JPH08217592A - Quartz crucible for production of silicon single crystal - Google Patents

Quartz crucible for production of silicon single crystal

Info

Publication number
JPH08217592A
JPH08217592A JP7053399A JP5339995A JPH08217592A JP H08217592 A JPH08217592 A JP H08217592A JP 7053399 A JP7053399 A JP 7053399A JP 5339995 A JP5339995 A JP 5339995A JP H08217592 A JPH08217592 A JP H08217592A
Authority
JP
Japan
Prior art keywords
single crystal
quartz crucible
silicon single
crucible
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7053399A
Other languages
Japanese (ja)
Inventor
Masaru Aoki
優 青木
Hiroaki Kotaka
啓章 小鷹
Shusuke Yamaoka
秀典 山岡
Yoshiro Aiba
吉郎 相庭
Masahiro Ando
正博 安藤
Hideyasu Matsuo
秀逸 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP7053399A priority Critical patent/JPH08217592A/en
Publication of JPH08217592A publication Critical patent/JPH08217592A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To obtain a quartz crucible having a uniform surface layer slightly reactive with molten silicon and carbon and capable of growing a silicon single crystal having a reduced impurity content and almost free from defects such as distortion. CONSTITUTION: This quartz crucible has an oxynitride-contg. surface layer. The thickness of the surface layer is preferably about 10μm from the surface and the surface layer is preferably formed by subjecting a part of a quartz crucible close to the surface to oxynitriding treatment by bringing the surface of the crucible into contact with gaseous ammonia under heating at 700-1,200 deg.C in the presence of a carbon generating source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はシリコン単結晶製造用石
英ルツボに関し、詳しくは表面を酸窒化して酸素等の不
純物含有量が著しく低減された半導体用シリコン単結晶
製造用石英ルツボに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz crucible for producing a silicon single crystal, and more particularly to a quartz crucible for producing a silicon single crystal for a semiconductor, in which the content of impurities such as oxygen is remarkably reduced by oxynitriding the surface. is there.

【0002】[0002]

【従来の技術】半導体製造においては高純度のシリコン
単結晶体の製造が最も重要である。シリコン単結晶の製
造方法は、チョクラルスキーゾーン法(CZ法)とフロ
ーティングゾーン法(FZ法)に大別される。CZ法
は、石英ガラス製のルツボを使用し、石英ガラス製ルツ
ボ内のシリコンの融液を単結晶種シリコンで引き上げて
シリコン単結晶体を形成する方法である。
2. Description of the Related Art In the production of semiconductors, the production of high-purity silicon single crystal bodies is the most important. The method for producing a silicon single crystal is roughly classified into a Czochralski zone method (CZ method) and a floating zone method (FZ method). The CZ method is a method in which a quartz glass crucible is used and a silicon melt in the quartz glass crucible is pulled by single crystal seed silicon to form a silicon single crystal body.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来か
ら石英ガラス製ルツボを用いるシリコン単結晶製造は、
下記のような問題点が指摘されている。即ち、(1)約
1450℃の高温シリコン融液との石英ルツボ内面とが
反応してSiO2 やSiOの珪素酸化物が生成付着し、
時間と共に脱落して引上げ単結晶体と融液との境界部分
に付着したり、また、石英ルツボから酸素(O2 )が融
液中に溶融し引上げ結晶中に不純物O2 が含有され易く
なる等により完全なシリコン単結晶体の形成の障害とな
っている。また、(2)石英ルツボとそれが内装される
カーボンルツボとが高温で反応してカーボンルツボ内面
のカーボンがCO2 となり、シリコン単結晶体中の不純
物となると共に、石英ルツボとカーボンルツボとに間隙
が生じて石英ルツボの回転が不均一となり、シリコン単
結晶体に歪みが生じていた。更に(3)石英ルツボは、
歪点以上の温度域で使用されるため加熱時の変形が避け
られず、このためシリコン単結晶に同様に歪みが生じる
等の不都合があった。
However, the production of a silicon single crystal using a quartz glass crucible has hitherto been
The following problems have been pointed out. That is, (1) the high temperature silicon melt of about 1450 ° C. reacts with the inner surface of the quartz crucible to generate and attach SiO 2 or SiO 2 silicon oxide,
It falls off with time and adheres to the boundary between the pulled single crystal and the melt, or oxygen (O 2 ) is melted from the quartz crucible into the melt and the impurities O 2 are easily contained in the pulled crystal. As a result, it is an obstacle to the formation of a perfect silicon single crystal. Further, (2) the quartz crucible and the carbon crucible in which the quartz crucible is contained react at a high temperature to convert carbon on the inner surface of the carbon crucible into CO 2 and become an impurity in the silicon single crystal body, and also form a quartz crucible and a carbon crucible. A gap was generated to make the rotation of the quartz crucible non-uniform, and the silicon single crystal was distorted. Furthermore, (3) quartz crucible
Since it is used in a temperature range above the strain point, deformation during heating is unavoidable, and therefore, there is a disadvantage that the silicon single crystal is similarly strained.

【0004】また、上記の石英ルツボの問題点、特にO
2 含有量の低減や融液面におけるルツボの損傷の防止す
る目的での提案も行われている。例えば特開昭54−1
57779号公報では、石英ルツボ内表面をCVD法に
よりSi34 層を形成したルツボを用いることを提案
している。しかし、上記提案方法は、シリコン単結晶体
中の不純物O2 含有量を低減することができるが、ルツ
ボ表層中のSi34 からシリコン融液中に窒素(N
2 )の溶解が起こり、逆に窒素含有量が増大し、溶解限
度量以上含有された窒素が析出する等により生成シリコ
ン単結晶に不都合が生じる等の不都合が新たに生起する
ことになり、また、CVD法によりSi34 層を形成
する場合、層厚を約1.5mm以上としなければ均一と
ならないためSi34 層の形成も容易でなく、一方、
内表面が均一でないまま引上げを行った場合には、得ら
れるシリコン単結晶体が不均一となり完全な単結晶体が
得られない等の問題もあった。更に、外装のカーボンル
ツボと石英ルツボの外表面とが反応して炭酸ガスが発生
し、シリコン単結晶中に取り込まれたり、カーボンルツ
ボの溶損により石英ルツボとに間隙が生じルツボの回転
にが不均一となりシリコン単結晶に歪み等の欠陥が生じ
る等の不都合もあった。本発明は、上記シリコン単結晶
引上げ用石英ルツボの問題点に鑑み、表面にシリコン融
液及びカーボンとの反応性が低く、且つ、均一な表面層
を有する石英ルツボの提供を目的とする。発明者らは、
上記目的にため鋭意検討し、表面層として酸窒化物を形
成することにより、耐シリコン融液性が高く、O2 及び
2 の溶解量を低減することを見出し本発明に到った。
Further, the above-mentioned problems of the quartz crucible, especially O
2 Proposals have also been made for the purpose of reducing the content and preventing damage to the crucible on the melt surface. For example, JP-A-54-1
Japanese Patent Laid-Open No. 57779 proposes to use a crucible having a Si 3 N 4 layer formed on the inner surface of a quartz crucible by a CVD method. However, although the above-mentioned proposed method can reduce the content of the impurity O 2 in the silicon single crystal body, it does not change the nitrogen content (N 3) in the silicon melt from Si 3 N 4 in the surface layer of the crucible.
Dissolution of 2 ) occurs, conversely the nitrogen content increases, and the nitrogen contained above the solubility limit precipitates, which causes a new problem such as a problem in the generated silicon single crystal. When the Si 3 N 4 layer is formed by the CVD method, it is not easy to form the Si 3 N 4 layer because the thickness is not uniform unless the thickness is about 1.5 mm or more.
If the pulling is carried out while the inner surface is not uniform, there is a problem that the obtained silicon single crystal body is non-uniform and a perfect single crystal body cannot be obtained. Furthermore, the carbon crucible on the exterior and the outer surface of the quartz crucible react with each other to generate carbon dioxide gas, which is taken into the silicon single crystal, and the melting of the carbon crucible causes a gap between the quartz crucible and the rotation of the crucible. There were also inconveniences such as non-uniformity and defects such as distortion in the silicon single crystal. In view of the problems of the above-mentioned quartz crucible for pulling a silicon single crystal, an object of the present invention is to provide a quartz crucible having a uniform surface layer with low reactivity with a silicon melt and carbon on the surface. The inventors
For the above purpose, the inventors have made earnest studies and found that forming an oxynitride as a surface layer has high resistance to silicon melt and reduces the amount of O 2 and N 2 dissolved, resulting in the present invention.

【0005】[0005]

【課題を解決するための手段】本発明によれば、酸窒化
物を含有する表面層を有することを特徴とするシリコン
単結晶製造用石英ルツボが提供される。本発明の上記シ
リコン単結晶製造用石英ルツボにおいて、前記表面層が
表面から約10μmの厚さであることが好ましい。ま
た、前記表面層において表面から深さ約2μmまでの窒
素含有量が原子数含有率で40%以下であることが好ま
しい。また、本発明の上記シリコン単結晶製造用石英ル
ツボにおいて、前記酸窒化物を含有する表面層が、石英
ルツボ表面を炭素発生源の存在下に、700〜1200
℃でアンモニアガスで加熱接触処理して表面近傍を酸窒
化処理して形成されることが好ましい。
According to the present invention, there is provided a quartz crucible for producing a silicon single crystal, which has a surface layer containing an oxynitride. In the quartz crucible for producing a silicon single crystal of the present invention, it is preferable that the surface layer has a thickness of about 10 μm from the surface. Further, in the surface layer, the nitrogen content from the surface to a depth of about 2 μm is preferably 40% or less in terms of atomic number content. In the quartz crucible for producing a silicon single crystal of the present invention, the surface layer containing the oxynitride has a surface of the quartz crucible of 700 to 1200 in the presence of a carbon source.
It is preferably formed by subjecting the vicinity of the surface to an oxynitriding treatment by heating and contacting with ammonia gas at ℃.

【0006】[0006]

【作用】本発明は上記のように構成され、シリコン単結
晶引上げ製造用の石英ルツボの内外表面層に酸窒化物、
主に酸窒化珪素(Si2 ON2 )を含有する表面層を形
成するため、融液中への溶解し易いO2 がルツボ表面に
おいて相対的に低くなり、また、O2 に比し融液溶解量
が低いN2 は、Si34 より相対的にN2 量が少なく
シリコン融液中へのO2 及びN2 不純物の拡散量が著し
く低減することができる。また、本発明の石英ルツボ
は、外表面の表面層も主にSi2 ON2 の酸窒化物を含
有するため、石英ルツボと接する外装カーボンルツボの
カーボンの酸化が抑制され、カーボンルツボの溶損が防
止できその長期使用を可能となると同時に、シリコン単
結晶体の歪みも防止できる。更に、表面層に含有される
酸窒化物のSi2 ON2 は、極めて耐熱性に優れシリコ
ン融液の1450℃の高温でも変形することがなく、円
滑に均質なシリコン単結晶体を得ることができる。
The present invention is configured as described above, and an oxynitride is formed on the inner and outer surface layers of a quartz crucible for producing a pulled silicon single crystal.
Since a surface layer mainly containing silicon oxynitride (Si 2 ON 2 ) is formed, O 2 which is easily dissolved in the melt becomes relatively low on the surface of the crucible, and the melt is less than O 2. N 2 having a low dissolution amount has a relatively small amount of N 2 as compared with Si 3 N 4, and the diffusion amount of O 2 and N 2 impurities in the silicon melt can be significantly reduced. Further, in the quartz crucible of the present invention, since the surface layer of the outer surface also mainly contains the oxynitride of Si 2 ON 2 , the oxidation of the carbon of the exterior carbon crucible in contact with the quartz crucible is suppressed, and the melting loss of the carbon crucible is suppressed. And the long-term use thereof can be prevented, and at the same time, distortion of the silicon single crystal body can be prevented. Furthermore, the oxynitride Si 2 ON 2 contained in the surface layer has excellent heat resistance and does not deform even at a high temperature of 1450 ° C. of the silicon melt, and a smooth homogeneous silicon single crystal can be obtained. it can.

【0007】以下、本発明をより詳細に説明する。本発
明のシリコン単結晶製造用石英ルツボは、酸窒化物を含
有する表面層を有するものであり、その基体である石英
ルツボとしては、従来から用いられている高純度石英ガ
ラス製のルツボを用いることができ、その表面を酸窒化
処理して得ることができる。本発明の酸窒化処理は、通
常、炭素発生源の存在下に、700〜1200℃、好ま
しくは700〜1100℃で石英ルツボをアンモニアガ
スで加熱接触処理することにより行うことができる。炭
素発生源としては、炭化水素及び/または固体炭素が用
いられる。炭化水素としては、加熱処理温度で分解しう
るものであれば特に制限されない。通常、C3 〜C4
炭化水素が用いられ、いわゆるLPG(液化石油ガス)
を用いるのが好ましい。固体炭素としては、通常、す
す、炭、カーボンブラック等無定形炭素が用いられる。
炭素発生源として炭化水素を用いる場合、加熱接触処理
する反応系雰囲気としてアンモニアガスと炭化水素ガス
との混合ガス雰囲気で処理することが好ましく、その混
合比率はアンモニアガスに対する炭化水素ガスが1〜7
0容量%、好ましくは1〜10容量%、より好ましくは
1〜3容量%である。この混合比率が1容量%未満であ
ると酸窒化処理の反応が充分に促進せず、また混合比率
が70容量%を越えた場合はアンモニアガスが炭化水素
の分解に消費されてしまい反応速度が著しく低下するた
め好ましくない。炭素発生源が固体炭素の場合は、純化
処理を施し総不純物濃度を10ppm以下とした固体炭
素中に石英ガラスを埋込みアンモニア気流中で加熱する
ことで行うことができる。加熱処理条件は上記の炭化水
素の場合と同様である。上記加熱接触処理は、アンモニ
アと炭化水素の混合ガス雰囲気、固体カーボンの存在下
にあるアンモニアガス雰囲気、または、固体カーボンの
存在下にあるアンモニアと炭化水素の混合ガス雰囲気中
で行われるが、必要に応じて水素ガスまたは窒素ガス等
不活性ガス等の各種ガスを混合することもできる。
The present invention will be described in more detail below. The quartz crucible for producing a silicon single crystal of the present invention has a surface layer containing an oxynitride, and as the quartz crucible which is the base thereof, a conventionally used high-purity quartz glass crucible is used. It can be obtained by oxynitriding its surface. The oxynitriding treatment of the present invention can be carried out usually by heating and contacting a quartz crucible with ammonia gas at 700 to 1200 ° C, preferably 700 to 1100 ° C in the presence of a carbon generation source. Hydrocarbons and / or solid carbon are used as the carbon source. The hydrocarbon is not particularly limited as long as it can be decomposed at the heat treatment temperature. Usually, C 3 to C 4 hydrocarbons are used, and so-called LPG (liquefied petroleum gas) is used.
Is preferably used. Amorphous carbon such as soot, charcoal and carbon black is usually used as the solid carbon.
When a hydrocarbon is used as the carbon generation source, it is preferable to treat in a mixed gas atmosphere of ammonia gas and hydrocarbon gas as the reaction system atmosphere for the heating contact treatment, and the mixture ratio is 1 to 7 for the hydrocarbon gas to ammonia gas.
It is 0% by volume, preferably 1 to 10% by volume, more preferably 1 to 3% by volume. If the mixing ratio is less than 1% by volume, the reaction of the oxynitriding treatment is not sufficiently promoted, and if the mixing ratio exceeds 70% by volume, the ammonia gas is consumed for the decomposition of hydrocarbons and the reaction rate becomes low. It is not preferable because it significantly decreases. When the carbon generation source is solid carbon, it can be carried out by burying quartz glass in solid carbon having a total impurity concentration of 10 ppm or less after purification treatment and heating in an ammonia stream. The heat treatment conditions are the same as those for the above hydrocarbons. The heating contact treatment is performed in a mixed gas atmosphere of ammonia and hydrocarbon, an ammonia gas atmosphere in the presence of solid carbon, or a mixed gas atmosphere of ammonia and hydrocarbon in the presence of solid carbon, It is also possible to mix various gases such as hydrogen gas or an inert gas such as nitrogen gas depending on the requirements.

【0008】上記酸窒化処理における加熱接触処理の処
理時間は、処理温度や他の処理条件、例えば石英ルツボ
の種類、形状、容量等、また、処理雰囲気のアンモニア
と炭化水素等他のガスとの混合比率等により適宜選択す
ればよく、一概に決められないが、通常、約5〜50時
間である。本発明のシリコン単結晶製造用石英ルツボ
は、上記のように1200℃以下の比較的低温で表面を
酸窒化処理されており、基体である石英ガラス製ルツボ
に対して、熱歪みによる変形を生じることなく耐熱性の
向上を図ることができる。本発明のシリコン単結晶製造
用石英ルツボの表面層は、上記加熱接触処理による酸窒
化処理においてその表面近傍から酸窒化珪素化されてお
り、徐々に内部へと酸窒化珪素化領域が拡散していくた
め、表面の窒素含有率が最も高く、内部に向かって徐々
に窒素含有率が減少するような分布状態となる。従っ
て、熱膨張率も表面から内部に向かって連続的に変化す
るため各種熱衝撃を受けた場合でも、表面処理により形
成された酸窒化物含有の表面層が剥離するおそれがな
い。更に、酸窒化物含有表面層を構成する表面部は、被
処理の石英ガラス製ルツボが有する均一な表面状態をそ
のまま保持することができる。また、酸窒化物を含有す
る表面層の厚さは表面より10μm程度の範囲内がよ
く、また表面から約2μm以内における酸窒化物の含有
量が、窒素原子として原子数含有率40%以下が好まし
い。酸窒化物を含有する表面層の厚さが10μmを超え
る場合は、その酸窒化処理に50時間以上の長時間を要
し実用的でなく、更に、その効果はほとんど変わらない
ためである。また、表面層の厚さ2μmまでの窒素原子
数含有率が40%を超えるときは、シリコン単結晶への
窒素の溶解量が大きくなるためである。
The treatment time of the heating contact treatment in the above oxynitriding treatment depends on the treatment temperature and other treatment conditions such as the type, shape and capacity of the quartz crucible, and the treatment atmosphere with ammonia and other gases such as hydrocarbons. It may be appropriately selected depending on the mixing ratio and the like, and although it cannot be decided unconditionally, it is usually about 5 to 50 hours. The surface of the quartz crucible for producing a silicon single crystal of the present invention is oxynitrided at a relatively low temperature of 1200 ° C. or less as described above, and the quartz glass crucible as the base body is deformed by thermal strain. Without increasing heat resistance. The surface layer of the quartz crucible for producing a silicon single crystal of the present invention is converted into silicon oxynitride from the vicinity of its surface in the oxynitriding treatment by the above heating contact treatment, and the silicon oxynitride region gradually diffuses inward. Therefore, the nitrogen content on the surface is the highest, and the distribution is such that the nitrogen content gradually decreases toward the inside. Therefore, the coefficient of thermal expansion also changes continuously from the surface to the inside, so that even when various thermal shocks are applied, the oxynitride-containing surface layer formed by the surface treatment is not likely to peel off. Further, the surface portion constituting the oxynitride-containing surface layer can maintain the uniform surface state of the quartz glass crucible to be treated as it is. Further, the thickness of the surface layer containing oxynitride is preferably within the range of about 10 μm from the surface, and the content of oxynitride within about 2 μm from the surface is 40% or less as the atomic number content of nitrogen atoms. preferable. This is because when the thickness of the surface layer containing oxynitride exceeds 10 μm, the oxynitriding treatment requires a long time of 50 hours or more, which is not practical, and the effect is almost unchanged. Further, when the nitrogen atom number content rate up to the thickness of 2 μm of the surface layer exceeds 40%, the amount of nitrogen dissolved in the silicon single crystal becomes large.

【0009】本発明のシリコン単結晶製造用石英ルツボ
において、酸窒化物を含有する表面層は、必要に応じて
石英ルツボの外内両表面、外表面または内表面のいずれ
か一表面に形成される。酸窒化物を含有する表面層は、
例えば、図1(a)〜(c)に概要説明図を示したよう
に、外周面にヒータHを配設した処理容器A内に、酸窒
化物を含有する表面層の形成態様に応じて、石英ルツボ
1のサセプター2上への載置方式及び雰囲気ガスの送出
入方式を適宜選択して、上記した加熱接触処理による酸
窒化処理をすることにより形成することができる。図1
において、(a)は石英ルツボの両面に、(b)は内面
のみに、(c)は外面のみに酸窒化物含有表面層を形成
する態様であって、図に示すように各石英ルツボ1をサ
セプター2に載置し、所定の炭化水素及びアンモニアガ
スの混合ガス等を送入口3から容器Aに送入し、排出口
4から排気するようにセットしてヒーターHにより加熱
して酸窒化処理することことができる。また、酸窒化処
理が不必要な部分には、アンモニア及び炭化水素の混合
ガス等処理ガスが接触しないように石英ガラスまたはセ
ラミック材料等により不要部分を被覆して処理してもよ
い。
In the quartz crucible for producing a silicon single crystal of the present invention, the surface layer containing an oxynitride is formed on either one of the outer and inner surfaces, the outer surface or the inner surface of the quartz crucible, if necessary. It The surface layer containing oxynitride,
For example, as shown in the schematic explanatory diagrams in FIGS. 1A to 1C, depending on the formation mode of the surface layer containing an oxynitride in the processing container A in which the heater H is arranged on the outer peripheral surface. It can be formed by appropriately selecting the method of placing the quartz crucible 1 on the susceptor 2 and the method of sending and receiving the atmospheric gas, and performing the oxynitriding treatment by the heating contact treatment described above. FIG.
In (a), both sides of the quartz crucible, (b) only on the inner surface, and (c) the outer surface only, the oxynitride-containing surface layer is formed. As shown in FIG. Is placed on the susceptor 2, a predetermined mixed gas of hydrocarbon and ammonia gas, etc. is fed into the container A from the inlet 3 and is set to be exhausted from the outlet 4 and heated by the heater H to perform oxynitriding. Can be processed. Further, the unnecessary portion may be covered with quartz glass or a ceramic material or the like so that the treatment gas such as a mixed gas of ammonia and hydrocarbon does not come into contact with the unnecessary portion.

【0010】[0010]

【実施例】以下、本発明を実施例により更に詳細に説明
する。但し、本発明は下記実施例により制限されるもの
でない。 実施例1 純度99.999%の石英ガラス製ルツボを、図1
(a)と同様の態様でNH3 500cc/分及びLPG
20cc/分の混合ガス気流下、1050℃で30時間
の加熱処理した。その結果、得られた酸窒化処理石英ル
ツボの表面の酸窒化物含有表面層の厚さ及び窒素含有量
をSIMS(2次イオン質量分析)で測定したところ、
窒素含有量のピーク濃度は、約9×1020原子数/cc
で、平均窒素原子含有率約1.3%の表面層が内外表面
から約2μmの厚さで形成されていた。また、酸窒化処
理石英ルツボの表面を赤外線吸収で分析した。その結
果、1100cm-1付近のSi−O−Siによる吸収の
低波長側への膨みが観察された。これによりSiO2
Si−O−Si結合中にNが固溶し酸窒化物が生成され
ていることが推定される。上記のようにして表面を酸窒
化処理して酸窒化物含有の表面層を有する石英ルツボを
用い、CZ法で5インチφでP型のシリコン単結晶を成
長させた。成長させた各固化率において、得られたシリ
コン単結晶体中のO2 濃度をFTIR(フーリエ変換赤
外分光光度計)装置を用いて測定し、その結果を図2に
示した。なお、表面層の酸窒化物によりシリコン単結晶
体中に窒素が溶け込むものと予測されるが、赤外線吸収
分析では全く検知されなかった。これはシリコン融液中
の窒素の偏折係数が7×10-4と酸素の1.25に比し
て小さいことと、溶解量が少ないことの両方によると考
えられる。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples. Example 1 A quartz glass crucible having a purity of 99.999% is shown in FIG.
In the same manner as in (a), NH 3 500 cc / min and LPG
Heat treatment was performed at 1050 ° C. for 30 hours in a mixed gas stream of 20 cc / min. As a result, the thickness and nitrogen content of the oxynitride-containing surface layer on the surface of the obtained oxynitride-treated quartz crucible were measured by SIMS (secondary ion mass spectrometry),
The peak concentration of nitrogen content is about 9 × 10 20 atoms / cc
The surface layer having an average nitrogen atom content of about 1.3% was formed from the inner and outer surfaces to a thickness of about 2 μm. The surface of the oxynitriding quartz crucible was analyzed by infrared absorption. As a result, bulging of absorption by Si—O—Si near 1100 cm −1 toward the low wavelength side was observed. From this, it is estimated that N is solid-dissolved in the Si—O—Si bond of SiO 2 to generate an oxynitride. The surface was oxynitrided as described above, and a quartz crucible having a surface layer containing an oxynitride was used to grow a P-type silicon single crystal in 5 inches φ by the CZ method. The O 2 concentration in the obtained silicon single crystal body was measured using an FTIR (Fourier transform infrared spectrophotometer) device at each solidified rate that was grown, and the results are shown in FIG. It is expected that nitrogen will be dissolved in the silicon single crystal by the oxynitride of the surface layer, but it was not detected at all by infrared absorption analysis. It is considered that this is because both the deviation coefficient of nitrogen in the silicon melt is 7 × 10 −4 , which is smaller than 1.25 of oxygen, and the amount of dissolution is small.

【0011】比較例1 酸窒化処理に用いた未処理の石英ルツボを用いた以外
は、実施例1と同様にしてCZ法で5インチφでP型の
シリコン単結晶を成長させた。成長させた各固化率にお
いて、得られたシリコン単結晶体中のO2 濃度を同様に
測定した。その結果を図2に示した。
Comparative Example 1 A P-type silicon single crystal was grown at a diameter of 5 inches by the CZ method in the same manner as in Example 1 except that an untreated quartz crucible used for oxynitriding was used. The O 2 concentration in the obtained silicon single crystal body was similarly measured at each solidified rate that was grown. The result is shown in FIG.

【0012】上記実施例及び比較例から、本発明の酸窒
化物を含有する表面層を有する石英ルツボを用いて成長
させたシリコン単結晶は、内部の酸素濃度が従来の石英
ルツボを用いたシリコン単結晶に比し低下していること
が明らかである。本発明の酸窒化物含有表面層を有する
石英ルツボを用いて成長させたシリコン単結晶中の酸素
濃度が低減した理由としては、ルツボ内の表面層に含有
される酸窒化物がシリコン融液への酸素の溶け込みを防
止する作用を有するものと推定される。
From the above-mentioned Examples and Comparative Examples, the silicon single crystal grown using the quartz crucible having the surface layer containing the oxynitride of the present invention has the internal oxygen concentration of the silicon using the conventional quartz crucible. It is clear that it is lower than in single crystals. The reason why the oxygen concentration in the silicon single crystal grown by using the quartz crucible having the oxynitride-containing surface layer of the present invention is reduced is that the oxynitride contained in the surface layer in the crucible is converted into the silicon melt. It is presumed that it has an action of preventing the dissolution of oxygen.

【0013】実施例2及び比較例2 上記実施例1と同様にして外内表面を酸窒化処理した本
発明の石英ルツボと、未処理の石英ルツボとを用い、そ
れぞれ外装配備されるカーボンルツボの耐久性を比較試
験した。試験は、シリコン単結晶成長と同様な装置を用
い、各々の石英ルツボを内部に配置したカーボンルツボ
を、外周部に配置したヒータにより約1520℃で、回
転数10rpmで25時間保持して行った。その結果を
表1に示した。
Example 2 and Comparative Example 2 A quartz crucible of the present invention whose outer and inner surfaces were oxynitrided in the same manner as in Example 1 above and an untreated quartz crucible were used for the outer packaging of the carbon crucible. The durability was comparatively tested. The test was carried out by using an apparatus similar to the silicon single crystal growth, and holding the carbon crucible inside each quartz crucible at about 1520 ° C. for 25 hours at a rotation speed of 10 rpm by a heater arranged at the outer peripheral portion. . The results are shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】上記結果より、外表面が酸窒化処理され酸
化窒化物を含有する表面層を有する石英ルツボは、カー
ボンルツボとの反応が抑制されるため、結果的にカーボ
ンルツボの限界使用回数が向上することが明らかであ
る。
From the above results, the quartz crucible having the oxynitride-treated outer surface and the surface layer containing oxynitride suppresses the reaction with the carbon crucible, and as a result, the limit number of times of use of the carbon crucible is improved. It is clear that

【0016】[0016]

【発明の効果】本発明のシリコン単結晶製造用石英ルツ
ボは、表面を酸窒化処理して酸窒化物含有表面層を有す
るため、従来の未処理の石英ガラスルツボに比し、表面
における酸素濃度が相対的に低減されており、シリコン
融液中への不純物としての酸素の溶け込み拡散を抑制す
ることができ、シリコン単結晶体中の不純物を低減させ
ることができる。また、表面をSi34 被覆した石英
ルツボに比しては、表面の窒素濃度が低減され窒素の取
り込みも減少し、また、外装のカーボンルツボとの反応
性も低下し、不純物含有量が少なく歪み等の欠陥も少な
いシリコン単結晶の成長ができる。
Since the quartz crucible for producing a silicon single crystal of the present invention has an oxynitride-containing surface layer obtained by oxynitriding the surface, the oxygen concentration on the surface is higher than that of a conventional untreated quartz glass crucible. Is relatively reduced, and the dissolution and diffusion of oxygen as an impurity in the silicon melt can be suppressed, and the impurities in the silicon single crystal body can be reduced. Further, compared with a quartz crucible whose surface is coated with Si 3 N 4 , the nitrogen concentration on the surface is reduced, the uptake of nitrogen is also reduced, the reactivity with the carbon crucible on the exterior is also reduced, and the content of impurities is reduced. It is possible to grow a silicon single crystal with few defects such as strain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の酸窒化処理の一実施例の概念説明図。FIG. 1 is a conceptual explanatory view of an example of an oxynitriding treatment of the present invention.

【図2】シリコン単結晶固化率に対するシリコン単結晶
中の酸素濃度との関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the solidification rate of silicon single crystal and the oxygen concentration in the silicon single crystal.

【符号の説明】[Explanation of symbols]

A 処理容器 H ヒータ 1 石英ルツボ 2 サセプター 3 ガス送入口 4 ガス排出口 A processing container H heater 1 quartz crucible 2 susceptor 3 gas inlet 4 gas outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相庭 吉郎 神奈川県秦野市曽屋30 東芝セラミックス 株式会社開発研究所内 (72)発明者 安藤 正博 東京都新宿区西新宿1丁目26番2号 東芝 セラミックス株式会社内 (72)発明者 松尾 秀逸 神奈川県秦野市曽屋30 東芝セラミックス 株式会社開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshiro Aiwa 30 Soya, Hadano, Kanagawa Prefecture, Toshiba Ceramics Co., Ltd. Development Laboratory (72) Inventor Masahiro Ando 1-226 Nishishinjuku, Shinjuku-ku, Tokyo Toshiba Ceramics Co. (72) Inventor Hideo Matsuo 30 Soya, Hadano, Kanagawa Prefecture, Toshiba Corp.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸窒化物を含有する表面層を有すること
を特徴とするシリコン単結晶製造用石英ルツボ。
1. A quartz crucible for producing a silicon single crystal, which has a surface layer containing an oxynitride.
【請求項2】 前記表面層が表面から約10μmである
請求項1記載のシリコン単結晶製造用石英ルツボ。
2. The quartz crucible for producing a silicon single crystal according to claim 1, wherein the surface layer is approximately 10 μm from the surface.
【請求項3】 前記表面層において表面から深さ約2μ
mまでの窒素含有量が、原子数含有率で40%以下であ
る請求項1または2記載のシリコン単結晶製造用石英ル
ツボ。
3. The surface layer has a depth of about 2 μm from the surface.
The quartz crucible for producing a silicon single crystal according to claim 1 or 2, wherein the nitrogen content up to m is 40% or less in terms of atomic number content.
【請求項4】 前記酸窒化物を含有する表面層が、石英
ルツボ表面を炭素発生源の存在下に、700〜1200
℃でアンモニアガスで加熱接触処理して表面近傍を酸窒
化処理してなる請求項1、2または3記載のシリコン単
結晶製造用石英ルツボ。
4. The surface layer containing the oxynitride has a surface of the quartz crucible of 700 to 1200 in the presence of a carbon source.
The quartz crucible for producing a silicon single crystal according to claim 1, 2 or 3, which is obtained by subjecting the vicinity of the surface to oxynitriding by heating and contacting with ammonia gas at ℃.
JP7053399A 1995-02-17 1995-02-17 Quartz crucible for production of silicon single crystal Pending JPH08217592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7053399A JPH08217592A (en) 1995-02-17 1995-02-17 Quartz crucible for production of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7053399A JPH08217592A (en) 1995-02-17 1995-02-17 Quartz crucible for production of silicon single crystal

Publications (1)

Publication Number Publication Date
JPH08217592A true JPH08217592A (en) 1996-08-27

Family

ID=12941758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7053399A Pending JPH08217592A (en) 1995-02-17 1995-02-17 Quartz crucible for production of silicon single crystal

Country Status (1)

Country Link
JP (1) JPH08217592A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187089B1 (en) 1999-02-05 2001-02-13 Memc Electronic Materials, Inc. Tungsten doped crucible and method for preparing same
US6319313B1 (en) 1999-03-15 2001-11-20 Memc Electronic Materials, Inc. Barium doping of molten silicon for use in crystal growing process
US6350312B1 (en) 1999-03-15 2002-02-26 Memc Electronic Materials, Inc. Strontium doping of molten silicon for use in crystal growing process
US6447601B1 (en) 2001-03-19 2002-09-10 Memc Electronic Materials, Inc. Crystal puller and method for growing monocrystalline silicon ingots
JP2013506619A (en) * 2009-10-06 2013-02-28 エルジー シルトロン インコーポレイテッド Quartz crucible and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187089B1 (en) 1999-02-05 2001-02-13 Memc Electronic Materials, Inc. Tungsten doped crucible and method for preparing same
US6319313B1 (en) 1999-03-15 2001-11-20 Memc Electronic Materials, Inc. Barium doping of molten silicon for use in crystal growing process
US6350312B1 (en) 1999-03-15 2002-02-26 Memc Electronic Materials, Inc. Strontium doping of molten silicon for use in crystal growing process
US6461427B2 (en) 1999-03-15 2002-10-08 Memc Electronic Materials, Inc. Barium doping of molten silicon for use in crystal growing process
US6447601B1 (en) 2001-03-19 2002-09-10 Memc Electronic Materials, Inc. Crystal puller and method for growing monocrystalline silicon ingots
JP2013506619A (en) * 2009-10-06 2013-02-28 エルジー シルトロン インコーポレイテッド Quartz crucible and method for producing the same

Similar Documents

Publication Publication Date Title
US7404858B2 (en) Method for epitaxial growth of silicon carbide
EP0322615B1 (en) Method of growing a single crystalline beta-silicon carbide layer on a silicon substrate
WO2006137192A1 (en) Method of surface reconstruction for silicon carbide substrate
US11047041B2 (en) Method and system for preparing polycrystalline group III metal nitride
JPH08217592A (en) Quartz crucible for production of silicon single crystal
US4137108A (en) Process for producing a semiconductor device by vapor growth of single crystal Al2 O3
EP0746011B1 (en) Method of producing single crystal thin film
JP2531572B2 (en) Method for oxynitriding quartz glass and method for surface treatment
JP2583681B2 (en) Method for boron diffusion into semiconductor wafer
JPH10144698A (en) Silicon wafer and its manufacture
JP3698372B2 (en) CVD-SiC coated member
JP2005272240A (en) Seed crystal for pulling silicon single crystal and method for manufacturing silicon single crystal using the same
JPS6226569B2 (en)
Ohshita Low temperature and selective growth of β‐SiC using the SiH2Cl2/i‐C4H10/HCl/H2 gas system
US6846754B2 (en) Boron phosphide-based semiconductor layer and vapor phase growth method thereof
KR100679870B1 (en) Single crystal silicon layer, its epitaxial growth method and semiconductor device
JP4776460B2 (en) Method for forming AlN single crystal film
WO2024075430A1 (en) Epitaxial wafer, and method for producing same
JPH0380197A (en) Production of single crystal of semiconductor sic
JPH0543286B2 (en)
JPH08222575A (en) Surface modifying quartz jig for semiconductor hydrogen heat treatment
JPS5942980B2 (en) semiconductor equipment
JP2003212697A (en) Method of growing gallium nitride single crystal
JPS62128531A (en) Silicon substrate and manufacture thereof
JPS60246297A (en) Preparation of nitrogen-doped silicon single crystal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Effective date: 20060804

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109