JPH08218113A - Method for setting cooling condition of immersion tube - Google Patents

Method for setting cooling condition of immersion tube

Info

Publication number
JPH08218113A
JPH08218113A JP4260195A JP4260195A JPH08218113A JP H08218113 A JPH08218113 A JP H08218113A JP 4260195 A JP4260195 A JP 4260195A JP 4260195 A JP4260195 A JP 4260195A JP H08218113 A JPH08218113 A JP H08218113A
Authority
JP
Japan
Prior art keywords
core metal
inner diameter
immersion pipe
gas fluid
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4260195A
Other languages
Japanese (ja)
Other versions
JP3665378B2 (en
Inventor
Hidetoshi Terajima
英俊 寺島
Koji Kono
幸次 河野
Akio Ishii
章生 石井
Kazuto Yamamura
和人 山村
Kiyoshi Goto
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP04260195A priority Critical patent/JP3665378B2/en
Publication of JPH08218113A publication Critical patent/JPH08218113A/en
Application granted granted Critical
Publication of JP3665378B2 publication Critical patent/JP3665378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To provide the method for preventing the deformation by effectively cooling the core metal of immersion tube of a molten metal refining vessel, particularly, a vacuum degassing vessel, etc. CONSTITUTION: At the time of cooling the core metal by supplying gas fluid into the gap part of double pipes in the core metal consisting of an outer peripheral cylindrical iron plate and an inner peripheral cylindrical iron plate to the immersion tube having <=4000mm inner diameter, this gas fluid blasting quantity Q (Nm<3> /hr) is set by formula, (Q>=4.402×C+0.214×D) in accordance with the treating time ratio C(%) and the inner diameter D(m/m) of the immersion tube. Since the residual deforming quantity of the diameter at the lower end of the core metal can be held to <=25mm by executing the setting of cooling gas fluid blasting quantity by the formula, the service life of the immersion tube is prolonged and the durability is improved and the material cost of the vessel is effectively reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融金属精錬容器、特
に真空脱ガス設備等の浸漬管に用いられている芯金を効
果的に冷却し、その変形を防止するために、浸漬管を冷
却する条件の設定に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten metal refining vessel, in particular, a dip tube for effectively cooling a cored bar used in the dip tube of a vacuum degassing equipment or the like and preventing its deformation. Regarding setting of cooling conditions.

【0002】[0002]

【従来の技術】以下、従来の技術を、図1、図2、図3
を参照しながら説明する。現状の溶融金属精錬プロセス
において、真空脱ガス設備は高級鋼製造に不可欠な設備
となっている。RH、DHなどを代表とする脱ガス設備
は、真空槽の下端開口部を溶鋼に浸漬したのちに槽内を
真空にし、溶鋼を吸い上げて精錬する。浸漬管はこれら
の設備の下端に位置する。
2. Description of the Related Art A conventional technique will be described below with reference to FIGS.
Will be described with reference to. In the current molten metal refining process, vacuum degassing equipment is an essential equipment for high-grade steel production. The degassing equipment represented by RH, DH, etc. immerses the lower end opening of the vacuum tank in the molten steel and then evacuates the inside of the tank to suck up the molten steel for refining. Immersion tubes are located at the lower end of these installations.

【0003】浸漬管は、一般に内周がれんがあるいは不
定形耐火物、外周が不定形耐火物によって構成されてお
り、これらの耐火物は芯金と呼ばれる金属製の円筒と、
そこに設置された耐火物受け金物やスタッドによって保
持されている。芯金は耐火物を安定して保持し、真空槽
内に外気が侵入するのを防ぐ役割を担う大切な部分であ
る。従って変形は極力防止しなければならない。
An immersion pipe is generally composed of a brick or an irregular refractory material on the inner circumference and an irregular refractory material on the outer circumference. These refractory materials are a metal cylinder called a core metal,
It is held by refractory brackets and studs installed there. The core metal is an important part that holds the refractory material stably and prevents outside air from entering the vacuum chamber. Therefore, the deformation must be prevented as much as possible.

【0004】芯金の素材は、一般に普通鋼であるため、
その機械的強度は500℃以上において著しく低下する
(機械工学便覧(機械材料編)改訂5版 1968年日
本機械学会刊)。従って、芯金の変形を防止するため
に、その温度を500℃未満に保たなければならない。
ところが、耐火物の損耗によるライニング厚みの減少等
から、芯金の温度は500℃以上に上昇する。そして、
操業時の処理−非処理間の工程における温度変動、耐火
物と芯金の膨張差により図1のように芯金1に変形が生
じるため、内周耐火物2が目地開き6又は脱落4した
り、外周耐火物3に亀裂5が発生又は脱落するなどの問
題が生じ、これが浸漬管の寿命を律速している。
Since the material of the core metal is generally ordinary steel,
Its mechanical strength is remarkably reduced at 500 ° C. or higher (Mechanical Engineering Handbook (Mechanical Materials Edition), Revised 5th Edition, 1968, Japan Society of Mechanical Engineers). Therefore, in order to prevent deformation of the cored bar, its temperature must be kept below 500 ° C.
However, the temperature of the core metal rises to 500 ° C. or higher due to the decrease of the lining thickness due to the wear of the refractory. And
Because the core metal 1 is deformed as shown in Fig. 1 due to temperature fluctuations in the process between treatment and non-treatment during operation, and the difference in expansion between the refractory material and the core metal, the inner peripheral refractory material 2 opens the joints 6 or falls off 4. In addition, problems such as cracks 5 being generated or falling off on the outer peripheral refractory 3 occur, which limits the life of the immersion pipe.

【0005】従来このような問題を解決するために、例
えば特開昭61−253318号公報のような芯金の冷
却構造が提示されている。すなわち図2及び図3に示す
ように、芯金を外周円筒7と内周円筒8の二重構造にし
て、間隙にガス流体などを供給する方法である。この冷
却方法を実施すれば、芯金温度を500℃〜600℃程
度まで低下させることができるとしている。
In order to solve such a problem, a cooling structure for a cored bar has been proposed, for example, as disclosed in Japanese Patent Laid-Open No. 61-253318. That is, as shown in FIGS. 2 and 3, the core metal has a double structure of an outer peripheral cylinder 7 and an inner peripheral cylinder 8 and a gas fluid or the like is supplied to the gap. According to this cooling method, the core metal temperature can be lowered to about 500 ° C to 600 ° C.

【0006】[0006]

【発明が解決しようとする課題】しかしながら近年、こ
れらの真空脱ガス設備の操業内容は、単なる脱水素、脱
窒素、あるいは合金添加による単純な成分調整や温度調
整等の軽処理中心の操業から、極低炭素鋼の製造を目的
とした長時間脱炭処理などの重処理中心の操業に変化し
ている。処理時間は非常に長くなり、それに伴い溶鋼温
度も上昇している。一方設備の面では、脱炭能力向上の
ための浸漬管の大径化が趨勢となっている。その結果、
従来の芯金冷却方法では十分な効果が得られなくなって
きた。
However, in recent years, the operation contents of these vacuum degassing equipments have changed from simple operation such as dehydrogenation, denitrification, or simple component adjustment by alloy addition, temperature adjustment, etc. The operation has shifted to heavy processing such as long-term decarburization for the purpose of manufacturing ultra-low carbon steel. The processing time has become extremely long, and the molten steel temperature has risen accordingly. On the other hand, in terms of equipment, there is a trend toward larger immersion pipe diameters to improve decarburization capacity. as a result,
The conventional core bar cooling method is no longer sufficient.

【0007】本発明者らは、図2及び図3に示すような
従来の冷却方法を適用した浸漬管の最高芯金温度を調査
した。図4にその結果を示す。芯金温度は処理時間比
率、および浸漬管内径と相関がある。ここで、処理時間
比率とは、処理時間/(処理時間+待機時間)の百分率
で示される指数である。図4より処理時間比率が40%
であれば、浸漬管内径が1700mm以上、比率50%
であれば、内径500mm以上で芯金温度は600℃を
超える結果が得られている。このように、長時間の重処
理中心の操業条件下では、大径の浸漬管芯金を従来の冷
却方法で500℃〜600℃程度まで冷却することは不
可能となっている。本発明の目的は、溶融金属精錬容
器、特に真空脱ガス容器等の浸漬管の芯金を効果的に冷
却し、その変形を防止する方法を提供することにある。
The present inventors investigated the maximum core metal temperature of the immersion pipe to which the conventional cooling method as shown in FIGS. 2 and 3 was applied. The results are shown in FIG. The core metal temperature has a correlation with the processing time ratio and the inner diameter of the immersion pipe. Here, the processing time ratio is an index represented by a percentage of processing time / (processing time + waiting time). From Figure 4, the processing time ratio is 40%
If so, the inner diameter of the immersion pipe is 1700 mm or more, the ratio is 50%
In this case, the result is that the core metal temperature exceeds 600 ° C. when the inner diameter is 500 mm or more. As described above, under the operating condition of heavy treatment for a long time, it is impossible to cool the large diameter immersion pipe core bar to about 500 ° C to 600 ° C by the conventional cooling method. It is an object of the present invention to provide a method for effectively cooling a molten metal refining vessel, in particular, a core metal of an immersion pipe such as a vacuum degassing vessel and preventing its deformation.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する手段
を鋭意研究した結果、以下のことを見い出した。すなわ
ち、内径4000mm以下の浸漬管に対し、外周円筒鉄
板と内周円筒鉄板とからなる芯金の二重管間隙部に、ガ
ス流体を供給して芯金を冷却するに当たり、芯金下端内
径の残存変形量が25mm以下となるように、このガス
流体風量を、処理時間比率及び浸漬管内径に応じて、以
下の数式(1)により設定することを特徴とする浸漬管
冷却条件の設定方法である。この方法により芯金を効果
的に冷却し、浸漬管の寿命を延長することができる。
[Means for Solving the Problems] As a result of intensive research on means for solving the above problems, the following has been found. That is, for a dip tube having an inner diameter of 4000 mm or less, when a gas fluid is supplied to the core metal double tube gap portion of the outer peripheral cylindrical iron plate and the inner peripheral cylindrical iron plate to cool the core metal, A method for setting immersion pipe cooling conditions, characterized in that the gas fluid flow rate is set by the following mathematical formula (1) according to the treatment time ratio and the immersion pipe inner diameter so that the residual deformation amount is 25 mm or less. is there. By this method, the cored bar can be effectively cooled and the life of the immersion tube can be extended.

【0009】[0009]

【数2】 Q≧4.402×C+0.214×D ………(1) ただし、Q:ガス流体風量(Nm3/hr) C:処理時間比率(%)=処理時間/(処理時間+待機
時間)×100 D:浸漬管内径(mm)
[Equation 2] Q ≧ 4.402 × C + 0.214 × D (1) However, Q: Gas fluid air flow rate (Nm 3 / hr) C: Processing time ratio (%) = processing time / (processing time + Standby time) × 100 D: Immersion pipe inner diameter (mm)

【0010】[0010]

【作用】以下、本発明を詳細に、図1、図5を参照しな
がら説明する。本発明においては、内径4000mm以
下の浸漬管を対象とし、この構造を安定なものとして保
持するために必要な条件を、図1に示すように、芯金1
の下端内径の残存変形量(D1−D0)を25mm以下と
する。残存変形量とは、使用前に対する使用後の浸漬管
の芯金1の内径変化量を指す。本発明者らは、脱ガス設
備の使用前後の浸漬管を調査したところ、図1に示す芯
金1の最下端内径の残存変形量が25mm以下であれ
ば、内周耐火物2、外周耐火物3の脱落4や目地開き6
が無く、また外周耐火物3にも亀裂5が生じず、浸漬管
は健全であることが判明した。しかしながら、内径が4
000mmを超える浸漬管については、操業中の芯金の
変形挙動が異なるため、この基準値は適用できない。
The present invention will be described in detail below with reference to FIGS. 1 and 5. In the present invention, a dip tube having an inner diameter of 4000 mm or less is targeted, and the conditions necessary for keeping this structure stable are shown in FIG.
The residual deformation amount (D 1 -D 0 ) of the inner diameter at the lower end of is set to 25 mm or less. The residual deformation amount refers to the amount of change in the inner diameter of the cored bar 1 of the immersion pipe after use as compared with before use. The inventors investigated the immersion pipe before and after using the degassing equipment, and found that if the residual deformation amount of the lowermost inner diameter of the core metal 1 shown in FIG. Dropping 3 of objects 3 and opening of joints 6
It was found that the dip pipe was sound, since the outer peripheral refractory material 3 did not have the cracks 5. However, the inner diameter is 4
This reference value cannot be applied to dipping pipes exceeding 000 mm because the deformation behavior of the cored bar during operation is different.

【0011】図5に冷却ガス風量と芯金残存変形量の関
係を示す。この図は、本発明者らが、前述の外周円筒鉄
板と内周円筒鉄板とからなる二重円筒の冷却構造を持つ
浸漬管の芯金の使用前後調査結果から作成したものであ
る。図中の□、◇、○、△は、それぞれある決められた
浸漬管内径と処理時間比率の組合わせで調査した結果を
プロットしたものである。この内、斜線の領域における
調査点では、いずれも、内周耐火物の脱落や外周耐火物
の亀裂が生じていた。このような脱落や亀裂発生の臨界
条件となるのは、芯金残存変形量が25mmのところで
あり、図中の●は、前記の種々の条件での臨界点を示
す。すなわち、この臨界点が予測されれば、芯金の残存
変形量を25mm以内に抑えることができる。
FIG. 5 shows the relationship between the cooling gas flow rate and the residual deformation amount of the core metal. This figure was created by the present inventors based on the results of the before-and-after examination of the core metal of the immersion pipe having the double-cylinder cooling structure composed of the outer peripheral cylindrical iron plate and the inner peripheral cylindrical iron plate. In the figure, □, ◇, ○, and △ are the plots of the results of the investigations with certain combinations of the inner diameter of the immersion pipe and the processing time ratio. Among these, at the survey points in the shaded area, the inner peripheral refractory and the outer peripheral refractory were cracked. The critical condition for such detachment or crack generation is when the residual deformation amount of the core metal is 25 mm, and ● in the figure indicates the critical point under the various conditions described above. That is, if this critical point is predicted, the amount of residual deformation of the core metal can be suppressed within 25 mm.

【0012】この臨界点は、浸漬管内径、処理時間比
率、及びガス流体風量の関係により以下に示す近似式
(2)で表される。
This critical point is expressed by the following approximate expression (2) based on the relationship among the inner diameter of the immersion pipe, the processing time ratio, and the gas fluid air flow rate.

【0013】[0013]

【数3】 Q=4.402×C+0.214×D ………(2) Q:ガス流体風量(Nm3/hr) C:処理時間比率(%) D:浸漬管内径(mm)[Equation 3] Q = 4.402 × C + 0.214 × D (2) Q: Gas fluid air flow rate (Nm 3 / hr) C: Treatment time ratio (%) D: Immersion pipe inner diameter (mm)

【0014】従って、この式(2)よりガス流体風量Q
を求め、得られた値より過剰のガス流体風量を流せば、
芯金の残存変形量を25mm以内に抑えることができ
る。
Therefore, from this equation (2), the gas fluid flow rate Q
Is calculated, and if an excess amount of gas fluid air flow is flowed over the obtained value,
The amount of residual deformation of the core metal can be suppressed within 25 mm.

【0015】なお、冷却に用いるガス流体としては、空
気、窒素、アルゴン、ヘリウム、二酸化炭素、炭化水素
ガスなどを用いることができる。コストの面で空気ある
いは窒素が有利である。以上述べてきたような本発明の
ガス流体風量設定法を用いれば、如何なる操業の処理時
間比率や浸漬管内径においても、芯金の下端の内径の残
存変形量を安定して25mm以下に保つことができる。
As the gas fluid used for cooling, air, nitrogen, argon, helium, carbon dioxide, hydrocarbon gas or the like can be used. Air or nitrogen is advantageous in terms of cost. By using the gas fluid air flow rate setting method of the present invention as described above, the residual deformation amount of the inner diameter of the lower end of the core metal can be stably maintained at 25 mm or less regardless of the processing time ratio of any operation and the inner diameter of the immersion pipe. You can

【0016】ここでは、槽内を真空にすることで浸漬管
の下端から溶鋼を吸い上げて精錬する設備の例について
説明した。しかし、本発明による風量設定法は、溶鋼あ
るいは溶銑精錬におけるあらゆる空冷構造の芯金を使用
した円筒形浸漬構造体に適用可能である。たとえば空冷
された芯金とそれに支持された耐火物とからなる円筒形
の構造体を取鍋に保持された溶鋼あるいは溶銑に浸漬
し、その内部で精錬操作を行う設備である。
Here, an example of equipment for sucking molten steel from the lower end of the dip pipe and refining it by evacuating the tank has been described. However, the air flow rate setting method according to the present invention can be applied to a cylindrical immersion structure using a cored bar of any air cooling structure in molten steel or hot metal refining. For example, it is a facility for immersing a cylindrical structure composed of an air-cooled cored bar and a refractory supported by the cored bar in molten steel or hot metal held in a ladle, and performing refining operation therein.

【0017】[0017]

【実施例】以下に、本発明の実施例を表1を参照しなが
ら詳細に説明する。
EXAMPLES Examples of the present invention will be described in detail below with reference to Table 1.

【0018】[0018]

【表1A】 [Table 1A]

【0019】[0019]

【表1B】 [Table 1B]

【0020】表1に、本発明のガス流体風量設定法を用
いて浸漬管の冷却を行った実施例を(1)〜(8)に、
比較例を(9)〜(15)に示した。表1には、本発明
の実施例(1)〜(8)および比較例(9)〜(15)
の浸漬管内径、処理時間比率、回帰式(2)から予測さ
れる必要ガス流体風量すなわち予測ガス流量、実ガス流
量、ガス種、浸漬管寿命、芯金残存変形量、浸漬管損傷
の有無、及び損傷状況を示す。なお、いずれの場合も溶
鋼温度は1650±50℃であり、浸漬管の耐火物ライ
ニングは、内周9がマグクロダイレクトボンドれんがで
厚さは170mm、外周10がアルミナ系キャスタブル
で厚さは170mmであった。芯金1の構造は図2及び
図3に示したものと同一の外周円筒鉄板と内周円筒鉄板
からなる構造で、間隙には周方向に均等にガスを導くよ
うにパイプ11が設置されており、材質は普通鋼であっ
た。
Table 1 shows Examples (1) to (8) in which the immersion pipe is cooled by using the gas fluid air flow rate setting method of the present invention.
Comparative examples are shown in (9) to (15). Table 1 shows Examples (1) to (8) and Comparative Examples (9) to (15) of the present invention.
Inner diameter of immersion pipe, treatment time ratio, required gas fluid air volume predicted from the regression equation (2), that is, predicted gas flow rate, actual gas flow rate, gas type, immersion pipe life, residual deformation of core metal, presence or absence of immersion pipe damage, And the damage situation is shown. In all cases, the molten steel temperature was 1650 ± 50 ° C, and the refractory lining of the immersion pipe had a thickness of 170 mm with an inner circumference 9 of magcro direct bond brick and an outer circumference 10 of alumina castable with a thickness of 170 mm. Met. The structure of the cored bar 1 is the same as that shown in FIGS. 2 and 3 and is composed of an outer peripheral cylindrical iron plate and an inner peripheral cylindrical iron plate, and a pipe 11 is installed in the gap so as to uniformly guide the gas in the circumferential direction. The material was ordinary steel.

【0021】内径は異なるが内部構造は同じである複数
種の芯金を作成し、これらの上記の要領で耐火物を施工
し、実際の真空脱ガス設備に取り付けて試験した。50
0あるいは600mm内径の浸漬管はRH様の二本脚脱
ガス設備、1000mm以上の浸漬管はDH様の一本脚
脱ガス設備で試験した。それぞれの浸漬管は内周あるい
は外周の耐火物の残厚が50mm以下あるいは耐火物の
脱落、大きな亀裂発生や目地開きに至るまで使用し、使
用後は耐火物は除去して芯金の内径を測定し、これから
使用前の内径を差し引いて残存変形量を算出した。
A plurality of types of cored bars having different internal diameters but the same internal structure were prepared, and refractory materials were installed in the above-mentioned manner, and the cored bars were mounted on an actual vacuum degassing facility and tested. Fifty
Immersion pipes with an inner diameter of 0 or 600 mm were tested with a RH-like two-leg degassing facility, and dip pipes with a diameter of 1000 mm or more were tested with a DH-like one-leg degassing facility. Use each dip pipe until the remaining thickness of the refractory on the inner or outer circumference is 50 mm or less, or until the refractory falls off, large cracks occur, or the joint opens, after which the refractory is removed and the inner diameter of the core metal is changed. The residual deformation amount was calculated by measuring and subtracting the inner diameter before use.

【0022】表1の浸漬管損傷の項目に「無」とあるも
のは、耐火物の残厚が50mm以下となったために使用
を中止し、残存変形量が25mm以下であったことを示
す。また「有」は耐火物の脱落、亀裂発生あるいは目地
開きにより浸漬管の使用を中止したことを示す。
In Table 1, "No" in the item of damage to the immersion pipe indicates that the refractory had a residual thickness of 50 mm or less and was discontinued, and the residual deformation amount was 25 mm or less. “Yes” indicates that the use of the dip pipe was stopped due to the refractory falling off, cracking, or opening of joints.

【0023】表1において、比較例(9)〜(15)で
は、いずれも何らかの浸漬管損傷が生じ、残存変形量も
25mmを超えていた。これに対して(1)〜(8)に
示す本発明の方法で風量を設定した場合は、同じ内径の
比較例と比較すると寿命が倍程度まで延長され、さらに
浸漬管損傷は生じておらず、残存変形量も25mm以下
であった。従って、本発明のガス流体風量設定法を用い
て浸漬管の冷却を行うことにより、浸漬管を健全に保つ
ことができ、寿命延長が計られた。
In Table 1, in Comparative Examples (9) to (15), some sort of immersion pipe damage occurred, and the residual deformation amount was more than 25 mm. On the other hand, when the air volume is set by the method of the present invention shown in (1) to (8), the life is extended to about twice as long as that of the comparative example having the same inner diameter, and the immersion pipe is not damaged. The residual deformation amount was 25 mm or less. Therefore, by cooling the dip tube using the gas fluid air flow rate setting method of the present invention, the dip tube could be kept sound and the life was extended.

【0024】[0024]

【発明の効果】本発明による冷却ガス流体風量設定を行
えば、内径4000mm以下の浸漬管であれば、芯金下
端の残存変形量を25mm以下に保つことができる。こ
れにより浸漬管の寿命を延長し、溶融金属精錬容器、特
に真空脱ガス設備の浸漬管の耐用性を大幅に延長して、
炉材コストを大幅に下げることができる。
By setting the cooling gas fluid flow rate according to the present invention, the residual deformation amount of the lower end of the core metal can be maintained at 25 mm or less if the immersion pipe has an inner diameter of 4000 mm or less. This prolongs the life of the immersion pipe, greatly extends the durability of the molten metal refining container, especially the immersion pipe of vacuum degassing equipment,
The furnace material cost can be reduced significantly.

【図面の簡単な説明】[Brief description of drawings]

【図1】浸漬管損傷状況の概略を示す図である。FIG. 1 is a diagram showing an outline of a damage condition of a submerged pipe.

【図2】従来の浸漬管の構造例を示す縦断面図である。FIG. 2 is a vertical cross-sectional view showing a structural example of a conventional immersion pipe.

【図3】(a)は従来の空冷芯金の構造例の詳細を示す
図で、図2のB−B’水平断面の部分断面図である。
(b)は(a)の芯金部の垂直断面図である。
3A is a diagram showing details of a structural example of a conventional air-cooled core bar, and is a partial cross-sectional view of a horizontal cross section taken along the line BB ′ of FIG. 2. FIG.
(B) is a vertical cross-sectional view of the cored bar portion of (a).

【図4】各種条件での浸漬管内径と芯金温度との関係を
示す図である。
FIG. 4 is a diagram showing the relationship between the inner diameter of the immersion pipe and the temperature of the core metal under various conditions.

【図5】各種条件での冷却ガス風量と芯金残存変形量と
の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a cooling gas air flow rate and a core metal residual deformation amount under various conditions.

【符号の説明】[Explanation of symbols]

1 芯金 2 内周耐火物 3 外周耐火物 4 耐火物脱落 5 亀裂 6 目地開き 7 外周円筒 8 内周円筒 9 内周耐火物 10 外周耐火物 11 パイプ 1 core metal 2 inner circumference refractory 3 outer circumference refractory 4 refractory fallout 5 crack 6 joint opening 7 outer cylinder 8 inner cylinder 9 inner refractory 10 outer refractory 11 pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山村 和人 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 後藤 潔 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuto Yamamura 2-6-3 Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Inventor Kiyoshi Goto 2-6-Otemachi, Chiyoda-ku, Tokyo 3 Within Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内径4000mm以下の浸漬管に対し、
外周円筒鉄板と内周円筒鉄板とからなる芯金の二重管間
隙部に、ガス流体を供給して芯金を冷却するに当たり、
このガス流体風量を、処理時間比率及び浸漬管内径に応
じて、以下の数式(1)により設定することを特徴とす
る浸漬管冷却条件の設定方法。 【数1】 Q≧4.402×C+0.214×D ………(1) Q:ガス流体風量(Nm3/hr) C:処理時間比率(%)=処理時間/(処理時間+待機
時間)×100 D:浸漬管内径(mm)
1. An immersion pipe having an inner diameter of 4000 mm or less,
In cooling the core metal by supplying a gas fluid to the double tube gap part of the core metal composed of the outer peripheral cylindrical iron plate and the inner peripheral cylindrical iron plate,
A method for setting immersion pipe cooling conditions, characterized in that the gas fluid air flow rate is set according to the following equation (1) according to the processing time ratio and the immersion pipe inner diameter. ## EQU1 ## Q ≧ 4.402 × C + 0.214 × D (1) Q: Gas fluid air flow rate (Nm 3 / hr) C: Treatment time ratio (%) = treatment time / (treatment time + standby time) ) × 100 D: Immersion pipe inner diameter (mm)
JP04260195A 1995-02-08 1995-02-08 Setting method of dip tube cooling condition Expired - Lifetime JP3665378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04260195A JP3665378B2 (en) 1995-02-08 1995-02-08 Setting method of dip tube cooling condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04260195A JP3665378B2 (en) 1995-02-08 1995-02-08 Setting method of dip tube cooling condition

Publications (2)

Publication Number Publication Date
JPH08218113A true JPH08218113A (en) 1996-08-27
JP3665378B2 JP3665378B2 (en) 2005-06-29

Family

ID=12640579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04260195A Expired - Lifetime JP3665378B2 (en) 1995-02-08 1995-02-08 Setting method of dip tube cooling condition

Country Status (1)

Country Link
JP (1) JP3665378B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007021207A1 (en) * 2005-08-16 2007-02-22 Zaklady Magnezytowe 'ropczyce' S.A. Snorkels for vacuum degassing of steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007021207A1 (en) * 2005-08-16 2007-02-22 Zaklady Magnezytowe 'ropczyce' S.A. Snorkels for vacuum degassing of steel

Also Published As

Publication number Publication date
JP3665378B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
JPH08218113A (en) Method for setting cooling condition of immersion tube
JP2007031820A (en) Vacuum-degassing treating method for molten steel
JP2003129123A (en) Method for estimating minor diameter of vacuum vessel in vacuum degassing apparatus and method for controlling height
JP6293233B2 (en) Refining apparatus and refining method
JP2012180559A (en) Degassing method of molten steel using circulating vacuum chamber
JP3212135B2 (en) Refractory lining method for vacuum degassing equipment
JPS61253318A (en) Method for cooling immersion pipe
JP3569337B2 (en) Immersion tube
JP7222407B2 (en) Method for suppressing temperature change in refractory, method for operating vacuum degassing facility, and method for producing molten steel
JP2680985B2 (en) Immersion pipe for degassing equipment
JP5781385B2 (en) Degassing equipment dip tube
JP7020540B2 (en) Top-blown lance and coating method for top-blown lance
JPH01272715A (en) Immersion pipe of vacuum degassing apparatus
JP3455003B2 (en) Immersion tube
JPH10280030A (en) Repaired side wall of rh vacuum degassing furnace and method for repairing rh vacuum degassing furnace
JP2816085B2 (en) Construction method of immersion pipe for reflux degassing equipment
JP3282487B2 (en) Manufacturing method of enamel steel
JP2001140044A (en) Low dust generation and high corrosion resistant stainless steel pipe for piping
JPH08218114A (en) Immersion tube for vacuum degassing equipment and using method thereof
JPH08311530A (en) Degassing refining method
JP3002119U (en) Immersion pipe for RH vacuum degassing equipment
JPH09143536A (en) Immersion tube for vacuum degassing apparatus
JPH09143539A (en) Immersion tube for vacuum degassing apparatus
JPH1121617A (en) Immersion tube in rh equipment having preventing structure to seal metal deformation
JP3282543B2 (en) Apparatus and method for preheating and preserving cylindrical immersion pipe for ladle refining of molten steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050401

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130408

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 9

EXPY Cancellation because of completion of term