JPH08219897A - Determining method for heat storage quantity of ladle - Google Patents

Determining method for heat storage quantity of ladle

Info

Publication number
JPH08219897A
JPH08219897A JP4635895A JP4635895A JPH08219897A JP H08219897 A JPH08219897 A JP H08219897A JP 4635895 A JP4635895 A JP 4635895A JP 4635895 A JP4635895 A JP 4635895A JP H08219897 A JPH08219897 A JP H08219897A
Authority
JP
Japan
Prior art keywords
ladle
temperature
metal rod
heat storage
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4635895A
Other languages
Japanese (ja)
Inventor
Hitoshi Furuta
仁司 古田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4635895A priority Critical patent/JPH08219897A/en
Publication of JPH08219897A publication Critical patent/JPH08219897A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PURPOSE: To provide a determining method for heat storage quantity of a ladle which does not need connection at the time of measurement, of which measurement workability is excellent, and which has high mechanical and thermal durability, can be used safely, and carries out highly precise determination. CONSTITUTION: A determining method is to determine a ladle heat storage quantity in a ladle 14 and for which a plurality of metal rods 11, 12 having different length are buried in refractory lining 13 and one ends of the metal rods 11, 12 are so arranged as to face to the inner face of the ladle 14 and at the same time the other ends are exposed to the outer face of the ladle 14 and the temperature at the end faces of the metal rods 11, 12 exposed to the outer face of the ladle 14 is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は搬送容器に滞留した溶
銑、あるいは転炉、電気炉などの精錬炉で溶製された溶
鋼を保持する取鍋中の溶鋼温度を管理する際に有効な取
鍋蓄熱量の判定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is effective in controlling the temperature of molten steel in a ladle that holds molten iron accumulated in a carrier container or molten steel produced in a refining furnace such as a converter or an electric furnace. It relates to a method for determining the amount of heat stored in a pot.

【0002】[0002]

【従来の技術】精錬炉で溶製された溶鋼は、精錬処理後
に取鍋中に保持され、二次精錬等の必要な処理が行われ
るが、この際に、溶鋼を受鋼する取鍋の温度及び蓄熱量
の多寡により、取鍋に受鋼した溶鋼の温度が変化するた
め、適正な温度での溶鋼の処理ができない場合が生じ、
溶鋼の歩留不良等の要因となっている。従来、このよう
な取鍋の温度及び蓄熱量管理は、該取鍋の前回受鋼時か
らの経過時間、取鍋の予熱時間などの取鍋の操業条件に
よって経験的な溶鋼温度管理を行っている。しかし、こ
のような経験的管理では定量的な管理ができず、ベテラ
ンオペレータの判断が大きなウエイトを占めており、安
定した正確な溶鋼温度の管理が困難である。また特開平
1−246313号公報には、取鍋内の耐火物温度を耐
火物中に埋め込んだ熱電対により測定して、その測定デ
ータに基づいて取鍋耐火物の降温の程度を推定すること
による溶鋼温度の管理方法が提案されている。
2. Description of the Related Art Molten steel melted in a refining furnace is held in a ladle after the refining process, and necessary processing such as secondary refining is performed. Depending on the temperature and the amount of heat storage, the temperature of the molten steel received in the ladle changes, so it may not be possible to process the molten steel at an appropriate temperature.
This is a cause of poor yield of molten steel. Conventionally, such ladle temperature and heat storage amount management has been performed empirically by controlling molten steel temperature depending on the operating conditions of the ladle such as the elapsed time from the previous steel reception of the ladle and the preheating time of the ladle. There is. However, such empirical management cannot be quantitatively controlled, and a veteran operator's judgment occupies a large weight, so that stable and accurate management of molten steel temperature is difficult. Further, in JP-A-1-246313, the temperature of the refractory in the ladle is measured by a thermocouple embedded in the refractory, and the degree of temperature decrease of the ladle refractory is estimated based on the measured data. Has proposed a method of controlling the temperature of molten steel.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、特開平
1−246313号公報に記載された方法においては、
溶鋼の受鋼、溶鋼の処理、溶鋼の排出を繰り返して使用
するような取鍋では、取鍋の温度測定のために測定器等
を結線する必要があり、作業性が悪く、熱電対のような
耐久性の低い細線を使用する場合には、使用時の機械的
外力などにより断線、損傷しやすく、高温かつ機械的な
衝撃を受ける環境下で汎用的に使用することが困難であ
った。本発明は、このような事情に鑑みてなされたもの
で、測定時における結線等を必要とせず、測定の作業性
が優れており、機械的及び熱的な耐久性が高く、安全に
使用できると共に、精度の高い判定が行える取鍋蓄熱量
の判定方法を提供することを目的とする。
However, in the method described in Japanese Patent Laid-Open No. 1-246313,
In a ladle that is repeatedly used for receiving molten steel, treating molten steel, and discharging molten steel, it is necessary to connect a measuring device, etc. to measure the temperature of the ladle, and workability is poor, and it is difficult to operate like a thermocouple. When a thin wire with low durability is used, it is easy to be broken or damaged by a mechanical external force during use, and it is difficult to use it for general purpose under the environment of high temperature and mechanical shock. The present invention has been made in view of the above circumstances, does not require wiring at the time of measurement, has excellent workability in measurement, has high mechanical and thermal durability, and can be used safely. At the same time, it is an object of the present invention to provide a method for determining the amount of heat stored in a ladle that enables highly accurate determination.

【0004】[0004]

【課題を解決するための手段】前記目的に沿う請求項1
記載の取鍋蓄熱量の判定方法は、それぞれ長さの異なる
金属棒を取鍋の耐火物ライニング中に複数埋設してなる
取鍋における取鍋蓄熱量の判定方法であって、前記金属
棒の一端を前記取鍋の内面に向けて配設すると共に、他
端を該取鍋の外面に露出させて、該取鍋の外面に露出し
た前記金属棒の端面の温度を測定するように構成されて
いる。請求項2記載の取鍋蓄熱量の判定方法は、請求項
1記載の方法において、前記金属棒の端面温度を非接触
式の温度計を用いて測定するように構成されている。
A method according to the above-mentioned object.
The method for determining the amount of heat accumulated in the ladle described above is a method for determining the amount of heat accumulated in the ladle in a ladle formed by burying a plurality of metal rods each having a different length in the refractory lining of the ladle. One end is arranged toward the inner surface of the ladle, the other end is exposed to the outer surface of the ladle, and the temperature of the end surface of the metal rod exposed to the outer surface of the ladle is measured. ing. According to a second aspect of the present invention, there is provided a method for determining the amount of stored heat in a ladle, which is configured to measure the end surface temperature of the metal rod by using a non-contact type thermometer.

【0005】ここで金属棒としては、取鍋のライニング
材である耐火物よりも熱伝導率の高い鉄、鋼、ステンレ
ス鋼、合金鉄、銅及びその他の合金等の金属棒を使用す
ることができる。また前記金属棒は、取鍋内の所定位置
に金属棒を配置した後、キャスタブル等の不定形耐火物
を取鍋内に流し込んで埋設してもよいし、また予め定形
耐火物からなる炉材に穿孔した後、そこに金属棒を挿入
することで配置することもできる。それぞれ長さが異な
り、かつ同種類の材質からなる複数の金属棒を前記耐火
物ライニング中の複数箇所に埋設する。金属棒の長さ
は、耐火物の溶損量等を考慮して、前記取鍋ライニング
中に埋設されている金属棒の先端位置が、前記耐火物ラ
イニングの受鋼表面から少なくとも10cm程度離れた
位置までを最大として設定することが安全上望ましい。
また、金属棒の他端を取鍋の外面に露出させるとは、該
金属棒の端面が取鍋の炉壁外から目視できる状態をい
い、更には金属棒の周囲又は頭部端面が必要に応じて突
出し、また、露出する金属棒の端面が金属あるいは酸化
物等の耐火性材料で覆われている状態をいう。取鍋蓄熱
量は、前記温度測定により取鍋内の耐火物の温度分布を
推定し、該温度分布図で示される空間座標系において、
該耐火物ライニングの比熱、重量及び温度を積分計算す
ることにより求めることができる。金属棒の取鍋に露出
した端面の温度の測定は、サーモセンサー、放射温度計
等の非接触式の温度センサーによって測定してもよい
し、必要に応じて熱電対を金属棒の露出した端面に固定
又は着脱自在に設置して、この熱電対により測定するこ
ともできる。
Here, as the metal rod, it is possible to use a metal rod such as iron, steel, stainless steel, alloy iron, copper and other alloys having a higher thermal conductivity than the refractory which is the lining material of the ladle. it can. Further, the metal rod may be embedded by pouring a castable refractory or other indeterminate refractory into the pot after the metal rod is placed at a predetermined position in the ladle, or a furnace material made of a regular refractory in advance. It is also possible to place it by inserting a metal rod into it after perforating it. A plurality of metal rods having different lengths and made of the same kind of material are embedded in a plurality of places in the refractory lining. Regarding the length of the metal rod, the tip position of the metal rod embedded in the ladle lining is separated from the steel receiving surface of the refractory lining by at least about 10 cm in consideration of the melting loss of the refractory. It is desirable for safety to set up to the maximum position.
Further, exposing the other end of the metal rod to the outer surface of the ladle means a state in which the end surface of the metal rod can be seen from the outside of the furnace wall of the ladle. It means a state in which the end face of the metal rod which is accordingly projected and is exposed is covered with a refractory material such as metal or oxide. Ladle heat storage amount, the temperature distribution of the refractory in the ladle is estimated by the temperature measurement, in the spatial coordinate system shown in the temperature distribution diagram,
It can be determined by integrating the specific heat, weight and temperature of the refractory lining. The temperature of the exposed end surface of the ladle of the metal rod may be measured by a non-contact temperature sensor such as a thermo sensor or a radiation thermometer. If necessary, use a thermocouple to expose the end surface of the metal rod. Alternatively, the thermocouple may be fixedly or detachably installed to measure.

【0006】[0006]

【作用】請求項1及び2記載の取鍋蓄熱量の判定方法に
おいては、取鍋の外面に露出した金属棒の端面の温度を
測定するので、取鍋の過酷な使用環境下においても、高
温領域まで安定的に測定を行うことができる。従って、
測定した端面の温度に基づいて取鍋ライニング内の温度
分布を推定する取鍋蓄熱量の判定が簡便かつ安全に行え
る。また、請求項2記載の取鍋蓄熱量の判定方法におい
ては、非接触式の温度計を用いているために、熱電対を
使用する場合のように断線等の危険が少なく、メンテナ
ンスをさらに安全かつ容易に行える。
In the method for determining the amount of heat accumulated in the ladle according to the first and second aspects, since the temperature of the end face of the metal rod exposed on the outer surface of the ladle is measured, the high temperature is maintained even under the severe environment of use of the ladle. It is possible to perform stable measurement up to the region. Therefore,
Estimating the temperature distribution in the ladle lining based on the measured temperature of the end face allows easy and safe determination of the ladle heat storage amount. Further, in the method for determining the amount of stored heat in the ladle according to claim 2, since a non-contact type thermometer is used, there is little risk of disconnection as in the case of using a thermocouple, and maintenance is further safe. And easy to do.

【0007】[0007]

【実施例】続いて、添付した図面を参照しつつ、本発明
を具体化した実施例につき説明し、本発明の理解に供す
る。ここに図1は本発明の一実施例に係る取鍋蓄熱量の
判定方法を適用した装置の概略説明図、図2は同方法を
適用した金属棒の端面温度の時間経過を示す模式図、図
3は同方法を適用した2本の金属棒の端面温度差の時間
経過を示す模式図である。
Embodiments of the present invention will now be described with reference to the accompanying drawings to provide an understanding of the present invention. FIG. 1 is a schematic explanatory view of an apparatus to which a method for determining a ladle heat storage amount according to an embodiment of the present invention is applied, and FIG. 2 is a schematic view showing a time course of end face temperature of a metal rod to which the same method is applied, FIG. 3 is a schematic diagram showing the time course of the end surface temperature difference between two metal rods to which the same method is applied.

【0008】図1に示す装置の概要を説明すると、該装
置は、2本の金属棒11、12が耐火物ライニング13
中に埋設された取鍋14及び、取鍋14の外面に露出し
た該金属棒11、12の端面の温度を測定するための放
射温度計からなる温度測定器10とから構成されてい
る。取鍋14は外径4m、高さ4.5m、鉄皮15の厚
み30mmの円筒状の鉄製容器からなり、耐火物ライニ
ング13は厚み20cmであって、処理可能な溶鋼容量
は約175tである。金属棒11、12は直径3cmで
長さがそれぞれ13cmと8cmの熱伝導率28kca
l/m・h・℃のステンレス製の棒状体を使用し、これ
らステンレス製の金属棒11、12の一端を取鍋14底
からの高さ0.4m(a)と0.3m(b)の位置にそ
れぞれ一端を外面に向けて露出させ、他端を取鍋14の
内面側に水平方向に配置して、耐火物ライニング13中
に埋設した。耐火物ライニング13の施工は、アルミナ
成分93Wt%、マグネシア成分3Wt%、CaO成分
2Wt%、シリカ成分を微量含む混合物に水を6Wt%
添加してなるキャスタブル約22tを取鍋14の容器に
流し込んで行い、キャスタブルからなる耐火物ライニン
グ13の平均厚みを17〜20cm、乾燥後の熱伝導率
を2kcal/m・h・℃に設定した。
The outline of the apparatus shown in FIG. 1 will be described. In the apparatus, two metal rods 11 and 12 are made of a refractory lining 13.
It comprises a ladle 14 embedded therein and a temperature measuring device 10 comprising a radiation thermometer for measuring the temperature of the end faces of the metal rods 11 and 12 exposed on the outer surface of the ladle 14. The ladle 14 is composed of a cylindrical iron container having an outer diameter of 4 m, a height of 4.5 m, and a steel shell 15 having a thickness of 30 mm, the refractory lining 13 has a thickness of 20 cm, and the meltable steel capacity that can be processed is about 175 t. . The metal rods 11 and 12 have a diameter of 3 cm and a length of 13 cm and 8 cm, respectively, and a thermal conductivity of 28 kca.
Using stainless steel rods of 1 / m · h · ° C., one end of these stainless steel metal rods 11 and 12 is 0.4 m (a) and 0.3 m (b) high from the bottom of the ladle 14. At one position, one end was exposed toward the outer surface, and the other end was horizontally arranged on the inner surface side of the ladle 14 and embedded in the refractory lining 13. Construction of the refractory lining 13 is performed by adding 6 Wt% of water to a mixture containing 93 Wt% of alumina component, 3 Wt% of magnesia component, 2 Wt% of CaO component and a small amount of silica component.
About 22 tons of castable added was poured into the container of the pot 14, and the average thickness of the refractory lining 13 made of castable was set to 17 to 20 cm, and the thermal conductivity after drying was set to 2 kcal / m · h · ° C. .

【0009】ここで、図1に示すように長さがy1 、y
2 である2本の金属棒11、12を取鍋14の外面に露
出させた位置での端面温度Ta 、Tb を測定して、対応
する金属棒11、12の耐火物ライニング13内にある
末端位置での温度T1 、T2を求める取鍋蓄熱量の判定
方法の一例を以下に述べる。取鍋14の任意の位置に熱
伝導率の高い、使用環境での耐熱性を有する鉄等の材質
からなる金属棒を少なくとも2本以上耐火物ライニング
13内に設けて、外面より高熱伝導体である金属棒1
1、12の端面の各温度Ta 、Tb を測定する。この温
度は金属棒11、12の耐火物ライニング13内での末
端温度T1 、T2 を反映したものであるから、取鍋14
の外面の金属棒端面温度の測定で各末端温度差を測定す
ることが可能である。例えば、耐火物ライニング13及
び金属棒11、12の熱伝導率λ、λ´はそれぞれ一定
であり、また金属棒11、12の位置の耐火物ライニン
グ13における伝熱量(Q)及び、金属棒11、12中
における伝熱量(Q´)がそれぞれ一定であると仮定す
ることにより以下の式(1)、(2)が成り立つ。 Q=Sλ(T−T1 )/x1 =Sλ(T−T2 )/x2 ・・・ (1) Q´=Sλ´(T1 −Ta )/y1 =Sλ´(T2 −Tb )/y2 ・・・ (2) さらに、各温度T1 、T2 、Ta 、Tb について以下の
近似式が成立するものとみなすことができる。 T1 −T2 =Ta −Tb ・・・ (3) ここで、Qは耐火物中における伝熱量、λは耐火物ライ
ニング13の熱伝導率、Tは耐火物ライニング13の表
面温度、T1 、T2 はそれぞれ金属棒11、12におけ
る耐火物ライニング中の末端位置での温度、x1 、x2
は金属棒11、12末端から耐火物ライニング表面まで
の長さ、Sは伝熱面積である。また、Q´は金属棒の伝
熱量、y1 、y2 は金属棒11、12のそれぞれの長
さ、λ´は金属棒の熱伝導率である。従って、前記
(1)〜(3)式等に基づいて、T1 、T2 を算出する
ことができ、耐火物ライニング13の温度分布を想定す
ることにより該温度分布に基づいて取鍋容器の耐火物、
及び比熱データから取鍋蓄熱量を算出することができ
る。また、取鍋14の蓄熱量、取鍋14に滞留した溶鋼
の温度降下は、上記の伝熱量Qとの間に明瞭な関係を有
し、この伝熱量Qを推定、算出することにより、取鍋1
4に保持する溶鋼の温度管理を精度よく行うことができ
る。さらに、取鍋14に溶鋼を滞留させ熱的平衡に達し
ていると近似される二次精錬処理後等のタイミングで溶
鋼温度とTa 、Tb を測定することで、耐火物ライニン
グ13内における温度分布を想定することができ、該温
度分布に基づいてライニング残厚みを推定して、取鍋耐
火物のライニング厚み管理を行うことができる。
Here, as shown in FIG. 1, lengths y 1 , y
End surface temperature T a of the two metal rods 11 and 12 is 2 at positions exposed to the outer surface of the ladle 14, by measuring the T b, the refractory lining 13 of the corresponding metal rod 11 and 12 An example of a method for determining the ladle heat storage amount for obtaining the temperatures T 1 and T 2 at a certain terminal position will be described below. At least two or more metal rods made of iron or the like having high heat conductivity and heat resistance in the use environment are provided in the refractory lining 13 at any position of the ladle 14 so that the heat conductivity is higher than that of the outer surface. A certain metal rod 1
Each temperature T a of the end surface of 1,12 to measure T b. Since this temperature reflects the end temperatures T 1 and T 2 of the metal rods 11 and 12 in the refractory lining 13, the ladle 14
It is possible to measure the temperature difference at each end by measuring the end surface temperature of the metal rod on the outer surface. For example, the thermal conductivities λ and λ ′ of the refractory lining 13 and the metal rods 11 and 12 are constant, respectively, and the heat transfer amount (Q) in the refractory lining 13 at the positions of the metal rods 11 and 12 and the metal rod 11 are the same. The following equations (1) and (2) are established by assuming that the heat transfer amount (Q ′) in each of Nos. 12 and 12 is constant. Q = Sλ (T-T 1 ) / x 1 = Sλ (T-T 2) / x 2 ··· (1) Q'= Sλ' (T 1 -T a) / y 1 = Sλ' (T 2 -T b ) / y 2 (2) Furthermore, it can be considered that the following approximate expression holds for each temperature T 1 , T 2 , T a , and T b . T 1 −T 2 = T a −T b (3) where Q is the amount of heat transfer in the refractory, λ is the thermal conductivity of the refractory lining 13, T is the surface temperature of the refractory lining 13, T 1 and T 2 are the temperatures at the end positions in the refractory lining of the metal rods 11 and 12, x 1 and x 2, respectively.
Is the length from the ends of the metal rods 11 and 12 to the refractory lining surface, and S is the heat transfer area. Further, Q'is the heat transfer amount of the metal rod, y 1 and y 2 are the lengths of the metal rods 11 and 12, and λ'is the thermal conductivity of the metal rod. Therefore, T 1 and T 2 can be calculated based on the equations (1) to (3) and the like, and by assuming the temperature distribution of the refractory lining 13, the ladle container can be calculated based on the temperature distribution. Refractory,
And the ladle heat storage amount can be calculated from the specific heat data. Further, the heat storage amount of the ladle 14 and the temperature drop of the molten steel accumulated in the ladle 14 have a clear relationship with the heat transfer amount Q, and by estimating and calculating the heat transfer amount Q, Pot 1
The temperature of the molten steel held in No. 4 can be accurately controlled. Furthermore, by measuring the molten steel temperature and T a and T b at the timing after the secondary refining treatment, which is approximated to reach the thermal equilibrium by allowing the molten steel to stay in the ladle 14, The temperature distribution can be assumed, and the lining residual thickness can be estimated based on the temperature distribution to control the lining thickness of the ladle refractory.

【0010】まず、キャスタブル施工後の取鍋14の乾
燥を行い、キャスタブル中の水分を除いた後、取鍋14
の蓋上に設けた図示しない予熱用バーナによって耐火物
ライニング13の表面温度(T)を平均800℃となる
まで約6時間かけて予熱処理を行った。ここで、乾燥、
予熱後の耐火物ライニング13の平均比熱は0.13c
al/g・℃、平均熱伝導率は2kcal/m・h・℃
であり、このとき温度測定器10により測定した高さ
(a)、(b)位置における金属棒11、12の端面温
度Ta 、Tb はそれぞれ440℃と260℃であり、取
鍋14の鉄皮15の平均温度は80℃であった。従っ
て、耐火物ライニング厚み管理でのライニング厚みと伝
熱量から導かれる平均耐火物温度とライニング耐火物の
比熱との積として計算される取鍋14の冷却時温度25
℃における蓄熱量をゼロとして計算される蓄熱量は耐火
物の比重を3.2として、耐火物面積当たり約2.79
kcal/cm2 と計算された。ここで、転炉にて精錬
を行った温度1680℃、重量173tの溶鋼を取鍋1
4に受鋼して溶鋼の処理を行った後、溶鋼をタンディッ
シュに注湯して鋳造を行った。前記溶鋼の受鋼から排出
までは約2.5時間であり、溶鋼排出直後における高さ
(a)、(b)位置における金属棒11、12の端面温
度Ta 、Tb はそれぞれ850℃と540℃となり、耐
火物ライニング13の表面温度(T)は1490℃とな
って、この時点での取鍋14の蓄熱量は25℃をベース
として約4.95kcal/cm2 と計算された。
First, the ladle 14 after castable construction is dried to remove water in the castable, and then the ladle 14 is removed.
Preheating was performed for about 6 hours until the surface temperature (T) of the refractory lining 13 reached an average of 800 ° C. by a preheating burner (not shown) provided on the lid. Where dry,
The average specific heat of the refractory lining 13 after preheating is 0.13c
al / g · ° C, average thermal conductivity is 2 kcal / m · h · ° C
And the end face temperatures T a and T b of the metal rods 11 and 12 at the heights (a) and (b) measured by the temperature measuring device 10 at this time are 440 ° C. and 260 ° C., respectively. The average temperature of the iron shell 15 was 80 ° C. Therefore, the cooling temperature 25 of the ladle 14 calculated as the product of the average refractory temperature derived from the lining thickness and the heat transfer amount in refractory lining thickness management and the specific heat of the lining refractory 25
The heat storage amount calculated by setting the heat storage amount at 0 ° C to zero is about 2.79 per refractory area, with the specific gravity of the refractory being 3.2.
It was calculated to be kcal / cm 2 . Here, ladle 1 having a temperature of 1680 ° C. and a weight of 173 tons that has been refined in a converter is ladle 1.
After receiving the steel in No. 4 and treating the molten steel, the molten steel was poured into a tundish and cast. About 2.5 hours to discharge from受鋼of the molten steel, the height immediately after the molten steel discharge (a), (b) an end surface temperature T a of the metal rod 11 and 12 in position, T b is a 850 ° C., respectively 540 ° C., the surface temperature (T) of the refractory lining 13 became 1490 ° C., and the heat storage amount of the ladle 14 at this time was calculated to be about 4.95 kcal / cm 2 based on 25 ° C.

【0011】次いで、空の取鍋14を約5時間放置した
ところ、高さ(a)、(b)位置における金属棒11、
12の端面温度Ta 、Tb はそれぞれ230℃と140
℃となって、耐火物ライニング13の表面温度(T)は
400℃であった。以上から計算される取鍋14の蓄熱
量は1.62kcal/cm2 と前回の値より1.17
kcal/cm2 低いので、金属棒11、12の端面温
度Ta 、Tb がそれぞれ450℃と270℃となるよう
に、取鍋14の予熱用のバーナ等により取鍋14の予熱
量の調整を行って、取鍋14の蓄熱量を目標レベルに維
持した後、次の溶鋼処理を行った。以上のようにして取
鍋14の蓄熱量を一定に保つような管理を行った結果、
溶鋼温度の変動が抑制されて、温度低下による介在物浮
上不良、あるいは鋳造トラブルが減少し、製品歩留が向
上し、かつ取鍋14の耐火物ライニング厚み管理が可能
となり、さらに取鍋14の耐火物ライニング13の寿命
を、蓄熱量管理を行わなかった場合に較べて約12%向
上させることができた。
Next, when the empty ladle 14 was left for about 5 hours, the metal rod 11 at the height (a) and (b) positions,
The end face temperatures T a and T b of 12 are 230 ° C. and 140, respectively.
C., and the surface temperature (T) of the refractory lining 13 was 400.degree. The heat storage amount of the ladle 14 calculated from the above is 1.62 kcal / cm 2, which is 1.17 from the previous value.
Since kcal / cm 2 low, the end face temperature T a of the metal rod 11 and 12, as T b is 450 ° C. and 270 ° C., respectively, the adjustment of the preheating of the ladle 14 by a burner or the like for pre-heating of the ladle 14 After maintaining the heat storage amount of the ladle 14 at the target level, the following molten steel treatment was performed. As a result of performing management to keep the heat storage amount of the ladle 14 constant as described above,
Fluctuation of molten steel temperature is suppressed, inclusion floating failure due to temperature decrease or casting trouble is reduced, product yield is improved, and refractory lining thickness control of ladle 14 becomes possible. The life of the refractory lining 13 could be improved by about 12% as compared with the case where the heat storage amount control was not performed.

【0012】上述の取鍋操業における取鍋14の金属棒
11、12の端面温度Ta 、Tb の時間経過を示す模式
図を図2に、また端面温度Ta 、Tb の差の時間経過を
示す模式図を図3に示しているが、図3に示すような端
面温度差を管理指標として用いることによって、簡便に
取鍋14の蓄熱量の変化傾向を推定、予測することがで
きると共に、取鍋14のライニングの異常を早期に検出
して、鋳造トラブルを未然に防止することが可能とな
る。
FIG. 2 is a schematic diagram showing the time course of the end surface temperatures T a and T b of the metal rods 11 and 12 of the ladle 14 in the above-described ladle operation, and the time difference between the end surface temperatures T a and T b. A schematic diagram showing the progress is shown in FIG. 3. By using the end surface temperature difference as shown in FIG. 3 as a management index, the change tendency of the heat storage amount of the ladle 14 can be easily estimated and predicted. At the same time, an abnormality in the lining of the ladle 14 can be detected at an early stage to prevent casting trouble.

【0013】また上述の実施例においては、長さの異な
る2本の金属棒11、12を耐火物ライニング13中に
埋設した場合について詳述したが、耐火物ライニング1
3中に埋設する金属棒の本数を増やして測定点をより多
く取ることによって、前記耐火物ライニング13内にお
ける温度分布の測定精度を向上させることもできる。な
お、前記実施例においては、金属棒として比較的熱伝導
率の低いステンレス鋼を使用したが、熱伝導率の高い
鉄、銅等を使用した場合にはさらに測定精度を高めるこ
とができ、また、高耐熱性、高熱絶縁性の金属あるいは
合金等で該金属棒の周囲をコーティングすることが耐用
性あるいは測定精度を高める観点から好ましい。
In the above embodiment, the case where two metal rods 11 and 12 having different lengths are embedded in the refractory lining 13 has been described in detail.
By increasing the number of metal rods embedded in 3 and taking more measurement points, it is possible to improve the measurement accuracy of the temperature distribution in the refractory lining 13. In the above examples, stainless steel having a relatively low thermal conductivity was used as the metal rod, but when using high thermal conductivity iron, copper, etc., the measurement accuracy can be further improved, and It is preferable to coat the periphery of the metal rod with a metal or alloy having high heat resistance and high heat insulation properties from the viewpoint of improving durability or measuring accuracy.

【0014】[0014]

【発明の効果】請求項1及び2記載の取鍋蓄熱量の判定
方法においては、取鍋の外面に露出した金属棒の端面の
温度を測定することで、耐火物ライニング内の温度分布
を計算、推定して取鍋の蓄熱量の判定を行うために、測
定が確実に行えると共に、作業が簡便かつ安全である。
また、鋳造末期における取鍋の温度異常降下が抑制され
る結果、温度低下による介在物浮上不良あるいは鋳造ト
ラブルが防止され、製品歩留を向上することができる。
さらに、金属棒によって構成される装置そのものが堅牢
で、操業中及びメンテナンス中におけるトラブルが皆無
であり、常に安定した状態での温度管理を行える。特
に、請求項2記載の取鍋蓄熱量の判定方法においては、
非接触での測定であるため粉塵及び熱輻射等の環境条件
に左右されることが少なく、また、取鍋の移動に際して
も従来のように結線する必要がなく、メンテナンスが簡
単であり、かつ自動化への対応が容易にできる。
According to the method for determining the amount of heat accumulated in the ladle according to the first and second aspects, the temperature distribution in the refractory lining is calculated by measuring the temperature of the end surface of the metal rod exposed on the outer surface of the ladle. In order to estimate and determine the heat storage amount of the ladle, the measurement can be performed reliably, and the work is simple and safe.
Further, as a result of suppressing an abnormal temperature drop in the ladle at the final stage of casting, it is possible to prevent defective floating of inclusions or casting trouble due to temperature drop, and improve product yield.
Furthermore, the device itself composed of the metal rod is robust, there are no troubles during operation and maintenance, and temperature control can always be performed in a stable state. Particularly, in the method for determining the amount of heat stored in the ladle according to claim 2,
Since it is a non-contact measurement, it is less affected by environmental conditions such as dust and heat radiation, and there is no need to wire the ladle as in the past when moving the ladle, maintenance is simple, and automation is automatic. Can be easily dealt with.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る取鍋蓄熱量の判定方法
を適用した装置の概略説明図である。
FIG. 1 is a schematic explanatory diagram of an apparatus to which a method for determining a ladle heat storage amount according to an embodiment of the present invention is applied.

【図2】同方法を適用した金属棒の端面温度の時間経過
を示す模式図である。
FIG. 2 is a schematic diagram showing a time course of an end surface temperature of a metal rod to which the same method is applied.

【図3】同方法を適用した2本の金属棒の端面温度差の
時間経過を示す模式図である。
FIG. 3 is a schematic view showing a time course of an end surface temperature difference between two metal rods to which the same method is applied.

【符号の説明】[Explanation of symbols]

10 温度測定器 11 金属棒 12 金属棒 13 耐火物ライニング 14 取鍋 15 鉄皮 10 Temperature Measuring Instrument 11 Metal Rod 12 Metal Rod 13 Refractory Lining 14 Ladle 15 Iron Crust

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B22D 41/02 B22D 41/02 B ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // B22D 41/02 B22D 41/02 B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ長さの異なる金属棒を取鍋の耐
火物ライニング中に複数埋設してなる取鍋における取鍋
蓄熱量の判定方法であって、 前記金属棒の一端を前記取鍋の内面に向けて配設すると
共に、他端を該取鍋の外面に露出させて、該取鍋の外面
に露出した前記金属棒の端面の温度を測定することを特
徴とした取鍋蓄熱量の判定方法。
1. A method for determining the amount of heat stored in a ladle in which a plurality of metal rods having different lengths are embedded in a refractory lining of the ladle, wherein one end of the metal rod is connected to the ladle. A ladle heat storage amount characterized by arranging toward the inner surface, exposing the other end to the outer surface of the ladle, and measuring the temperature of the end surface of the metal rod exposed to the outer surface of the ladle. Judgment method.
【請求項2】前記金属棒の端面温度を非接触式の温度計
を用いて測定する請求項1記載の取鍋蓄熱量の判定方
法。
2. The method for determining the amount of heat accumulated in a ladle according to claim 1, wherein the end surface temperature of the metal rod is measured using a non-contact type thermometer.
JP4635895A 1995-02-10 1995-02-10 Determining method for heat storage quantity of ladle Withdrawn JPH08219897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4635895A JPH08219897A (en) 1995-02-10 1995-02-10 Determining method for heat storage quantity of ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4635895A JPH08219897A (en) 1995-02-10 1995-02-10 Determining method for heat storage quantity of ladle

Publications (1)

Publication Number Publication Date
JPH08219897A true JPH08219897A (en) 1996-08-30

Family

ID=12744935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4635895A Withdrawn JPH08219897A (en) 1995-02-10 1995-02-10 Determining method for heat storage quantity of ladle

Country Status (1)

Country Link
JP (1) JPH08219897A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680124A (en) * 2012-04-28 2012-09-19 程健光 Non-inserted temperature detecting device for detecting pot body temperature and heating equipment
CN113369469A (en) * 2021-04-30 2021-09-10 首钢京唐钢铁联合有限责任公司 Refractory brick for ladle, preparation method of refractory brick and ladle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680124A (en) * 2012-04-28 2012-09-19 程健光 Non-inserted temperature detecting device for detecting pot body temperature and heating equipment
CN113369469A (en) * 2021-04-30 2021-09-10 首钢京唐钢铁联合有限责任公司 Refractory brick for ladle, preparation method of refractory brick and ladle

Similar Documents

Publication Publication Date Title
US3559452A (en) Thermal analysis of molten steel
US20060002449A1 (en) Container for molten metal, use of the container and method for determining an interface
US4365788A (en) Process and apparatus for determining the level of molten metal in a metallurgical vessel, the temperature of the molten metal and the extent of wear of the refractory lining of the vessel
US6309442B1 (en) Refractory material sensor for determining level of molten metal and slag and method of using
US5064295A (en) Device for continuously measuring the temperature of a molten metal
US2655550A (en) Melting furnace with thermocouple reception means
CA3150476C (en) Predictive refractory performance measurement system
JP5487730B2 (en) Refractory life prediction method and refractory residual thickness estimation method
JPH08219897A (en) Determining method for heat storage quantity of ladle
US4355907A (en) Apparatus for picking up a molten test sample of metal or metal alloys and measuring the cooling curve of said sample
DK150996B (en) DIGEL FOR THERMAL ANALYSIS OF ALUMINUM ALLOYS UNDER THEIR STRENGTH
JP5299032B2 (en) Continuous temperature measurement method for molten steel
JP2002266011A (en) Method for estimating furnace condition in blast furnace
JP3754094B2 (en) Refractory structure spalling test method, firing crack evaluation method and test apparatus
KR101998726B1 (en) Apparatus for processing molten metal
JPH01288741A (en) Protective tube type temperature sensor
US3461216A (en) Apparatus for temperature measurement in vacuum melting and casting installations
JPH11108736A (en) Method for measuring weight of hot solution in container
JP2629392B2 (en) Melt temperature measuring device for induction heating furnace
JP3932612B2 (en) Continuous temperature measuring device for molten metal
JPH07190749A (en) Residual thickness detecting structure of refractory for gas blowing-in
JPH0421713A (en) Method for correcting steel tapping temperature with reserving heat quantity in ladle
JPH044214Y2 (en)
SU815044A1 (en) Method of continuous temperature measuring of liquid metal in smelting set
JPH0315729A (en) Temperature measuring instrument for molten metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507