JPH08222580A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH08222580A
JPH08222580A JP4904595A JP4904595A JPH08222580A JP H08222580 A JPH08222580 A JP H08222580A JP 4904595 A JP4904595 A JP 4904595A JP 4904595 A JP4904595 A JP 4904595A JP H08222580 A JPH08222580 A JP H08222580A
Authority
JP
Japan
Prior art keywords
layer
type
amorphous
substrate
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4904595A
Other languages
Japanese (ja)
Inventor
Toshiyuki Terada
敏行 寺田
Tetsuya Suzuki
哲哉 鈴木
Yukihisa Fujita
恭久 藤田
Satoshi Fujii
智 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4904595A priority Critical patent/JPH08222580A/en
Publication of JPH08222580A publication Critical patent/JPH08222580A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To easily get ohmic contact between a p-type layer and an electrode layer by forming the amorphous layer of group VI element before forming an electrode layer, on the p-type layer consisting of a II-VI compound semiconductor epitaxial crystal, and heat-treating it thereby evaporating only this amorphous layer. CONSTITUTION: An n-type ZnSe of buffer layer 2, an n-type ZnSSe of clad layer 3, and an active layer 4 consisting of CdZnSe, a p-type ZnSSe of clad layer 5, and a p-type ZnSe of heavily doped layer 6 are stacked on an n-type GaAs substrate 1. Moreover, an amorphous layer 7 consisting of S is stacked on the top layer of the heavily doped layer 6. Next, a substrate is shifted to a separate vacuum container, and the amorphous layer 7 is evaporated at a substrate temperature of 200 deg.C. Hereby, an oxide insulating layer evaporates together with the amorphous layer 7, and the surface of the p-type ZnSe of heavily doped layer 6 appears. Then, an Au electrode layer 8 is grown by deposition on the heavily doped layer 6. Furthermore, an Au/Ge electrode layer 9 is made by deposition on the rear of the substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、II−VI族化合物半導体
エピタキシャル結晶からなるp型層を基板上に有する半
導体装置の製造方法に関し、特に、有機金属化学気相成
長法(MOCVD法)にて形成されたp型層と電極層と
の接触部分に特徴を有する半導体装置の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device having a p-type layer made of a II-VI group compound semiconductor epitaxial crystal on a substrate, and more particularly to a metal organic chemical vapor deposition method (MOCVD method). The present invention relates to a method for manufacturing a semiconductor device having a contact portion between a p-type layer and an electrode layer formed as described above.

【0002】[0002]

【従来の技術】従来、例えばZnSe(セレン化亜鉛)
等のII−VI族エピタキシャル結晶からなるp型層を基板
上に形成し、このp型層上にAu(金)電極層を形成す
る場合、このp型層を形成した基板を一旦容器外に出
し、別の容器に入れてAu電極層を形成するという過程
があるため、p型層が外気に接触し、p型層の表面に酸
化絶縁層が形成されることがあった。この酸化絶縁層
は、Au電極層を形成した後も残り、Au電極層とp型
層との間に介在することとなるため、特に酸化絶縁層と
Au電極層との界面の電位障壁が大きく(2〜10V程
度)なり、オーム性接触が得られず、その電気的特性を
低下させる因となっている。
2. Description of the Related Art Conventionally, for example, ZnSe (zinc selenide) is used.
When a p-type layer made of II-VI group epitaxial crystal such as the above is formed on a substrate and an Au (gold) electrode layer is formed on the p-type layer, the substrate on which the p-type layer is formed is temporarily placed outside the container. Since there is a process in which the p-type layer comes out and is placed in another container to form the Au electrode layer, the p-type layer may come into contact with the outside air, and an oxide insulating layer may be formed on the surface of the p-type layer. This oxide insulating layer remains after the Au electrode layer is formed and is interposed between the Au electrode layer and the p-type layer, so that the potential barrier at the interface between the oxide insulating layer and the Au electrode layer is particularly large. (About 2 to 10 V), an ohmic contact cannot be obtained, which is a cause of lowering the electrical characteristics.

【0003】そこで、II−VI族エピタキシャル結晶から
なるp型層上にAu電極層を形成する場合、p型層が形
成された基板を、Au電極層を形成する直前に、飽和ブ
ロム水系エッチャント(飽和ブロム水と臭化ブロムと水
の混合液)で化学処理することによってp型層上の酸化
絶縁層を取り除き、その後直ちに電極蒸着室に基板を入
れてAu電極層を形成する方法が提案されている(第5
4回応用物理学会学術講演会講演予稿集 P257 2
9p−ZL−17(1993)参照)。
Therefore, when the Au electrode layer is formed on the p-type layer made of II-VI group epitaxial crystal, the substrate on which the p-type layer is formed is replaced with a saturated bromine aqueous etchant (immediately before the formation of the Au electrode layer). A method has been proposed in which the oxidation insulating layer on the p-type layer is removed by chemical treatment with saturated bromine water, a mixed solution of bromine and water, and the Au electrode layer is immediately formed by placing the substrate in the electrode deposition chamber. (The fifth
Proceedings of the 4th JSAP Academic Lecture Meeting P257 2
9p-ZL-17 (1993)).

【0004】しかしながらこの方法では、飽和ブロム水
系エッチャントで化学処理をするために操作が繁雑であ
るばかりでなく、p型層上の酸化絶縁層を完全に取り除
くことができないために界面残留電位障壁(0.8〜
1.5V程度)が残り、完全なオーム性接触が得られな
いという問題があった(第55回応用物理学会学術講演
会講演予稿集 P263 21a−MB−3(199
4)参照)。
However, in this method, not only the operation is complicated due to the chemical treatment with the saturated bromine aqueous etchant, but also the interfacial residual potential barrier ( 0.8 ~
There is a problem that a perfect ohmic contact cannot be obtained (about 1.5 V) (Proceedings of the 55th JSAP Academic Lecture Meeting P263 21a-MB-3 (199).
See 4)).

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
従来技術の問題点を解消するべく案出されたものであ
り、その主な目的は、II−VI族化合物半導体エピタキシ
ャル結晶からなるp型層と電極層間のオーム性接触が容
易に得られる半導体装置の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been devised to solve the above-mentioned problems of the prior art, and its main purpose is to provide a p-type compound semiconductor II-VI compound semiconductor epitaxial crystal. It is an object of the present invention to provide a method for manufacturing a semiconductor device in which an ohmic contact between a mold layer and an electrode layer can be easily obtained.

【0006】[0006]

【課題を解決するための手段】このような目的は、本発
明によれば、II−VI族化合物半導体エピタキシャル結晶
からなるp型層を有機金属化学気相成長法または光有機
金属気相成長法により第1の基板温度にて基板上に形成
する過程と、VI族元素であるS、Se、或いはTeの非
晶質層を光有機金属気相成長法により第1の基板温度よ
りも低い第2の基板温度にてp型層上に形成する過程
と、別の真空容器内で熱処理して非晶質層のみを蒸発さ
せる過程と、非晶質層が蒸発したp型層上に電極層を形
成する過程とを有することを特徴とする半導体装置の製
造方法を提供することにより達成される。
According to the present invention, a p-type layer made of a II-VI compound semiconductor epitaxial crystal is formed by a metal organic chemical vapor deposition method or a photo-metal organic chemical vapor deposition method. By the process of forming on the substrate at the first substrate temperature by using the group VI element S, Se, or Te amorphous layer by the photo-organic metal vapor phase epitaxy method lower than the first substrate temperature. 2. Forming on the p-type layer at the substrate temperature of 2; heat-treating in another vacuum container to evaporate only the amorphous layer; and electrode layer on the p-type layer from which the amorphous layer is evaporated. And a process for forming a semiconductor device.

【0007】[0007]

【作用】このように、II−VI族化合物半導体エピタキシ
ャル結晶からなるp型層上に、電極層を形成する前にVI
族元素の非晶質層を形成し、電極層を形成する真空容器
内で熱処理してこの非晶質層のみを蒸発させるものとす
れば、非晶質層上の酸化絶縁層が非晶質層と共に蒸発す
るため、p型層上に酸化絶縁層が形成されることがなく
なる。これにより、電極層がp型層に直接接触するため
に電極層とp型層間の界面残留電位障壁が小さくなり、
両者間にオーム性接触が得られることとなる。特に、光
有機金属気相成長法(光MOCVD法)を用いることに
より、低温で非晶質層を成長させることができる。
As described above, VI is formed before the electrode layer is formed on the p-type layer made of II-VI group compound semiconductor epitaxial crystal.
If an amorphous layer of a group element is formed and heat-treated in a vacuum container for forming an electrode layer to evaporate only this amorphous layer, the oxide insulating layer on the amorphous layer is amorphous. Evaporation with the layer prevents the oxide insulating layer from being formed on the p-type layer. This reduces the interface residual potential barrier between the electrode layer and the p-type layer because the electrode layer directly contacts the p-type layer,
An ohmic contact will be obtained between them. In particular, an amorphous layer can be grown at a low temperature by using the photometal organic chemical vapor deposition method (optical MOCVD method).

【0008】[0008]

【実施例】以下、添付の図面を参照して本発明の好適実
施例について詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will now be described in detail with reference to the accompanying drawings.

【0009】図1は、本発明に基づく方法により製造さ
れた半導体レーザ装置の要部断面図である。図1−
(a)に於て、n型GaAs基板1上には、n型ZnS
eのバッファ層2と、n型ZnSSeのクラッド層3
と、CdZnSeからなる活性層4と、p型ZnSSe
のクラッド層5と、p型ZnSeの高濃度ドープ層6と
が、光MOCVD法によりこの順に形成され、積層され
ている。また、p型ZnSeの高濃度ドープ層6の上層
には、Sからなる非晶質層7が、光MOCVD法により
積層されている。
FIG. 1 is a cross-sectional view of a main part of a semiconductor laser device manufactured by the method according to the present invention. Figure 1-
In (a), n-type ZnS is formed on the n-type GaAs substrate 1.
e buffer layer 2 and n-type ZnSSe cladding layer 3
An active layer 4 made of CdZnSe, and p-type ZnSSe
The clad layer 5 and the p-type ZnSe high-concentration doped layer 6 are formed and stacked in this order by the optical MOCVD method. Further, an amorphous layer 7 made of S is laminated on the upper layer of the heavily doped p-type ZnSe layer 6 by an optical MOCVD method.

【0010】ここで、n型ZnSeのバッファ層2は、
厚みが1000オングストローム、n型ZnSSeのク
ラッド層3は、厚みが2.0μm(組成;1Zn、0.
07S、0.93Se)、CdZnSeの活性層4は、
厚みが100オングストローム(組成;0.1Cd、
0.9Zn、1Se)、p型ZnSSeのクラッド層5
は、厚みが1.5μm(組成;1Zn、0.07S、
0.93Se)、p型ZnSeの高濃度ドープ層6は、
厚みが1000オングストローム、キャリア濃度1×1
18cm-3となるように、光MOCVD法により、第1
の基板温度350℃で順に結晶成長させた。また、非晶
質層7は、p型ZnSeの高濃度ドープ層6を光MOC
VD法により形成した後、第2の基板温度100℃に下
げ、即ちSが結晶化しない温度に下げて同じ光MOCV
D法にて非晶質のSを成膜させることによって形成し
た。このように、光で励起する光MOCVD法を用いる
ことにより、ArFエキシマレーザ等によって比較的低
温で原料を分解させることができるので、基板温度が低
温でも非晶質層を成長させることができる。尚、上記し
た各n型層のドーパントにはI(ヨウ素)を用い、各p
型層のドーパントにはN(窒素)を用いた。
Here, the n-type ZnSe buffer layer 2 is
The clad layer 3 made of n-type ZnSSe having a thickness of 1000 angstroms has a thickness of 2.0 μm (composition: 1 Zn, 0.
07S, 0.93Se), the active layer 4 of CdZnSe is
Thickness is 100 Å (composition; 0.1 Cd,
0.9Zn, 1Se), p-type ZnSSe cladding layer 5
Has a thickness of 1.5 μm (composition: 1 Zn, 0.07 S,
0.93 Se), the high-concentration doped layer 6 of p-type ZnSe is
Thickness is 1000 Å, carrier concentration is 1 × 1
0 18 so that the cm -3, by the light MOCVD method, first
Were sequentially grown at a substrate temperature of 350 ° C. Further, the amorphous layer 7 is formed by using a high-concentration doped layer 6 of p-type ZnSe as an optical MOC.
After forming by the VD method, the second substrate temperature is lowered to 100 ° C., that is, the temperature at which S is not crystallized, and the same optical MOCV is obtained.
It was formed by depositing amorphous S by the D method. As described above, by using the optical MOCVD method excited by light, the raw material can be decomposed at a relatively low temperature by an ArF excimer laser or the like, so that the amorphous layer can be grown even when the substrate temperature is low. In addition, I (iodine) was used as a dopant for each of the n-type layers described above, and each p
N (nitrogen) was used as the dopant of the mold layer.

【0011】次に、このようにして各層を成長させた基
板を別の真空容器に移し、図1−(b)に示すように、
真空状態にした容器内にて基板温度200℃で非晶質層
7を蒸発させた。これにより、非晶質層7と共に酸化絶
縁層が蒸発し、酸化絶縁層のないp型ZnSeの高濃度
ドープ層6の表面が現れる。
Next, the substrate on which each layer is grown in this way is transferred to another vacuum container, and as shown in FIG. 1- (b),
The amorphous layer 7 was evaporated at a substrate temperature of 200 ° C. in a vacuumed container. As a result, the oxide insulating layer is evaporated together with the amorphous layer 7, and the surface of the p-type ZnSe heavily doped layer 6 without the oxide insulating layer appears.

【0012】この後、図1−(c)に示すように、同じ
容器内にてp型ZnSeの高濃度ドープ層6上にAu電
極層8を蒸着により成膜させた。
Thereafter, as shown in FIG. 1- (c), an Au electrode layer 8 was formed on the heavily doped p-type ZnSe layer 6 by vapor deposition in the same container.

【0013】更にn型GaAs基板1の裏面には、図1
−(d)に示すように、Au/Ge(ゲルマニウム)電
極層9を蒸着により形成した。
Further, on the back surface of the n-type GaAs substrate 1, as shown in FIG.
As shown in (d), an Au / Ge (germanium) electrode layer 9 was formed by vapor deposition.

【0014】このようにして製造された半導体装置によ
れば、p型層の上層から酸化絶縁層が略完全に除去され
るため、p型層とAu電極層8との間の界面電位障壁が
小さくなり、両層間のオーム性接触が可能となる。
According to the semiconductor device manufactured as described above, the oxide insulating layer is almost completely removed from the upper layer of the p-type layer, so that the interface potential barrier between the p-type layer and the Au electrode layer 8 is eliminated. It becomes smaller and allows ohmic contact between both layers.

【0015】尚、本実施例では、p型ZnSeの高濃度
ドープ層6上にSの非晶質層7を形成したが、非晶質層
7を構成する原料として、TeあるいはSeを用いても
同様の結果が得られる。但し、非晶質層7を容易にかつ
確実に蒸発させるためには、非晶質層7の厚さを100
0オングストローム以下に抑えることが望ましい。
In this embodiment, the amorphous layer 7 of S is formed on the heavily doped p-type ZnSe layer 6. However, Te or Se is used as a raw material for the amorphous layer 7. Produces similar results. However, in order to vaporize the amorphous layer 7 easily and surely, the thickness of the amorphous layer 7 is set to 100.
It is desirable to keep it below 0 angstrom.

【0016】また、本実施例では、p型ZnSSeのク
ラッド層5と非晶質層7との間にp型ZnSeの高濃度
ドープ層6を介在させたが、p型ZnSSeのクラッド
層5の上層に直接非晶質層7を形成しても良い。加え
て、本実施例では、結晶成長基板としてGaAs基板を
用いたが、ZnSeやGaP、或いはGaAs基板上に
適宜な薄膜結晶(例えばエピタキシャル結晶成長させた
GaAs膜など)を形成したものであっても良い。
In this embodiment, the high-concentration p-type ZnSe heavily doped layer 6 is interposed between the p-type ZnSSe cladding layer 5 and the amorphous layer 7. The amorphous layer 7 may be formed directly on the upper layer. In addition, although the GaAs substrate is used as the crystal growth substrate in this embodiment, an appropriate thin film crystal (for example, an epitaxially grown GaAs film) is formed on the ZnSe, GaP, or GaAs substrate. Is also good.

【0017】[0017]

【発明の効果】上記の説明により明らかなように、本発
明に基づく半導体装置の製造方法によれば、II−VI族化
合物半導体エピタキシャル結晶からなるp型層の成膜に
連続して光MOCVD法によって非晶質層を成膜し、電
極層を形成する容器内にて非晶質層を蒸発させた後に電
極層を形成するものとしたので、p型層上の酸化絶縁層
が略完全に除去され、p型層と電極層間の界面残留電位
障壁が小さくなる。従って、単純な構成で容易にp型層
とAu電極層との間でオーム性接触が得られる。以上の
ことから、電気的特性が良く信頼性の高い半導体装置が
歩留り良く製造できる。
As is apparent from the above description, according to the method of manufacturing a semiconductor device of the present invention, the optical MOCVD method is continuously performed after the formation of the p-type layer made of the II-VI group compound semiconductor epitaxial crystal. Since the amorphous layer is formed by, and the electrode layer is formed after the amorphous layer is evaporated in the container for forming the electrode layer, the oxide insulating layer on the p-type layer is almost completely formed. As a result, the interface residual potential barrier between the p-type layer and the electrode layer becomes smaller. Therefore, an ohmic contact can be easily obtained between the p-type layer and the Au electrode layer with a simple structure. From the above, a semiconductor device having good electrical characteristics and high reliability can be manufactured with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明が適用された半導体装置としての半導体
レーザの製造過程を示す要部断面図。
FIG. 1 is a main-portion cross-sectional view showing the manufacturing process of a semiconductor laser as a semiconductor device to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 2 n型ZnSeのバッファ層 3 n型ZnSSeのクラッド層 4 CdZnSe活性層 5 p型ZnSSeのクラッド層 6 p型ZnSeの高濃度ドープ層 7 非晶質層 8 Au電極層 9 Au/Ge電極層 1 n-type GaAs substrate 2 n-type ZnSe buffer layer 3 n-type ZnSSe cladding layer 4 CdZnSe active layer 5 p-type ZnSSe cladding layer 6 p-type ZnSe heavily doped layer 7 amorphous layer 8 Au electrode layer 9 Au / Ge electrode layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤井 智 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Satoshi Fujii 2-6-3 Otemachi, Chiyoda-ku, Tokyo Shin Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 II−VI族化合物半導体エピタキシャル結
晶からなるp型層を有機金属化学気相成長法または光有
機金属気相成長法により第1の基板温度にて基板上に形
成する過程と、 VI族元素であるS(硫黄)、Se(セレン)、或いはT
e(テルル)の非晶質層を光有機金属気相成長法により
前記第1の基板温度よりも低い第2の基板温度にて前記
p型層上に形成する過程と、 別の真空容器内で熱処理して前記非晶質層のみを蒸発さ
せる過程と、 前記非晶質層が蒸発した前記p型層上に電極層を形成す
る過程とを有することを特徴とする半導体装置の製造方
法。
1. A process of forming a p-type layer composed of a II-VI group compound semiconductor epitaxial crystal on a substrate at a first substrate temperature by a metal organic chemical vapor deposition method or a photo-metal organic chemical vapor deposition method, Group VI elements S (sulfur), Se (selenium), or T
Forming an amorphous layer of e (tellurium) on the p-type layer at a second substrate temperature lower than the first substrate temperature by a photo-organic metal organic chemical vapor deposition method, and in another vacuum container And a step of forming an electrode layer on the p-type layer where the amorphous layer is evaporated, and a method of manufacturing a semiconductor device, comprising:
JP4904595A 1995-02-13 1995-02-13 Manufacture of semiconductor device Withdrawn JPH08222580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4904595A JPH08222580A (en) 1995-02-13 1995-02-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4904595A JPH08222580A (en) 1995-02-13 1995-02-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH08222580A true JPH08222580A (en) 1996-08-30

Family

ID=12820121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4904595A Withdrawn JPH08222580A (en) 1995-02-13 1995-02-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH08222580A (en)

Similar Documents

Publication Publication Date Title
US4639275A (en) Forming disordered layer by controlled diffusion in heterojunction III-V semiconductor
US5247533A (en) Gallium nitride group compound semiconductor laser diode
US6218207B1 (en) Method for growing nitride semiconductor crystals, nitride semiconductor device, and method for fabricating the same
JP3209096B2 (en) Group III nitride compound semiconductor light emitting device
US5051786A (en) Passivated polycrystalline semiconductors quantum well/superlattice structures fabricated thereof
US5108948A (en) Method of producing a semiconductor device having a disordered superlattice using an epitaxial solid diffusion source
JPH0766366A (en) Semiconductor multilayered structure and semiconductor device using same
JP2884083B1 (en) Method of forming semiconductor layer epitaxially grown on metal layer and light emitting semiconductor device manufactured using this method
JP4286910B2 (en) II-VI group semiconductor device having BeTe buffer layer
JPH0794444A (en) Formation of ohmic electrode and laminated body used therefor
JPH08222580A (en) Manufacture of semiconductor device
JPH0831767A (en) Manufacture of electrode structure
JPH0464455B2 (en)
JPH08222583A (en) Manufacture of semiconductor device
JPH0575101A (en) Semiconductor device having schottky barrier
JPH08222584A (en) Manufacture of semiconductor device
JP4514252B2 (en) GaN-based semiconductor device manufacturing method
JPH04127569A (en) Semiconductor device and manufacture thereof
JPH08222813A (en) Manufacture of semiconductor device
JP3330731B2 (en) Semiconductor device and manufacturing method thereof
JPH06326051A (en) Ohmic electrode and formation thereof
JPH05235406A (en) Semiconductor light-emitting device
JPH08222582A (en) Semiconductor device and its manufacture
JPH07249837A (en) Manufacture of semiconductor laser device
JP3475637B2 (en) Semiconductor structure and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507