多数報告されている
が、その分解菌を取得した環境とは異なる環境下で同じ
ように分解浄化を行わせるには条件が必ずしも好ましく
なく、分解菌の有意な増殖が得られず、結果として微生
物浄化方法が適用できないことが起こり得る。
As described above, although many degrading strains for decomposing and purifying organochlorine compounds have been reported, the same degrading and purifying is performed in an environment different from the environment in which the degrading bacteria were acquired. It is possible that the conditions are not necessarily favorable for allowing the decomposition to occur, significant growth of the degrading bacteria cannot be obtained, and as a result, the method for microbial purification cannot be applied.

【0017】また、例えば土壌環境に外来菌を有意に増
殖させることは、自然環境内の微生物生態を著しく変化
させ、結果として自然環境の破壊につながる危険性も考
えられる。
Further, for example, significantly proliferating alien bacteria in the soil environment may significantly change the microbial ecology of the natural environment, resulting in the risk of destruction of the natural environment.

【0018】そこで、浄化対象である自然環境から汚染
対象物を分解する菌をまず単離した後に、再びその汚染
対象にその分解菌を適用して浄化する方法が考えられる
(特開昭58−190389)。この方法では、分解菌
が元来土着の菌であるため菌を注入する環境がその菌に
好適であるばかりか、外来菌の増殖のような微生物生態
の攪乱が起こらず都合が良い。
Therefore, a method is conceivable in which a bacterium that decomposes a pollutant from the natural environment to be purified is first isolated, and then the decomposed bacterium is applied to the pollutant again to purify it (Japanese Patent Laid-Open No. 58-58-58). 190389). In this method, since the degrading bacteria are originally indigenous, the environment for injecting the bacteria is not only suitable for the bacteria, but also convenient because it does not disturb the microbial ecology such as the growth of foreign bacteria.

【0019】しかしながら、前述したように、自然環境
から単離された微生物で有機塩素化合物の分解微生物
は、メタンや芳香族化合物のような誘導基質を必要する
から、これらの誘導基質である物質を浄化対象の環境内
に追加しなければならず、操作が煩雑なばかりか、その
物質による自然環境の2次汚染を招きかねない欠点を有
している。
However, as described above, the microorganisms which are isolated from the natural environment and decompose the organochlorine compound require an inducing substrate such as methane or an aromatic compound. It has to be added to the environment to be purified, and the operation is complicated, and it has a drawback that it may cause secondary pollution of the natural environment due to the substance.

【0020】また、土着の分解菌に遺伝子操作を施すこ
とにより誘導基質を不用とさせることも考えられるが、
この方法は手間が煩雑であることと、パブリック・アク
セプタンスを得る手続きが伴う等、実用化するには不都
合な点が多い。
It is also conceivable that the inducing substrate may be made unnecessary by subjecting the indigenous degrading bacterium to genetic modification.
This method has many inconveniences for practical use because it is troublesome and involves a procedure for obtaining public acceptance.

【0021】そこで本発明の目的は、浄化対象である自
然環境から汚染対象物を分解する菌をあらかじめ単離し
た後に、その微生物が有機塩素化合物の分解に際して必
要としていた誘導基質を不用となるように変異させた
後、再びその汚染対象にその分解菌を適用して有機塩素
化合物を浄化する方法を提供することである。
Therefore, an object of the present invention is to pre-isolate a bacterium that decomposes a pollutant from the natural environment to be purified, and then to eliminate the use of an inducing substrate required for the microbial decomposition of the organochlorine compound. It is intended to provide a method for purifying an organic chlorine compound by applying the decomposing bacterium to the subject to be polluted again after the mutation.

【0022】[0022]

【課題を解決するための手段】上記の目的は以下のよう
にして達成される。
The above object is achieved as follows.

【0023】即ち、本発明者らは、有機塩素化合物で汚
染された分解対象物から、有機塩素化合物を分解する微
生物を得て、その微生物に変異を起こさせる手段を加え
て構成的にオキシゲナーゼを発現する微生物株に変異さ
せた後に、もともとの分解対象物にその変異微生物株を
加えることにより、汚染物を分解浄化する方法を見いだ
した。
That is, the present inventors obtain a microorganism decomposing an organochlorine compound from an object to be decomposed contaminated with the organochlorine compound, and add a means for causing mutation in the microorganism to constitutively add an oxygenase. We have found a method of decomposing and purifying pollutants by mutating the microbial strain to be expressed and then adding the mutant microbial strain to the original decomposition target.

【0024】本発明の実施態様では、有機塩素化合物分
解菌としてコリネバクテリウム スピーシズに属する菌
株を用いているが、前述したように自然環境には様々な
種及び属の有機塩素化合物分解菌が存在しているから、
本発明で利用できる微生物は特定の種、属或いは株に限
定されるものではない。
In the embodiment of the present invention, a strain belonging to Corynebacterium species is used as an organochlorine-decomposing bacterium, but as described above, various species and genera of organochlorine-decomposing bacteria exist in the natural environment. Because
The microorganism that can be used in the present invention is not limited to a particular species, genus or strain.

【0025】微生物に変異を起こさせる方法としては、
一般的に用いられている物理的化学的刺激による突然変
異の誘起方法はいずれも応用が可能であり、具体的には
紫外線、ガンマ線等の照射やニトロソグアニジン、エチ
ルメタンスルホネート(EMS)、亜硝酸、アクリジン
色素(アクリジンオレンジ、プロフラビン、アクリフラ
ビン等)等の変異源物質を共存させる方法があり、どれ
を用いてもよい。
As a method for causing mutation in a microorganism,
Any of the commonly used methods for inducing mutations by physical and chemical stimuli can be applied. Specifically, irradiation with ultraviolet rays, gamma rays, etc., nitrosoguanidine, ethyl methane sulfonate (EMS), nitrite, etc. There is a method of coexisting with a mutagen substance such as acridine dye (acridine orange, proflavin, acriflavine, etc.), and any of them may be used.

【0026】また、このような方法で作製された変異株
も特定の菌株に限定されるものではない。
The mutant strain produced by such a method is not limited to a specific strain.

【0027】本発明では、微生物を浄化対象に導入する
際に誘導物質を添加する必要はないが、微生物の増殖の
ために栄養源が必要なことは言うまでもない。したがっ
て、栄養素や酸素を追加的に添加することは時に大変有
効である。
In the present invention, it is not necessary to add an inducer when introducing the microorganism into the purification target, but it goes without saying that a nutrient source is necessary for the growth of the microorganism. Therefore, the additional addition of nutrients and oxygen is sometimes very effective.

【0028】また、環境内に微生物担体を添加すること
により、導入した環境内で微生物のハビタットを提供し
て増殖を促進することも時に大変有効である。
It is also sometimes very effective to add a microbial carrier to the environment to provide a habitat of the microorganism in the introduced environment to promote the growth.

【0029】[0029]

【実施例】【Example】

(実施例1)TCE汚染土壌を採取し、この土壌よりT
CEを分解する菌種を探索した結果、高濃度のTCE分
解能を有する菌株を取得した。この菌株はコリネバクテ
リウム・スピーシズに属せしめるのが適当と認められコ
リネンバクテリウム・スピーシズ J1株と命名された
(工業技術院生命工学工業技術研究所の受託番号:P−
14332号)。
(Example 1) TCE-contaminated soil was collected, and TCE was collected from this soil.
As a result of searching for bacterial species degrading CE, a strain having a high concentration of TCE decomposing ability was obtained. It was recognized that it is appropriate to make this strain belong to Corynebacterium species, and it was named Corinenbacterium species J1 strain (trust number of the Institute of Biotechnology, Institute of Industrial Science: P-
14332).

【0030】この菌株は20ppm前後のTCEをほぼ
完全に分解するが、分解誘導物質としてフェノール、ト
ルエン、クレゾール等の芳香族化合物が必要である。
This strain almost completely decomposes TCE at about 20 ppm, but requires aromatic compounds such as phenol, toluene and cresol as decomposition inducers.

【0031】次に、上記の菌株を培養した菌液10ml
を遠心分離して集菌し、上澄を除去した後、20ppm
のNTG(N−メチル−N’−ニトロ−N−ニトロソグ
アニジン)及び200ppmのフェノールを含むM9培
地を5ml加え、30℃で振盪培養を行った。
Next, 10 ml of the bacterial solution obtained by culturing the above strain
Was collected by centrifugation and the supernatant was removed.
Of NTG (N-methyl-N'-nitro-N-nitrosoguanidine) and 5 ppm of M9 medium containing 200 ppm of phenol was added, and shake culture was performed at 30 ° C.

【0032】菌液は2時間から3時間で、フェノールの
分解中間生成物である2−ヒドロキシムコン酸セミアル
デヒド由来の黄色を呈し始めるので、この時点の菌液
を、200ppmのインドール及び、酵母エキス0.1
%を含むM9寒天培地上に塗布し、30℃で静置培養を
行った。
The bacterial solution begins to show a yellow color derived from 2-hydroxymuconic semialdehyde, which is an intermediate product of the decomposition of phenol, in 2 to 3 hours. Therefore, the bacterial solution at this point is treated with 200 ppm of indole and yeast extract. 0.1
It was spread on M9 agar medium containing 100% of the culture medium and statically cultured at 30 ° C.

【0033】通常インドールは、多くの芳香族分解(酸
化あるいは水酸化)酵素によって変換され、インディゴ
となって青色を呈する。J1株もこのような酵素を有し
ており、通常プレート上のコロニーは2〜3日目で青色
を呈する。これに対し、オキシゲナーゼを構成的に発現
するとこの呈色がコロニーの形成と共に現れるので、こ
のような変異株を野生株と区別して釣菌することが可能
である。
Usually, indole is converted by many aromatic decomposing (oxidizing or hydroxylating) enzymes and becomes indigo, which is blue. The J1 strain also has such an enzyme, and the colonies on the plate usually appear blue in 2 to 3 days. On the other hand, when the oxygenase is constitutively expressed, this coloration appears along with the formation of colonies, and thus it is possible to distinguish such mutant strains from the wild strains and to catch bacteria.

【0034】以上のような変異操作により、フェノー
ル、トルエン、クレゾール等の芳香族の誘導物質を必要
としない菌株を得ることができ、コリネバクテリウム・
スピーシズ JM1と命名した(受託番号:FERM
P−14727号)。
By the above-mentioned mutation operation, a strain which does not require an aromatic inducer such as phenol, toluene and cresol can be obtained, and Corynebacterium
Named Species JM1 (Accession number: FERM
P-14727).

【0035】このようにして得た寒天培地上のJM1株
のコロニーを、坂口フラスコ中の酵母エキス0.2%を
含むM9培地200mlに接種し、30℃で36時間振
盪培養を行った。
The thus-obtained JM1 strain colonies on the agar medium were inoculated into 200 ml of M9 medium containing 0.2% of yeast extract in a Sakaguchi flask, and shake-cultured at 30 ° C. for 36 hours.

【0036】J1株を取得した近くの土壌を4gづつバ
イアル瓶に採取し、各バイアルに0.1%酵母エキスを
含むM9培地1mlを注入し、さらに上記培養菌液0.
1mlを接種した後、ブチルゴム栓及びアルミキャップ
で完全密封し、15℃で培養した。
Soil near the strain from which the J1 strain was obtained was collected in vials in an amount of 4 g, 1 ml of M9 medium containing 0.1% yeast extract was injected into each vial, and the above-mentioned culture broth solution of 0.
After inoculating 1 ml, it was completely sealed with a butyl rubber stopper and an aluminum cap, and cultured at 15 ° C.

【0037】同様に、土壌4gづつを採取し、各バイア
ルの0.1%酵母エキスを含むM9培地1mlを注入
し、テフロンコーティングブチルゴム栓及びアルミキャ
ップで完全に密封し15℃で保存し対照とした。培養あ
るいは保存8日後の各サンプルの土壌にn−ヘキサン5
mlをシリンジで加え、土壌が万遍なく分散されるよう
に手で振った後、攪拌機で3分間抽出し、n−ヘキサン
層のTCEをECD−ガスクロマトグラフィーにて測定
した。以上の測定結果を表−1に示す。 (実施例2)寒天培地上のJM1株のコロニーを、坂口
フラスコ中の酵母エキス0.2%を含むM9培地200
mlに接種し、30℃で36時間振盪培養を行った。
Similarly, 4 g of soil was collected, 1 ml of M9 medium containing 0.1% yeast extract in each vial was injected, and the vial was completely sealed with a Teflon-coated butyl rubber stopper and an aluminum cap and stored at 15 ° C. to serve as a control. did. N-hexane 5 was added to the soil of each sample after 8 days of culture or storage.
After adding ml with a syringe and shaking by hand so that the soil was evenly dispersed, extraction was performed with a stirrer for 3 minutes, and TCE of the n-hexane layer was measured by ECD-gas chromatography. The above measurement results are shown in Table-1. (Example 2) The colonies of the JM1 strain on the agar medium were converted into M9 medium 200 containing 0.2% yeast extract in a Sakaguchi flask.
ml was inoculated, and shaking culture was performed at 30 ° C. for 36 hours.

【0038】実施例1と同様に採取した土壌4gと、T
CE20ppm及び0.1%酵母エキスを含むM9培地
1mlをバイアル瓶に加えた。さらに上記のようにして
培養した菌液0.1mlを接種した後、ブチルゴム栓及
びアルミキャップで完全密封し、実際の土壌中の温度に
近い15℃で静置培養した。
4 g of soil collected in the same manner as in Example 1 and T
1 ml of M9 medium containing 20 ppm CE and 0.1% yeast extract was added to the vial. Further, after inoculating 0.1 ml of the bacterial solution cultivated as described above, it was completely sealed with a butyl rubber stopper and an aluminum cap, and statically cultivated at 15 ° C. close to the actual temperature in soil.

【0039】こうして準備したサンプル中のTCE量を
ヘッドスペース法によりガスクロマトグラフィーによっ
て定量し、経時的にTCEの減少を測定した。対照実験
としてJM1株を加えない系でのTCE量の定量も行
い、対照のTCE量に対する残存率を求めた、この結果
を図1に示す。 (実施例3)分解対照物質をcis−1,2−ジクロロ
エチレン(cis−1,2−DCE)、trans−
1,2−ジクロロエチレン(trans−1,2−DC
E)及び、1,1−ジクロロエチレン(1,1−DC
E)それぞれ5ppmとして、実施例2と同様にして加
えた系をつくり、実施例2と同様にして経時的にDCE
の減少を測定した。結果を図2に示す。
The amount of TCE in the sample thus prepared was quantified by gas chromatography by the headspace method, and the decrease in TCE was measured over time. As a control experiment, the amount of TCE was also quantified in a system in which the JM1 strain was not added, and the residual ratio to the amount of TCE in the control was determined. The results are shown in FIG. (Example 3) As a decomposition control substance, cis-1,2-dichloroethylene (cis-1,2-DCE), trans-
1,2-dichloroethylene (trans-1,2-DC)
E) and 1,1-dichloroethylene (1,1-DC
E) A system was prepared in the same manner as in Example 2 with 5 ppm each, and DCE was performed with time in the same manner as in Example 2.
Was measured. The results are shown in Figure 2.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【発明の効果】本発明によって、自然環境中に外来菌導
入をするような微生物生態の激変を招かずに、また煩雑
で環境に影響を及ぼしかねない誘導物質の添加を必要と
せずに、微生物によって環境中の有機塩素化合物を分解
浄化することが可能となった。
INDUSTRIAL APPLICABILITY According to the present invention, microorganisms are introduced without causing a drastic change in microbial ecology such as introducing foreign bacteria into the natural environment, and without requiring addition of an inducer which is complicated and may affect the environment. This has made it possible to decompose and purify organic chlorine compounds in the environment.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2におけるTECの経日分解を示す図。FIG. 1 is a diagram showing a daily decomposition of TEC in Example 2.

【図2】実施例3におけるDCEの経日分解を示す図。FIG. 2 is a diagram showing daily decomposition of DCE in Example 3.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 環境中の有機塩素化合物分解能を有する
微生物に、遺伝子に変異を生起させる手段を適用して変
異株を作出し、作出された変異株の中から構成的にオキ
シゲナーゼを発現する変異微生物を単離し、増殖してこ
れを元の環境に作用させることにより有機塩素化合物を
分解することを特徴とする有機塩素化合物の分解処理方
法。
1. A mutant which produces a mutant by applying a means for causing a mutation in a gene to a microorganism capable of degrading an organic chlorine compound in the environment, and a mutation which constitutively expresses an oxygenase from the created mutants. A method for decomposing an organochlorine compound, which comprises degrading an organochlorine compound by isolating and proliferating a microorganism to act on the original environment.
【請求項2】 有機塩素化合物分解能を有する微生物
は、有機塩素化合物で汚染された環境より得ることを特
徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the microorganism capable of degrading an organic chlorine compound is obtained from an environment contaminated with the organic chlorine compound.
【請求項3】 環境が土壌であることを特徴とする請求
項2に記載の方法。
3. The method according to claim 2, wherein the environment is soil.
【請求項4】 変異微生物を作用させる有機塩素化合物
は土壌中の有機塩素化合物であることを特徴とする請求
項1ないし3のいずれかに記載の方法。
4. The method according to claim 1, wherein the organochlorine compound acting on the mutant microorganism is an organochlorine compound in soil.
【請求項5】 有機塩素化合物がトリクロロエチレン
(TCE)、ジクロロエチレン(DCE)のいずれか一
つである請求項1ないし4のいずれかに記載の方法。
5. The method according to claim 1, wherein the organic chlorine compound is any one of trichloroethylene (TCE) and dichloroethylene (DCE).
【請求項6】 微生物がコリネバクテリウム・スピーシ
ズ(Corynebacterium sp.)である請求項1ないし5のい
ずれかに記載の方法。
6. The method according to any one of claims 1 to 5, wherein the microorganism is Corynebacterium sp.
JP7040376A 1995-02-28 1995-02-28 Method for environmental cleanup Pending JPH08228767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7040376A JPH08228767A (en) 1995-02-28 1995-02-28 Method for environmental cleanup

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7040376A JPH08228767A (en) 1995-02-28 1995-02-28 Method for environmental cleanup

Publications (1)

Publication Number Publication Date
JPH08228767A true JPH08228767A (en) 1996-09-10

Family

ID=12578937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7040376A Pending JPH08228767A (en) 1995-02-28 1995-02-28 Method for environmental cleanup

Country Status (1)

Country Link
JP (1) JPH08228767A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919696A (en) * 1995-11-20 1999-07-06 Kabushiki Kaisha Toshiba Method for microbially decomposing organic compounds and method for isolating microorganism
JP2006262824A (en) * 2005-03-25 2006-10-05 Sumitomo Bakelite Co Ltd New degrading microorganism and method for degrading treatment of organic compound using the same
CN108996710A (en) * 2018-09-06 2018-12-14 南开大学 Carboxymethyl cellulose stablizes the application of ferrous sulfide/biology carbon composite and microorganism Synergistic degradation trichloro ethylene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919696A (en) * 1995-11-20 1999-07-06 Kabushiki Kaisha Toshiba Method for microbially decomposing organic compounds and method for isolating microorganism
JP2006262824A (en) * 2005-03-25 2006-10-05 Sumitomo Bakelite Co Ltd New degrading microorganism and method for degrading treatment of organic compound using the same
JP4670425B2 (en) * 2005-03-25 2011-04-13 住友ベークライト株式会社 Novel degrading bacteria and method for decomposing organic compounds using the same
CN108996710A (en) * 2018-09-06 2018-12-14 南开大学 Carboxymethyl cellulose stablizes the application of ferrous sulfide/biology carbon composite and microorganism Synergistic degradation trichloro ethylene

Similar Documents

Publication Publication Date Title
CA2262770C (en) Biodegradation of the gasoline oxygenates
Erdogan et al. Determination of petroleum-degrading bacteria isolated from crude oil-contaminated soil in Turkey
JP3406926B2 (en) Method for biodegrading trichlorethylene and method for biodegrading organic chlorine compounds using microorganisms
JP3108006B2 (en) JM1 strain, environmental restoration method, organic compound decomposition method, microorganism acquisition method, microorganism detection method, and microorganism detection kit
JP3323746B2 (en) Novel microorganisms, organic compound biodegradation method and environmental restoration method
JP3083077B2 (en) Organic compound biodegradation method and environmental restoration method
Singh et al. Biodegradation of petroleum hydrocarbons by Pseudomonas putida strain MHF 7109
Hirano et al. Isolation and characterization of Xanthobacter polyaromaticivorans sp. nov. 127W that degrades polycyclic and heterocyclic aromatic compounds under extremely low oxygen conditions
May et al. Subculturing of a polychlorinated biphenyl-dechlorinating anaerobic enrichment on solid media
KR19990023004A (en) Halogenated Hydrocarbon Degrading Bacteria and Their Uses
US6096530A (en) Pseudomonas cepacia strain isolated from termite intestines that degrades trichlorethylene and furan compounds
Frascari et al. A kinetic study of chlorinated solvent cometabolic biodegradation by propane-grown Rhodococcus sp. PB1
US6537797B1 (en) Compositions and methods useful in bioremediation of polychlorinated biphenyls
Zaidi et al. Low chemical concentration and pH as factors limiting the success of inoculation to enhance biodegradation
JPH08228767A (en) Method for environmental cleanup
US6303366B1 (en) Biodegradation of the gasoline oxygenates
Fathi et al. Isolation and identification of polycyclic aromatic hydrocarbons (PAHs) degrading bacteria from Arak petrochemical wastewater.
Fox Status and trends in bioremediation treatment technology
JP3461238B2 (en) Organic compound biodegradation method and environmental restoration method
JPH0910794A (en) Biological decomposition and purification of pollutant discharged to environment
JP2003154382A (en) Method for efficiently restoring environment or medium polluted with organic compound in presence of glutathione by microorganism
Lee Biodegradation of chlorinated ethenes by Pseudonocardia chlorethenivorans SL-1
JPH10295366A (en) New hydrogen peroxide-resistant microorganism, its acquisition, and repair of polluted medium by using the same
Begonia Degradation of trichloroethylene by Pseudomonas putida F1 grown on toluene and its degradation product benzyl alcohol
Abdel-Megeed et al. Biodegradation of mineral oil by bacterial strains isolated from contaminated soils