JPH08220229A - Ultrasonic wave sensor - Google Patents

Ultrasonic wave sensor

Info

Publication number
JPH08220229A
JPH08220229A JP2705495A JP2705495A JPH08220229A JP H08220229 A JPH08220229 A JP H08220229A JP 2705495 A JP2705495 A JP 2705495A JP 2705495 A JP2705495 A JP 2705495A JP H08220229 A JPH08220229 A JP H08220229A
Authority
JP
Japan
Prior art keywords
wave
frequency
circuit
temperature
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2705495A
Other languages
Japanese (ja)
Inventor
Hideo Mori
秀夫 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2705495A priority Critical patent/JPH08220229A/en
Publication of JPH08220229A publication Critical patent/JPH08220229A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE: To provide an ultrasonic wave sensor which can compensate a temperature of sound speed when a distance is measured. CONSTITUTION: A resonance frequency in which a temperature change is reflected is detected on a wave transmitting vibrator 4 by a resonance frequency detecting circuit 5, and an ambient temperature is detected on the basis of this resonance frequency, and a proportional constant of a frequency change is set by changing a frequency sweep width so that the ratio of the proportional constant of a frequency change in a constant period to sound speed is kept constant according to the ambient temperature. Output of this resonance frequency detecting circuit is fed back to the wave transmitting vibrator 4 through a frequency sweep circuit 2 and a pressure raising circuit 3, and a temperature of sound speed is compensated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波を送波すると共
に、その送波された超音波の物体による反射波を受波
し、送波から受波までの時間差に基づいて物体までの距
離を測定する超音波センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention transmits an ultrasonic wave, receives a reflected wave of the transmitted ultrasonic wave from an object, and transmits the ultrasonic wave to the object based on a time difference from the transmitted wave to the received wave. The present invention relates to an ultrasonic sensor that measures a distance.

【0002】[0002]

【従来の技術】一般に、超音波センサは、超音波を送波
すると共に、その送波された超音波の物体による反射波
を受波するように構成されており、反射波の有無により
物体の有無を検知する物体検知装置や、超音波の送波か
ら反射波を受波するまでの時間差により物体までの距離
を測定する測距装置などで用いられている。また、物体
までの距離を測定し、予め設定された距離範囲内に存在
する物体のみを検知する物体検知装置もある。
2. Description of the Related Art Generally, an ultrasonic sensor is configured to transmit an ultrasonic wave and receive a reflected wave of the transmitted ultrasonic wave from an object. It is used in an object detection device that detects the presence or absence, and a distance measurement device that measures the distance to an object by the time difference between the transmission of ultrasonic waves and the reception of reflected waves. There is also an object detection device that measures a distance to an object and detects only an object existing within a preset distance range.

【0003】ところで、距離の測定に用いる超音波セン
サではパルス状の超音波(以下、超音波パルスという)
を間欠的に送波するのが一般的であり、物体までの距離
は、超音波パルスの送波から反射波を受波するまでの時
間差と音速とで求められる。ただし、気体中の音速は気
体の温度で大きく変化するため、正確な距離を測定した
い場合は周囲温度を考慮する必要がある。
By the way, in an ultrasonic sensor used for measuring a distance, pulsed ultrasonic waves (hereinafter referred to as ultrasonic pulses)
Is generally transmitted intermittently, and the distance to an object is obtained by the time difference between the transmission of an ultrasonic pulse and the reception of a reflected wave and the speed of sound. However, the speed of sound in a gas changes greatly with the temperature of the gas, so it is necessary to consider the ambient temperature when measuring an accurate distance.

【0004】そこで従来は、超音波を送波してから物体
で反射して返ってくる反射波を受波するまでの時間差
を、温度変化に対応して周波数が変化する計測用パルス
をカウントすることによって求め、そのカウント数(す
なわち、時間差)に基づいて距離を測定していた。つま
り、周囲温度を検出する温度検出素子を設け、温度検出
素子で検出された温度に応じて計測用パルスの周波数を
変えることによって、物体までの距離が同じであれば、
温度変化により音速が変化して上記時間差が変化しても
カウント数が変わらないように補正していた。
Therefore, conventionally, the time difference between the transmission of an ultrasonic wave and the reception of a reflected wave reflected by an object and returned is counted by measuring pulses whose frequency changes in response to temperature changes. Then, the distance was measured based on the count number (that is, the time difference). That is, by providing a temperature detecting element for detecting the ambient temperature and changing the frequency of the measurement pulse according to the temperature detected by the temperature detecting element, if the distance to the object is the same,
Correction was made so that the count number does not change even if the speed of sound changes due to temperature changes and the time difference changes.

【0005】具体的には、音速をV、時間差をT、計測
用パルスの周波数をf、カウント数をnとすると、物体
までの距離Lは、 L=(1/2)×V×T=(1/2)×V×(n/f) で求められる。したがって、温度変化により音速Vが変
化しても、カウント数nが変わらないようにするには、
V/fを一定にするように計測用パルスの周波数fを周
囲温度に応じて調整すればよいことがわかる。
Specifically, when the speed of sound is V, the time difference is T, the frequency of the measuring pulse is f, and the count number is n, the distance L to the object is L = (1/2) × V × T = It is calculated by (1/2) × V × (n / f). Therefore, to prevent the count number n from changing even if the sound velocity V changes due to temperature change,
It is understood that the frequency f of the measurement pulse may be adjusted according to the ambient temperature so that V / f may be kept constant.

【0006】一方、距離の測定には超音波を連続的に送
波するFMヘテロダイン方式も知られている。FMヘテ
ロダイン方式では、図4(a)に示すように送波する超
音波の周波数を時間経過に伴って変化させる。この周波
数は、図4(b)に示すように一定周期Tmで時間の経
過に伴って一定の割合で増減される。たとえば、超音波
を送波する送波用振動子の共振周波数f0 を中心として
周期Tmの間に±Δfの範囲で周波数を連続的に変化さ
せるのである。このような超音波を送波すれば、物体で
反射された超音波も図4(c)のように時間経過と共に
周波数が変化する。つまり、受波した超音波の周波数変
化は図4(d)のように送波した超音波の周波数変化に
対して物体までの距離に応じた時間差Tを持つ。したが
って、送波時と受波時とで同周波数となる時点の時間差
Tを求めることができれば、物体までの距離を求めるこ
とができる。つまり、超音波パルスを用いる場合と同様
に、図4(e)に示すような一定周波数の計測用パルス
を用いて、超音波を送波してから同周波数の受波するま
でに発生した計測用パルスの個数をカウントすればよい
ことになる。
On the other hand, an FM heterodyne system for continuously transmitting ultrasonic waves is also known for measuring the distance. In the FM heterodyne system, the frequency of the ultrasonic wave to be transmitted is changed over time as shown in FIG. As shown in FIG. 4B, this frequency is increased / decreased at a constant rate with a lapse of time at a constant cycle Tm. For example, the frequency is continuously changed within a range of ± Δf during the period Tm centering on the resonance frequency f 0 of the wave-transmitting oscillator that transmits ultrasonic waves. When such an ultrasonic wave is transmitted, the frequency of the ultrasonic wave reflected by the object also changes with time as shown in FIG. 4 (c). That is, the frequency change of the received ultrasonic wave has a time difference T according to the distance to the object with respect to the frequency change of the transmitted ultrasonic wave as shown in FIG. Therefore, if the time difference T at the time when the frequencies are the same during transmission and reception is obtained, the distance to the object can be obtained. That is, as in the case of using the ultrasonic pulse, the measurement pulse generated from the time when the ultrasonic wave is transmitted to the time when the ultrasonic wave is received by using the measurement pulse having the constant frequency as shown in FIG. It suffices to count the number of pulses for use.

【0007】このようにして物体までの距離を求めるこ
とができるのであれば、超音波パルスを用いた場合と同
様の技術で温度補正が可能になるはずである。いま、温
度ta(℃)では音速がVa(m/s)であって、温度
tb(℃)では音速がVb(m/s)であるとする。温
度ta(℃)で計測用パルスの周波数をfa(Hz)に
設定したときに、物体までの距離に対応して4個の計測
用パルスがカウントされたとすると、温度がtb(℃)
で図5のように時間差Tが変化しても同距離であれば計
測用パルスは4個にしなければならない。そこで、超音
波パルスを用いた場合と同様に、計測用パルスの周波数
を変化させることが考えられる(図5(e)参照)。つ
まり、周囲温度を検出し、検出温度に基づいて Va/fa=Vb/fb=一定 なる関係が成り立つように計測用パルスの周波数fb
(Hz)を調整するのである。
If the distance to the object can be obtained in this way, temperature correction should be possible with the same technique as in the case of using ultrasonic pulses. Now, it is assumed that the sound speed is Va (m / s) at the temperature ta (° C.), and the sound speed is Vb (m / s) at the temperature tb (° C.). When the frequency of the measurement pulse is set to fa (Hz) at the temperature ta (° C), if four measurement pulses are counted corresponding to the distance to the object, the temperature is tb (° C).
Therefore, as shown in FIG. 5, even if the time difference T changes, the number of measurement pulses must be four if the distance is the same. Therefore, it is conceivable to change the frequency of the measurement pulse as in the case of using the ultrasonic pulse (see FIG. 5 (e)). That is, the ambient temperature is detected, and the frequency fb of the measurement pulse is set so that the relationship of Va / fa = Vb / fb = constant is established based on the detected temperature.
(Hz) is adjusted.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、FMヘ
テロダイン方式では、上述のような考え方を採用するこ
とができない。これは、上記説明では送波時と受波時と
で同周波数が得られる時点の時間差を求めることが前提
になっているが、その方法では、周波数を連続的に変化
させる意味がなく、また技術的にも時間差を正確に求め
ることができないという問題が生じる。
However, the FM heterodyne system cannot adopt the above concept. This is based on the premise that the time difference between the times when the same frequency is obtained during transmission and reception is obtained in the above description, but in that method, there is no point in continuously changing the frequency, and Technically, there is a problem that the time difference cannot be accurately obtained.

【0009】実際のFMヘテロダイン方式では、時間差
を求める代わりに同時刻における送波する超音波と受波
した超音波との周波数差を求めており、周波数を変化さ
せる割合が一定であるから、周波数差を時間差に換算す
ることができ、このようにして周波数差から求めた時間
差を用いることで物体までの距離を知ることができるの
である。したがって、FMヘテロダイン方式では、時間
差を直接求めていないから計測用パルスが不要であり、
計測用パルスの周波数を変化させることで温度補償を行
なうという技術は適用できないのである。
In the actual FM heterodyne system, instead of obtaining the time difference, the frequency difference between the ultrasonic wave transmitted and the ultrasonic wave received at the same time is obtained, and the frequency changing rate is constant. The difference can be converted into a time difference, and thus the distance to the object can be known by using the time difference obtained from the frequency difference. Therefore, in the FM heterodyne method, since the time difference is not directly obtained, the measurement pulse is unnecessary,
The technique of performing temperature compensation by changing the frequency of the measurement pulse cannot be applied.

【0010】本発明は上記事由に鑑みて為されたもので
あり、その目的は、FMヘテロダイン方式において温度
補償を可能とした超音波センサを提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an ultrasonic sensor capable of temperature compensation in the FM heterodyne system.

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、上記
目的を達成するために、周波数が一定周期かつ時間の経
過に伴って一定の割合で連続的に変化する送波信号を発
生する送波回路と、送波信号により駆動されて超音波を
送出する送波用振動子と、送波用振動子より送出され物
体で反射された超音波を受波して受波信号を得る受波用
振動子と、送波信号と受波信号との周波数差を送波から
受波までの時間差に換算して物体までの距離を求める受
波回路と、送波振動子と受波振動子との少なくとも一方
について温度変化を反映する特性量に基づいて周囲温度
を検出する温度検出回路と、温度検出回路により求めた
周囲温度に応じて上記一定周期内での周波数変化の割合
と音速との比を一定に保つように周波数変化の割合を設
定する温度補償回路とを具備して成ることを特徴として
いる。
In order to achieve the above object, the invention of claim 1 generates a transmission signal whose frequency is continuously changed at a constant period and at a constant rate with the passage of time. A wave sending circuit, a wave sending oscillator that is driven by a wave sending signal to send out an ultrasonic wave, and a receiving wave that receives the ultrasonic wave sent from the wave sending oscillator and reflected by an object to obtain a received wave signal. A wave oscillator, a wave receiving circuit that calculates the distance to an object by converting the frequency difference between the transmitted signal and the received signal into the time difference from the transmitted wave to the received wave, and the wave transmitter and the received wave oscillator And a temperature detection circuit that detects an ambient temperature based on a characteristic amount that reflects a temperature change for at least one of the following, and the rate of frequency change and the sound velocity within the certain period according to the ambient temperature obtained by the temperature detection circuit. A temperature compensation circuit that sets the rate of frequency change to keep the ratio constant. It is characterized by comprising comprises and.

【0012】請求項2の発明は、温度検出回路は送波用
振動子と受波用振動子との少なくとも一方の共振周波数
を検出する共振周波数検出回路を備え、共振周波数検出
回路により検出される共振周波数の変動を監視して送波
用振動子と受波用振動子とのうち共振周波数を検出して
いるほうの異常の有無を判定する診断回路を付加したこ
とを特徴とする。
According to a second aspect of the present invention, the temperature detection circuit includes a resonance frequency detection circuit for detecting the resonance frequency of at least one of the wave transmission oscillator and the wave reception oscillator, and the resonance frequency detection circuit detects the resonance frequency. It is characterized in that a diagnostic circuit is added to monitor fluctuations in the resonance frequency and determine whether or not there is an abnormality in one of the wave-transmitting oscillator and the wave-receiving oscillator that detects the resonance frequency.

【0013】[0013]

【作用】請求項1の発明の構成によれば、周囲温度に応
じて周波数変化の割合と音速との比を一定に保つように
周波数変化の割合を設定する温度補償回路を設けている
ことによって、周波数差から時間差への換算に用いる係
数(割合)を周囲温度に応じて設定することになり、F
Mヘテロダイン方式を採用しながらも温度補償が可能に
なるのである。しかも、送波用振動子と受波用振動子と
の少なくとも一方について温度変化を反映する特性量
(たとえば、共振周波数や容量)に基づいて周囲温度を
検出する温度検出回路を設けているから、別に温度検出
素子を用いることなく周囲温度を検出することができ、
しかも送波用振動子や受波用振動子は装置外部に露出し
ているから、内部の発熱の影響を受けにくく周囲温度を
正確に検出することが可能になる。
According to the structure of the invention of claim 1, by providing the temperature compensating circuit for setting the frequency change rate so as to keep the ratio of the frequency change rate and the sound velocity constant according to the ambient temperature. , The coefficient (ratio) used to convert the frequency difference into the time difference is set according to the ambient temperature.
It is possible to perform temperature compensation while adopting the M heterodyne method. Moreover, since at least one of the wave-transmitting oscillator and the wave-receiving oscillator is provided with a temperature detection circuit that detects the ambient temperature based on a characteristic amount that reflects a temperature change (for example, resonance frequency or capacitance), The ambient temperature can be detected separately without using a temperature detection element,
Moreover, since the wave-transmitting oscillator and the wave-receiving oscillator are exposed to the outside of the device, the ambient temperature can be detected accurately without being affected by the heat generated inside.

【0014】請求項2の発明の構成によれば、周囲温度
を送波用振動子ないし受波用振動子の共振周波数の変化
で検出している。すなわち、周波数が掃引されているこ
とによって、送波用振動子ないし受波用振動子の共振周
波数での振幅の変化を検出すれば共振周波数を検出する
ことができ、この共振周波数によって周囲温度を知るこ
とができる。しかも、共振周波数の変動を監視すれば、
送波用振動子ないし受波用振動子に異物が付着したり故
障したりするなどの異常が生じたときに共振周波数の大
幅な変動によって異常を検出することができるから、温
度検出に用いる構成を異常の有無を検出する構成の一部
に兼用することができ、回路構成を複雑にすることなく
多機能化が可能になる。
According to the second aspect of the invention, the ambient temperature is detected by the change in the resonance frequency of the wave-transmitting oscillator or the wave-receiving oscillator. That is, since the frequency is swept, the resonance frequency can be detected by detecting the change in amplitude at the resonance frequency of the wave-transmitting oscillator or the wave-receiving oscillator. I can know. Moreover, if the fluctuation of the resonance frequency is monitored,
When abnormalities such as foreign matter adhering to the oscillator for wave transmission or the oscillator for wave reception occur, the abnormality can be detected by a large fluctuation of the resonance frequency. Can also be used as a part of the configuration for detecting the presence or absence of abnormality, and multifunctionalization is possible without complicating the circuit configuration.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本実施例の超音波センサでは、図1に示すよう
に、送波周期発生回路1により送波時の周波数変化の周
期を決定し、周波数掃引回路2では送波周期発生回路1
により決定された周期内で周波数を掃引する。周波数の
変化範囲は、超音波を送波する送波用振動子4の共振周
波数f0 を中心として高低同じ幅(±Δf)に設定され
る。また、周波数は時間経過に伴って一定の割合で変化
される。たとえば、周期をTmとすると、Tm/2の間
にf0 −Δf〜f0 +Δfまで4Δf/Tmの傾きで変
化させるのである。また、次のTm/2の期間にはf0
+Δf〜f 0 −Δfまで−4Δf/Tmの傾きで変化さ
せる。
Embodiments of the present invention will now be described with reference to the drawings.
I do. In the ultrasonic sensor of this embodiment, as shown in FIG.
In addition, the frequency change circuit 1
The frequency sweep circuit 2 determines the period and the transmission period generation circuit 1
Sweep the frequency within the period determined by. Frequency
The change range is the resonance circumference of the transducer 4 for transmitting ultrasonic waves.
Wave number f0Centered around, the height is set to the same width (± Δf)
It Also, the frequency changes at a constant rate over time.
Is done. For example, if the cycle is Tm, then during Tm / 2
To f0-Δf to f0Change with a gradient of 4Δf / Tm up to + Δf
To turn it into something. In the next Tm / 2 period, f0
+ Δf to f 0Change with a slope of -4Δf / Tm up to -Δf
Let

【0016】周波数掃引回路2より出力される送波信号
は昇圧回路3により昇圧されて送波用振動子4に印加さ
れ、送波用振動子4は送波信号により駆動されて超音波
を送出する。送波用振動子4から送波され物体で反射さ
れた超音波の反射波は、受波用振動子6により受波さ
れ、受波用振動子6から受波信号が出力される。受波信
号は増幅回路7により増幅され、周波数検出回路8によ
り、その時点で送波されている送波信号との周波数差が
求められる。出力回路9では求めた周波数差を送波から
受波までの時間差に換算して物体までの距離を求め、求
めた距離を表示する。周波数検出回路8により求めた周
波数差がfmであって、送波している超音波の周波数が
0 −Δf〜f0 +Δfに変化する期間であれば、時間
差はfm・Tm/4Δfとして求めることができる。
The wave-transmitting signal output from the frequency sweep circuit 2 is boosted by the booster circuit 3 and applied to the wave-transmitting oscillator 4, and the wave-transmitting oscillator 4 is driven by the wave-transmitting signal to transmit an ultrasonic wave. To do. The reflected wave of the ultrasonic wave transmitted from the wave transmitting oscillator 4 and reflected by the object is received by the wave receiving oscillator 6, and the wave receiving signal is output from the wave receiving oscillator 6. The received signal is amplified by the amplifier circuit 7, and the frequency detection circuit 8 obtains the frequency difference from the transmitted signal that is being transmitted at that time. The output circuit 9 converts the obtained frequency difference into a time difference from transmission to reception, obtains the distance to the object, and displays the obtained distance. If the frequency difference obtained by the frequency detection circuit 8 is fm and the frequency of the ultrasonic wave being transmitted changes from f 0 −Δf to f 0 + Δf, the time difference is obtained as fm · Tm / 4Δf. be able to.

【0017】ところで、送波用振動子4の共振周波数は
周囲温度の関数であって周囲温度に応じて変化する。ま
た、共振周波数では振幅が大きく変化することになる。
そこで、送波用振動子4の共振周波数を振幅変化に基づ
いて共振周波数検出回路5で検出すれば周囲温度を知る
ことができる。本実施例では、このようにして求めた周
囲温度に基づいて、周波数掃引回路2から出力する周波
数の変化範囲を変化させるようにしている。すなわち、
周波数を掃引する周期Tmは一定に保ちながら、周波数
の変化範囲±Δfを変化させるのであり、結果的に時間
経過に伴う周波数変化の割合(傾き)が変化することに
なる。ここにおいて、後述するように、温度が変化して
も周波数変化の割合と音速との比が一定に保たれるよう
に周波数変化の割合を設定する。このように共振周波数
検出回路5で求めた周囲温度に基づいて周波数掃引回路
2で掃引する周波数の変化範囲を調節することで、温度
変化に伴う測定距離の変化を補償することができるので
ある。
By the way, the resonance frequency of the wave-transmitting oscillator 4 is a function of the ambient temperature and changes according to the ambient temperature. Further, the amplitude changes greatly at the resonance frequency.
Therefore, if the resonance frequency of the wave transmitting oscillator 4 is detected by the resonance frequency detecting circuit 5 based on the amplitude change, the ambient temperature can be known. In the present embodiment, the change range of the frequency output from the frequency sweep circuit 2 is changed based on the ambient temperature thus obtained. That is,
The frequency change range ± Δf is changed while keeping the frequency sweeping period Tm constant, and as a result, the frequency change rate (slope) changes with the passage of time. Here, as will be described later, the rate of frequency change is set so that the rate of frequency change and the ratio of sound velocity are kept constant even if the temperature changes. In this way, by adjusting the change range of the frequency swept by the frequency sweep circuit 2 based on the ambient temperature obtained by the resonance frequency detection circuit 5, it is possible to compensate for the change in the measurement distance due to the temperature change.

【0018】ここで、温度補正の技術についてさらに詳
しく説明する。いま、送波する超音波の周波数を図3
(a)に実線で示すように周期Tmで変化させ、このと
きに受波した超音波の周波数が図3(a)に破線で示す
ように変化したとすると、周波数差fmは図3(b)の
ように変化する。つまり、周波数差fmが一定の期間で
あれば、周波数変化の割合に基づいて周波数差に対応し
た時間差に換算することが可能である。
The temperature correction technique will be described in more detail. Figure 3 shows the frequency of the ultrasonic waves that are being transmitted.
If the frequency of the ultrasonic waves received at this time is changed as indicated by the broken line in FIG. 3A, the frequency difference fm is calculated as shown by the solid line in FIG. ) Changes. That is, if the frequency difference fm is in a fixed period, it can be converted into a time difference corresponding to the frequency difference based on the rate of frequency change.

【0019】周波数差fmから時間差への換算は上述し
た通りであって、時間差をTとすれば、 T=Tm・fm/4Δf であるから、音速をVとすると、物体までの距離Lは、 L=V・T/2=V・Tm・fm/8Δf で求めることができる。したがって、上式で温度変化に
かかわらずV/Δfを一定に保てば、距離Lは温度の変
数ではなくなり、温度変化による音速の変化の影響を受
けずに正確に距離を測定することができる。つまり、周
囲温度に応じて一定周期内での周波数変化の割合(=T
m/Δf)と音速との比を一定に保つように周波数を掃
引する範囲Δfを設定すれば温度補償を行うことができ
る。この場合、図2(a)に示すように音速は温度の上
昇に伴って速くなり、図2(b)に示すように周波数変
化の範囲Δfは温度の上昇に伴って大きくなる。
The conversion from the frequency difference fm to the time difference is as described above. When the time difference is T, T = Tmfm / 4Δf. Therefore, when the sound velocity is V, the distance L to the object is It can be obtained by L = V · T / 2 = V · Tm · fm / 8Δf. Therefore, if V / Δf is kept constant regardless of the temperature change in the above equation, the distance L is not a variable of temperature, and the distance can be accurately measured without being affected by the change in sound velocity due to temperature change. . In other words, the rate of frequency change (= T
Temperature compensation can be performed by setting the frequency sweep range Δf so that the ratio of m / Δf) to the speed of sound is kept constant. In this case, as shown in FIG. 2A, the speed of sound becomes faster as the temperature rises, and as shown in FIG. 2B, the frequency change range Δf becomes larger as the temperature rises.

【0020】また、送波用振動子4の共振周波数の変動
を共振周波数検出回路5において監視すれば、異物の付
着あるいは凍結などによる送波用振動子4の異常を検出
することができるから、共振周波数検出回路5で検出し
た共振周波数の変動を監視する診断回路を付加するだけ
で、送波用振動子4の異常を検出することができる。つ
まり、自己診断のために診断回路以外の構成を共用する
ことができ、共振回路変動から異常の有無を判断する程
度の簡単な回路を追加するだけで多機能化が可能にな
る。ここに、温度検出や異常の有無の検出には受波用振
動子6の共振周波数を検出するようにしてもよい。ま
た、温度検出には共振周波数に代えて容量を検出しても
よい。
Further, if the resonance frequency detecting circuit 5 monitors the fluctuation of the resonance frequency of the wave-transmitting oscillator 4, it is possible to detect an abnormality of the wave-transmitting oscillator 4 due to adhesion of foreign matter or freezing. The abnormality of the wave transmission oscillator 4 can be detected only by adding a diagnostic circuit for monitoring the fluctuation of the resonance frequency detected by the resonance frequency detection circuit 5. In other words, the configuration other than the diagnostic circuit can be shared for self-diagnosis, and the multifunction can be achieved by adding a simple circuit that determines whether there is an abnormality from the resonance circuit variation. Here, the resonance frequency of the wave receiving oscillator 6 may be detected for temperature detection and detection of abnormality. Further, for temperature detection, capacitance may be detected instead of the resonance frequency.

【0021】[0021]

【発明の効果】請求項1の発明は、周囲温度に応じて周
波数変化の割合と音速との比を一定に保つように周波数
変化の割合を設定する温度補償回路を設けているので、
周波数差から時間差への換算に用いる係数(割合)を周
囲温度に応じて設定することになり、FMヘテロダイン
方式を採用しながらも温度補償が可能になるという利点
がある。しかも、送波用振動子と受波用振動子との少な
くとも一方について温度変化を反映する特性量に基づい
て周囲温度を検出する温度検出回路を設けているから、
別に温度検出素子を用いることなく周囲温度を検出する
ことができ、しかも送波用振動子や受波用振動子は装置
外部に露出しているから、内部の発熱の影響を受けにく
く周囲温度を正確に検出することが可能になるという利
点を有している。
According to the first aspect of the present invention, since the temperature compensation circuit is provided to set the frequency change rate so as to keep the ratio of the frequency change rate and the sound velocity constant according to the ambient temperature,
Since the coefficient (ratio) used for conversion from the frequency difference to the time difference is set according to the ambient temperature, there is an advantage that temperature compensation can be performed while adopting the FM heterodyne method. Moreover, since at least one of the oscillator for wave transmission and the oscillator for wave reception is provided with the temperature detection circuit that detects the ambient temperature based on the characteristic amount that reflects the temperature change,
In addition, the ambient temperature can be detected without using a temperature detection element, and the oscillator for wave transmission and the oscillator for wave reception are exposed to the outside of the device. It has an advantage that it can be accurately detected.

【0022】請求項2の発明は、周囲温度を送波用振動
子ないし受波用振動子の共振周波数の変化で検出するの
であって、周波数が掃引されていることによって、送波
用振動子ないし受波用振動子の共振周波数での振幅の変
化を検出すれば共振周波数を検出することができ、この
共振周波数によって周囲温度を知ることができるのであ
る。しかも、共振周波数の変動を監視すれば、送波用振
動子ないし受波用振動子に異物が付着したり故障したり
するなどの異常が生じたときに共振周波数の大幅な変動
によって異常を検出することができるから、温度検出に
用いる構成を異常の有無を検出する構成の一部に兼用す
ることができ、回路構成を複雑にすることなく多機能化
が可能になるという利点がある。
According to a second aspect of the present invention, the ambient temperature is detected by a change in the resonance frequency of the wave-transmitting oscillator or the wave-receiving oscillator, and the wave-transmitting oscillator is detected by sweeping the frequency. Further, the resonance frequency can be detected by detecting the change in the amplitude of the wave receiving oscillator at the resonance frequency, and the ambient temperature can be known from the resonance frequency. Moreover, by monitoring fluctuations in the resonance frequency, abnormalities can be detected by large fluctuations in the resonance frequency when abnormalities occur such as foreign matter adhering to the transducer for wave transmission or the transducer for wave reception. Therefore, the configuration used for temperature detection can be used also as a part of the configuration for detecting the presence or absence of abnormality, and there is an advantage that multifunctionalization can be achieved without complicating the circuit configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】本発明の実施例における温度に伴う音速および
掃引周波数の幅の変化を示す動作説明図である。
FIG. 2 is an operation explanatory diagram showing changes in the speed of sound and the width of the sweep frequency with temperature in the embodiment of the present invention.

【図3】本発明の実施例の動作説明図である。FIG. 3 is an operation explanatory diagram of the embodiment of the present invention.

【図4】従来例の動作説明図である。FIG. 4 is an operation explanatory diagram of a conventional example.

【図5】従来例の動作説明図である。FIG. 5 is an operation explanatory diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 送波周期発生回路 2 周波数掃引回路 3 昇圧回路 4 送波用振動子 5 共振周波数検出回路 6 受波用振動子 7 増幅回路 8 周波数差検出回路 9 出力回路 1 wave transmission cycle generation circuit 2 frequency sweep circuit 3 booster circuit 4 wave transmission oscillator 5 resonance frequency detection circuit 6 wave reception oscillator 7 amplification circuit 8 frequency difference detection circuit 9 output circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 周波数が一定周期かつ時間の経過に伴っ
て一定の割合で連続的に変化する送波信号を発生する送
波回路と、送波信号により駆動されて超音波を送出する
送波用振動子と、送波用振動子より送出され物体で反射
された超音波を受波して受波信号を得る受波用振動子
と、送波信号と受波信号との周波数差を送波から受波ま
での時間差に換算して物体までの距離を求める受波回路
と、送波振動子と受波振動子との少なくとも一方につい
て温度変化を反映する特性量に基づいて周囲温度を検出
する温度検出回路と、温度検出回路により求めた周囲温
度に応じて上記一定周期内での周波数変化の割合と音速
との比を一定に保つように周波数変化の割合を設定する
温度補償回路とを具備して成ることを特徴とする超音波
センサ。
1. A wave transmission circuit which generates a wave transmission signal whose frequency is continuously changed at a constant rate with a fixed period and time, and a wave transmission circuit which is driven by the wave transmission signal to transmit an ultrasonic wave. For receiving the ultrasonic wave transmitted from the wave-transmitting oscillator and reflected by the object to obtain the received signal, and the frequency difference between the transmitted signal and the received signal is transmitted. The ambient temperature is detected based on the receiving circuit that calculates the distance to the object by converting it to the time difference from the wave to the receiving wave, and the characteristic amount that reflects the temperature change in at least one of the transmitting and receiving oscillators. Temperature detection circuit, and a temperature compensation circuit that sets the frequency change ratio so as to keep the ratio of the frequency change ratio and the sound velocity within the constant period constant according to the ambient temperature obtained by the temperature detection circuit. An ultrasonic sensor characterized by comprising.
【請求項2】 温度検出回路は送波振動子と受波振動子
との少なくとも一方の共振周波数を検出する共振周波数
検出回路を備え、共振周波数検出回路により検出される
共振周波数の変動を監視して送波用振動子と受波用振動
子とのうち共振周波数を検出しているほうの異常の有無
を判定する診断回路を付加したことを特徴とする請求項
1記載の超音波センサ。
2. The temperature detection circuit comprises a resonance frequency detection circuit for detecting the resonance frequency of at least one of the wave-transmitting oscillator and the wave-receiving oscillator, and monitors variations in the resonance frequency detected by the resonance frequency detecting circuit. 2. The ultrasonic sensor according to claim 1, further comprising a diagnostic circuit for determining whether or not there is an abnormality in one of the oscillator for wave transmission and the oscillator for wave reception that detects the resonance frequency.
JP2705495A 1995-02-15 1995-02-15 Ultrasonic wave sensor Withdrawn JPH08220229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2705495A JPH08220229A (en) 1995-02-15 1995-02-15 Ultrasonic wave sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2705495A JPH08220229A (en) 1995-02-15 1995-02-15 Ultrasonic wave sensor

Publications (1)

Publication Number Publication Date
JPH08220229A true JPH08220229A (en) 1996-08-30

Family

ID=12210367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2705495A Withdrawn JPH08220229A (en) 1995-02-15 1995-02-15 Ultrasonic wave sensor

Country Status (1)

Country Link
JP (1) JPH08220229A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184235A (en) * 2014-03-26 2015-10-22 日本電気株式会社 Probe device, measurement method, and program
WO2018198941A1 (en) * 2017-04-24 2018-11-01 株式会社デンソー Object detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015184235A (en) * 2014-03-26 2015-10-22 日本電気株式会社 Probe device, measurement method, and program
WO2018198941A1 (en) * 2017-04-24 2018-11-01 株式会社デンソー Object detection device
JP2018185168A (en) * 2017-04-24 2018-11-22 株式会社デンソー Object detection device

Similar Documents

Publication Publication Date Title
US5360268A (en) Ultrasonic temperature measuring apparatus
US4183244A (en) Ultrasonic flow rate measuring apparatus
US5955669A (en) Method and apparatus for acoustic wave measurement
JP3129563B2 (en) Ultrasonic measurement method and device
US6708570B2 (en) Flow rate measurement method, ultrasonic flow rate meter, flow velocity measurement method, temperature or pressure measurement method, ultrasonic thermometer and ultrasonic pressure gage
KR20000057568A (en) Method and device for ultrasonic ranging
JPS61167889A (en) Range measuring device
EP1503207B1 (en) Gas detecting method, and gas detecting device
US4453238A (en) Apparatus and method for determining the phase sensitivity of hydrophones
US20030074953A1 (en) Device for determining the change in the density of a medium
US6831875B2 (en) Apparatus for ultrasonically detecting position of web edge and method of doing the same
JPH08220229A (en) Ultrasonic wave sensor
US20020105999A1 (en) Method and arrangement for acoustically determining a fluid temperature
CN113671215B (en) Measurement and calibration method and system for improving accuracy of ultrasonic wind sensor
JP3117372B2 (en) Ultrasonic distance measuring device
JP3814573B2 (en) Ultrasonic thickness measurement method and apparatus
JPS6367151B2 (en)
JPH10185654A (en) Method of detecting liquid level of furnace-melted matter
GB2284053A (en) Detecting presence or absence of liquid in a vessel
KR100189300B1 (en) Ultrasonic distance measurement apparatus using phase compensation circuit and method thereof
JP2840656B2 (en) Peak detection type ultrasonic thickness gauge
JPH0454800A (en) Ultrasonic sensor
JPH0467132B2 (en)
JP2876790B2 (en) Ultrasonic propagation velocity measurement method
SU1322145A1 (en) Device for quality control of structural articles

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507