JPH08217438A - Production of lithium carbonate - Google Patents

Production of lithium carbonate

Info

Publication number
JPH08217438A
JPH08217438A JP4906395A JP4906395A JPH08217438A JP H08217438 A JPH08217438 A JP H08217438A JP 4906395 A JP4906395 A JP 4906395A JP 4906395 A JP4906395 A JP 4906395A JP H08217438 A JPH08217438 A JP H08217438A
Authority
JP
Japan
Prior art keywords
carbon dioxide
dioxide gas
lithium carbonate
lithium hydroxide
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4906395A
Other languages
Japanese (ja)
Inventor
Hideaki Baba
英明 馬場
Osamu Ugajin
修 宇賀神
Masayoshi Oya
正吉 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP4906395A priority Critical patent/JPH08217438A/en
Publication of JPH08217438A publication Critical patent/JPH08217438A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce highly pure lithium carbonate uniform in particle diameters in simple operations with a compact device. CONSTITUTION: This method for producing the lithium carbonate by bringing a lithium hydroxide solution into contact with carbon dioxide gas comprises continuously blowing the carbon dioxide gas into the lithium hydroxide solution fed into a reaction tank 1 from plural blowing holes 11 with a self-suction agitation type gas-liquid contact device to carbonate the lithium hydroxide. The self-suction agitation type gas-liquid contact device has a structure in which a bubbling agitation means 2 having plural impellers 9 disposed at the lower end of a rotation shaft 7 also used as a gas pipe having a carbon dioxide gas-sucking hole 10 and having the plural blowing holes 11 formed at positions corresponding to the back surfaces of the impellers 9 in the rotation shaft 7 is installed in the reaction tank 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種のリチウム化合
物、セラミックス材料あるいはリチウム二次電池用の原
料として有用な、高純度で粒子径の揃った炭酸リチウム
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high purity lithium carbonate having a uniform particle size, which is useful as a raw material for various lithium compounds, ceramic materials or lithium secondary batteries.

【0002】[0002]

【従来の技術】近年、炭酸リチウムは、電子産業や光工
業材料、セラミックス材料、リチウム二次電池などの原
料として需要が増大しており、とくに高純度で均一な粒
子性状のものを効率的に得る製造技術の開発が望まれて
いる。
2. Description of the Related Art In recent years, demand for lithium carbonate as a raw material for electronic industries, optical industrial materials, ceramics materials, lithium secondary batteries, etc. has been increasing, and particularly high purity and uniform particle properties are efficiently used. It is desired to develop a manufacturing technology to obtain it.

【0003】炭酸リチウムの製造技術としては、リチウ
ム含有鉱石を焼成し粉砕したのち硫酸を加えて加熱し、
水を加えて硫酸リチウム溶液として抽出する工程と、抽
出した硫酸リチウム溶液にソーダ灰や消石灰を加えて、
鉄、アルミニウムなどの不純物を除去し、該硫酸リチウ
ム溶液を濃縮したのちソーダ灰を加えて硫酸リチウムと
の反応を介して難溶性の炭酸リチウムを沈殿させ、濾過
・洗浄後、乾燥する工程とからなる方法が従来から知ら
れている。しかしながら、この方法は工程が複雑である
うえ、生成する炭酸リチウム中にSO4 、Fe (O
H)3、CaO、Na 2 Oなどの不純物の混入が避けられ
ず、高純度品を得ることができない欠点がある。
Lithium carbonate is used as a manufacturing technology for lithium carbonate.
After burning and crushing the ore containing ore, add sulfuric acid and heat,
The process of adding water and extracting as a lithium sulfate solution, and the extraction
Add soda ash and slaked lime to the extracted lithium sulfate solution,
Impurities such as iron and aluminum are removed, and the lithium sulfate
After concentrating the sodium chloride solution, add soda ash and add lithium sulfate.
The insoluble lithium carbonate is precipitated through the reaction and filtered.
・ A method that consists of the steps of washing and drying has been known.
Have been. However, this method has complicated steps
In addition, in the produced lithium carbonate, SOFour, Fe (O
H)3, CaO, Na 2Mixing of impurities such as O is avoided
Therefore, there is a drawback that a high-purity product cannot be obtained.

【0004】そこで、高純度の炭酸リチウムを得る簡便
な方法として、粗製炭酸リチウムと消石灰を反応させて
得られた水酸化リチウムを溶液化し、該水酸化リチウム
溶液を撹拌しながらパイプを通して炭酸ガスを導入接触
させることにより炭酸リチウムを反応生成させる方法が
開発されている。ところが、通常のガス導入パイプを用
いて炭酸ガスを反応系内に導入しようとすると、水酸化
リチウムの炭酸化段階でガス導入パイプに炭酸リチウム
の結晶が析出付着して次第にパイプ孔を閉塞し、円滑な
連続生成を阻害する現象を生じる。このため、ガス導入
パイプに析出付着した炭酸リチウムの結晶を頻繁に除去
しない限り、効率的な反応生成を行うことができない問
題点がある。
Therefore, as a simple method for obtaining high-purity lithium carbonate, lithium hydroxide obtained by reacting crude lithium carbonate with slaked lime is dissolved, and carbon dioxide gas is passed through a pipe while stirring the lithium hydroxide solution. A method of reacting and producing lithium carbonate by introducing and contacting it has been developed. However, when trying to introduce carbon dioxide gas into the reaction system using a normal gas introduction pipe, lithium carbonate crystals are deposited and adhered to the gas introduction pipe at the carbonation stage of lithium hydroxide, gradually closing the pipe hole, A phenomenon that hinders smooth continuous generation occurs. Therefore, unless the lithium carbonate crystals deposited and adhered to the gas introduction pipe are frequently removed, there is a problem that efficient reaction production cannot be performed.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、上記の
問題点を解消する炭酸リチウムの製造技術について鋭意
研究を重ねた結果、微細な気泡の発生が可能な特殊機構
の自吸式撹拌型気液反応装置を用い、この装置内に水酸
化リチウム溶液を導入すると同時に炭酸ガスを噴入する
と、操業トラブルを伴うことなく、連続的に高純度で結
晶粒子径の揃った炭酸リチウムを効率よく得ることがで
きることを確認した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted earnest studies on a manufacturing technology of lithium carbonate which solves the above problems, and as a result, a self-priming stirring with a special mechanism capable of generating fine bubbles. If a carbon dioxide gas is injected at the same time when a lithium hydroxide solution is introduced into this device using a gas-liquid type reactor, the efficiency of continuously producing lithium carbonate with high purity and uniform crystal particle size without causing operational problems. I confirmed that I could get it well.

【0006】本発明は、かかる知見に基づいて開発され
たもので、その目的とするところはコンパクトな装置を
用い、簡易な操作により、高純度で、かつ粒子径の揃っ
た炭酸リチウムを効率よく製造するための方法を提供す
ることにある。
The present invention was developed on the basis of such findings, and the purpose thereof is to use a compact device and to carry out a high-purity lithium carbonate having a uniform particle size efficiently by a simple operation. It is to provide a method for manufacturing.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による炭酸リチウムの製造方法は、水酸化リ
チウム溶液に炭酸ガスを接触させて炭酸リチウムを製造
する方法において、上部に炭酸ガス吸入孔を有する通気
パイプを兼ねた回転軸の下端に複数枚のインペラーが設
置され、該インペラーの背面部に相当する前記回転軸に
複数個の噴出孔を穿設したバプリング撹拌手段を反応槽
に装着してなる構造の自吸式撹拌型気液接触装置を用
い、前記反応槽に充填した水酸化リチウム溶液中に噴出
孔から炭酸ガスを連続的に噴入して炭酸化反応を行わせ
ることを構成上の特徴とする。
The method for producing lithium carbonate according to the present invention for achieving the above object is a method for producing lithium carbonate by bringing carbon dioxide into contact with a lithium hydroxide solution. A plurality of impellers are installed at the lower end of a rotary shaft that also serves as a ventilation pipe having a suction hole, and a bubbling stirring means in which a plurality of ejection holes are formed in the rotary shaft corresponding to the back surface of the impeller is provided in a reaction tank. Using a self-priming stirring type gas-liquid contactor having a structure to be mounted, carbon dioxide gas is continuously injected into the lithium hydroxide solution filled in the reaction tank from the ejection holes to carry out the carbonation reaction. Is a structural feature.

【0008】図1は本発明に使用される自吸式撹拌型気
液接触装置を示した略断面図で、1は反応槽、2は反応
槽1に装着されたバブリング撹拌手段、3は炭酸ガスボ
ンベである。反応槽1には、下端部に水酸化リチウム溶
液の導入管4、反応槽下部側面に反応液排出口5が設置
され、必要に応じて遮断板6が付設される。
FIG. 1 is a schematic sectional view showing a self-priming stirring type gas-liquid contactor used in the present invention. 1 is a reaction tank, 2 is a bubbling stirring means mounted in the reaction tank 1, and 3 is carbonic acid. It is a gas cylinder. The reaction tank 1 is provided with a lithium hydroxide solution inlet pipe 4 at the lower end, a reaction solution discharge port 5 at the lower side surface of the reaction tank, and a blocking plate 6 if necessary.

【0009】反応槽1に装着されているバブリング撹拌
手段2は、図2(拡大斜視図)に示すように、通気パイ
プを兼ねた回転軸7の頂部に回転駆動モーター8を備
え、下端部に複数枚のインペラー9が設置されており、
反応槽1の系外に位置する回転軸7の上部(回転駆動モ
ーター8の下部)に複数個の炭酸ガス吸入孔10が、ま
たインペラー9の背面部に相当する回転軸7の側面には
複数個の噴出孔11が穿設された構造を有している。こ
のような構造を基本的に有するものであればインペラー
の形状や構造などは図示のものに限定されない。かかる
機構を備える気液接触装置は、例えば特開昭59−16
0516号公報、特開昭59−203693号公報、特
開昭59−203694号公報、特開昭60−1143
31号公報などに開示されているが、本発明に適用する
装置ではガス吸入孔10を囲繞する区画として炭酸ガス
導入部12を設け、ここに炭酸ガスボンベ3から炭酸ガ
スを供給するルートを連結した構造となっている。
As shown in FIG. 2 (enlarged perspective view), the bubbling stirring means 2 installed in the reaction tank 1 is provided with a rotary drive motor 8 on the top of a rotary shaft 7 also serving as a ventilation pipe, and on the lower end. Multiple impellers 9 are installed,
A plurality of carbon dioxide gas suction holes 10 are provided above the rotary shaft 7 (below the rotary drive motor 8) located outside the system of the reaction tank 1, and a plurality of carbon dioxide gas suction holes 10 are provided on the side surface of the rotary shaft 7 corresponding to the back surface of the impeller 9. It has a structure in which individual ejection holes 11 are formed. The shape and structure of the impeller are not limited to those shown in the drawings as long as they basically have such a structure. A gas-liquid contactor having such a mechanism is disclosed in, for example, Japanese Patent Laid-Open No. 59-16.
0516, JP-A-59-203693, JP-A-59-203694, JP-A-60-1143.
As disclosed in Japanese Patent Publication No. 31, etc., in the device applied to the present invention, a carbon dioxide gas introduction part 12 is provided as a section surrounding the gas suction hole 10, and a route for supplying carbon dioxide gas from the carbon dioxide gas cylinder 3 is connected thereto. It has a structure.

【0010】本発明は、上記の気液接触装置を用い、反
応源となる炭酸ガスを炭酸ガスボンベ3から炭酸ガス導
入部12に供給し、炭酸ガス吸入孔10で自吸される炭
酸ガスを噴出孔11を介して反応槽1に送液した水酸化
リチウム溶液中に連続的に噴入して炭酸化を進行させる
プロセス操作で行われる。操作時、回転駆動モーター8
の作動によりインペラー9の回転方向の背面に当たる部
位に負圧が生じ、この作用で炭酸ガス吸入孔10から回
転軸7内に自吸的に吸引された炭酸ガスは噴出孔11か
ら水酸化リチウム溶液の渦流中に噴出される。
The present invention uses the above-mentioned gas-liquid contact device to supply carbon dioxide gas as a reaction source from the carbon dioxide gas cylinder 3 to the carbon dioxide gas introduction part 12 and eject carbon dioxide gas which is self-primed in the carbon dioxide gas suction hole 10. It is carried out by a process operation of continuously injecting into the lithium hydroxide solution fed to the reaction tank 1 through the holes 11 to promote carbonation. Rotation drive motor 8 during operation
The negative pressure is generated in the portion of the impeller 9 which contacts the back surface of the impeller 9 in the rotation direction, and the carbon dioxide gas sucked into the rotary shaft 7 from the carbon dioxide gas suction hole 10 by this action is sucked into the lithium hydroxide solution from the spout hole 11. Is ejected into the vortex.

【0011】噴出した炭酸ガスは、渦流による撹拌作用
とインペラー9の剪断作用により数ミクロン単位の微細
な炭酸ガスの気泡となって均一に分散し、該炭酸ガス気
泡と接触した水酸化リチウムは2LiOH+CO2 =L
2 CO3 +H2 Oの反応により効率的かつ短時間内に
炭酸化して炭酸リチウムに転化する。
The jetted carbon dioxide gas is uniformly dispersed in the form of fine carbon dioxide gas bubbles of a few microns unit by the stirring action by the vortex flow and the shearing action of the impeller 9, and lithium hydroxide in contact with the carbon dioxide gas bubbles is 2LiOH + CO. 2 = L
By the reaction of i 2 CO 3 + H 2 O, carbonation is efficiently performed within a short time and converted into lithium carbonate.

【0012】反応温度は、通常50℃以下、好ましくは
40℃以下に設定し、大気圧の雰囲気下で行われる。な
お、反応温度は溶液のpHや比重でチェックすることが
できる。生成した炭酸リチウムの結晶は、溶液中に分散
した状態で反応液排出口5から連続的に送り出され、回
収される。回収された炭酸リチウム結晶粒子を含む液
は、常法により濾過・乾燥されて製品となる。
The reaction temperature is usually set to 50 ° C. or lower, preferably 40 ° C. or lower, and the reaction is carried out in an atmosphere of atmospheric pressure. The reaction temperature can be checked by the pH or specific gravity of the solution. The produced crystals of lithium carbonate are continuously sent out from the reaction solution discharge port 5 in a state of being dispersed in the solution and collected. The liquid containing the recovered lithium carbonate crystal particles is filtered and dried by a conventional method to give a product.

【0013】[0013]

【作用】本発明によれば、上記構成の自吸式撹拌型気液
接触装置を用いて炭酸ガスを供給すると、インペラー背
面の負圧とインペラーの回転剪断作用により発生するミ
クロン単位の微細な炭酸ガス気泡が反応系内に多量に発
生し、渦流の作用と相俟って水酸化リチウム溶液中に効
率よく分散する。溶液内に分散した炭酸ガス気泡は、反
応槽を上昇する過程で水酸化リチウムと瞬間的に反応
し、粒度分布がシャープで高純度の炭酸リチウムの結晶
粒子となって液中に懸濁する。
According to the present invention, when carbon dioxide gas is supplied using the self-priming stirring type gas-liquid contactor having the above-mentioned structure, fine carbon dioxide in micron units generated by negative pressure on the back surface of the impeller and rotary shearing action of the impeller. A large amount of gas bubbles are generated in the reaction system and, in combination with the action of the vortex flow, are efficiently dispersed in the lithium hydroxide solution. The carbon dioxide gas bubbles dispersed in the solution instantaneously react with lithium hydroxide in the process of rising in the reaction vessel, and become crystal particles of high-purity lithium carbonate having a sharp particle size distribution and suspended in the liquid.

【0014】操作中は、常にインペラー背面の負圧とイ
ンペラーの回転剪断による作用が共働し、炭酸化反応の
過程で噴出孔が析出炭酸リチウム結晶で閉塞される現象
は全く起こらず、また通常の撹拌下での反応とは異な
り、導入する炭酸ガスはほぼ理論量に近い量で足りる。
そのうえ、極めてコンパクトな装置により円滑に反応を
進行させることができるから、効率的に高品質の炭酸リ
チウムを製造することが可能となる。
During operation, the negative pressure on the back surface of the impeller and the action of the rotational shear of the impeller always act in cooperation to prevent the phenomenon that the ejection holes are clogged with the precipitated lithium carbonate crystals during the carbonation reaction. Unlike the reaction under stirring described in (1), the amount of carbon dioxide gas introduced is approximately the theoretical amount.
In addition, since the reaction can be smoothly progressed with an extremely compact device, it becomes possible to efficiently produce high quality lithium carbonate.

【0015】なお、本発明は炭酸リチウムの製造を対象
としているが、例えば炭酸ナトリウム、炭酸カリウム、
炭酸カルシウム、炭酸ストロンチウム、炭酸バリウムな
どのアルカリ金属あるいはアルカリ土類金属の炭酸塩を
製造する目的にも応用することができ、同様に高品質の
製品を得ることができる。
Although the present invention is directed to the production of lithium carbonate, for example, sodium carbonate, potassium carbonate,
It can also be applied to the purpose of producing carbonates of alkali metals or alkaline earth metals such as calcium carbonate, strontium carbonate, barium carbonate, etc., and similarly high quality products can be obtained.

【0016】[0016]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0017】実施例1 図1に示した構造を有する自吸式撹拌型気液接触装置の
反応槽1(幅25cm×奥行20cm×高さ50cm、内容積
25リットル)に濃度2.5重量%の水酸化リチウム水
溶液(pH11.5) を導入管4から3.2リットル/
分の流速で連続的に送液し、バブリング撹拌手段2の回
転駆動モーター8(100V、40Hz、インバーター制
御)を作動させて回転軸7を2500r.p.m で回転させ
た。水酸化リチウム水溶液の送液と同時に、炭酸ガスボ
ンベ3から炭酸ガス導入部12に炭酸ガスを供給し、炭
酸ガス吸入孔10から自吸させて噴出孔11から水酸化
リチウム水溶液中に噴出した。炭酸ガスの噴出速度は、
水酸化リチウム水溶液1リットル当たり12.3リット
ル/分に設定した。
Example 1 A reaction vessel 1 (width 25 cm x depth 20 cm x height 50 cm, internal volume 25 liters) of a self-priming stirring type gas-liquid contactor having the structure shown in FIG. 1 has a concentration of 2.5% by weight. 3.2 liters of the lithium hydroxide aqueous solution (pH 11.5) from the introduction pipe 4
The liquid was continuously fed at a flow rate of a minute, and the rotary drive motor 8 (100 V, 40 Hz, inverter control) of the bubbling stirring means 2 was operated to rotate the rotary shaft 7 at 2500 rpm. Simultaneously with the feeding of the aqueous lithium hydroxide solution, carbon dioxide gas was supplied from the carbon dioxide gas cylinder 3 to the carbon dioxide gas introduction portion 12, and the carbon dioxide gas suction hole 10 was made to self-prime and spouted from the spout hole 11 into the lithium hydroxide aqueous solution. The ejection speed of carbon dioxide is
It was set to 12.3 liters / minute per liter of the aqueous lithium hydroxide solution.

【0018】このようにして連続的に水酸化リチウムと
炭酸ガスを反応させ、反応生成した炭酸リチウムの結晶
粒子を含む液(pH9.5)を反応液排出口5から回収
し、濾過後、乾燥処理を施した。この反応に要した炭酸
ガス消費量は、理論値の1.05倍であった。得られた
炭酸リチウム粉末の平均粒子径(レーザー粒度分析計)
は、12μm であった。製造された炭酸リチウム結晶の
化学組成を表1に、また粒度分布を表2に示した。
In this manner, lithium hydroxide and carbon dioxide gas are continuously reacted, and the liquid (pH 9.5) containing the reaction-produced lithium carbonate crystal particles is recovered from the reaction liquid outlet 5, filtered and dried. Treated. The carbon dioxide consumption required for this reaction was 1.05 times the theoretical value. Average particle size of the obtained lithium carbonate powder (laser particle size analyzer)
Was 12 μm. The chemical composition of the produced lithium carbonate crystals is shown in Table 1, and the particle size distribution is shown in Table 2.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】比較例1 1リットルのビーカーに実施例1で用いたと同一の濃度
2.5重量%水酸化リチウム水溶液を600mlを入れ、
通常の回転式撹拌機(スリーワンモータ、回転数250
r.p.m )で撹拌しながら、炭酸ガスをガラス管により導
入して反応させた。使用した炭酸ガス量は、9.5リッ
トル(炭酸ガス消費量は、理論値の1.35倍)であっ
た。反応終了後、炭酸リチウム結晶を含有する液を濾過
・乾燥して炭酸リチウムを得た。得られた炭酸リチウム
粉末の平均粒子径(レーザー粒度分析計)は38μm で
あった。製造された炭酸リチウム結晶の化学組成を表3
に、また粒度分布を表4に示した。
Comparative Example 1 A 1 liter beaker was charged with 600 ml of the same 2.5 wt% aqueous lithium hydroxide solution as used in Example 1,
Ordinary rotary agitator (three-one motor, rotation speed 250
While stirring at rpm), carbon dioxide gas was introduced through a glass tube and reacted. The amount of carbon dioxide used was 9.5 liters (the consumption of carbon dioxide was 1.35 times the theoretical value). After the reaction was completed, the liquid containing the lithium carbonate crystals was filtered and dried to obtain lithium carbonate. The average particle size (laser particle size analyzer) of the obtained lithium carbonate powder was 38 μm. Table 3 shows the chemical composition of the manufactured lithium carbonate crystals.
And the particle size distribution is shown in Table 4.

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】実施例1の表1、2と比較例1の表3、4
を対比考察して判るように、本発明により製造された炭
酸リチウム結晶は従来技術に比べてSiO2 やSO2
どの不純物含有量が少なく、粒度分布がシャープであ
る。
Tables 1 and 2 of Example 1 and Tables 3 and 4 of Comparative Example 1
As can be seen from the comparison study, the lithium carbonate crystal produced according to the present invention has a smaller content of impurities such as SiO 2 and SO 2 and a sharper particle size distribution than the prior art.

【0025】[0025]

【発明の効果】以上のとおり、本発明に従えば水酸化リ
チウム溶液と炭酸ガスの接触反応に特定構造の自吸式撹
拌型気液接触装置を用い、炭酸ガスを微細な気泡として
連続的に接触させることにより、粒度分布がシャープで
高純度の炭酸リチウムを製造することができる。また、
操作過程で噴出孔が炭酸リチウム析出結晶で閉塞される
現象は起生せず、導入する炭酸ガスはほぼ理論量に近い
量で足りるうえ、極めてコンパクトな装置により円滑に
反応を進行させることができるから、常に効率的に高品
質の炭酸リチウムを製造することが可能となる。したが
って、とくに高品質が要求される電子産業や光工業材
料、セラミックス材あるいはリチウム二次電池用など用
途に対する炭酸リチウムの製造技術として極めて有用で
ある。
As described above, according to the present invention, a self-priming stirring type gas-liquid contactor having a specific structure is used for the contact reaction between a lithium hydroxide solution and carbon dioxide, and carbon dioxide is continuously formed as fine bubbles. By bringing them into contact with each other, lithium carbonate having a sharp particle size distribution and high purity can be produced. Also,
The phenomenon that the ejection holes are blocked by the precipitated crystals of lithium carbonate does not occur during the operation process, the amount of carbon dioxide gas to be introduced is close to the theoretical amount, and the reaction can proceed smoothly with an extremely compact device. Therefore, it becomes possible to always efficiently produce high-quality lithium carbonate. Therefore, it is extremely useful as a manufacturing technology of lithium carbonate for applications such as electronic industry, optical industrial materials, ceramic materials, and lithium secondary batteries, which require particularly high quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用する自吸式撹拌型気液接触装置を
示した略断面図である。
FIG. 1 is a schematic cross-sectional view showing a self-priming stirring type gas-liquid contact device used in the present invention.

【図2】図1のバブリング撹拌手段を拡大して示した斜
視図である。
FIG. 2 is an enlarged perspective view of the bubbling stirring means in FIG.

【符号の説明】[Explanation of symbols]

1 反応槽 2 バブリング撹拌手段 3 炭酸ガスボンベ 4 導入管 5 反応液排出口 6 遮断板 7 回転軸 8 回転駆動モーター 9 インペラー 10 炭酸ガス吸引孔 11 噴出孔 12 炭酸ガス導入部 1 Reaction Tank 2 Bubbling Stirrer 3 Carbon Dioxide Cylinder 4 Introducing Tube 5 Reactant Discharge Port 6 Blocking Plate 7 Rotating Shaft 8 Rotation Drive Motor 9 Impeller 10 Carbon Dioxide Gas Suction Hole 11 Carbon Dioxide Gas Injecting Portion

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水酸化リチウム溶液に炭酸ガスを接触さ
せて炭酸リチウムを製造する方法において、上部に炭酸
ガス吸入孔を有する通気パイプを兼ねた回転軸の下端に
複数枚のインペラーが設置され、該インペラーの背面部
に相当する前記回転軸に複数個の噴出孔を穿設したバブ
リング撹拌手段を反応槽に装着してなる構造の自吸式撹
拌型気液接触装置を用い、前記反応槽に送液した水酸化
リチウム溶液中に噴出孔から炭酸ガスを連続的に噴入し
て炭酸化反応を行わせることを特徴とする炭酸リチウム
の製造方法。
1. A method for producing lithium carbonate by bringing carbon dioxide into contact with a lithium hydroxide solution, wherein a plurality of impellers are installed at the lower end of a rotary shaft that also functions as a ventilation pipe having a carbon dioxide gas suction hole at the top, Using a self-priming stirring gas-liquid contactor having a structure in which a bubbling stirring means having a plurality of ejection holes formed in the rotary shaft corresponding to the back surface of the impeller is attached to the reaction tank, A method for producing lithium carbonate, which comprises continuously injecting carbon dioxide gas into the fed lithium hydroxide solution from an ejection port to carry out a carbonation reaction.
JP4906395A 1995-02-13 1995-02-13 Production of lithium carbonate Pending JPH08217438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4906395A JPH08217438A (en) 1995-02-13 1995-02-13 Production of lithium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4906395A JPH08217438A (en) 1995-02-13 1995-02-13 Production of lithium carbonate

Publications (1)

Publication Number Publication Date
JPH08217438A true JPH08217438A (en) 1996-08-27

Family

ID=12820634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4906395A Pending JPH08217438A (en) 1995-02-13 1995-02-13 Production of lithium carbonate

Country Status (1)

Country Link
JP (1) JPH08217438A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083678A1 (en) * 2010-12-22 2012-06-28 四川天齐锂业股份有限公司 Method for preparing high-purity lithium carbonate
CN102861548A (en) * 2010-09-20 2013-01-09 浙江诚信医化设备有限公司 Stirring type reacting kettle
WO2018031985A1 (en) * 2016-08-12 2018-02-15 Prc-Desoto International, Inc. Preparation of treatment composition and system and method of maintaining a treatment bath formed therefrom
KR20180109829A (en) * 2018-10-01 2018-10-08 주식회사 포스코 Device for manufactiring lithium carbonate, and the method
CN109824066A (en) * 2019-04-18 2019-05-31 王东升 A method of LITHIUM BATTERY lithium hydroxide is prepared by industrial level lithium carbonate
WO2020090145A1 (en) * 2018-10-29 2020-05-07 株式会社アサカ理研 Lithium carbonate production device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102861548A (en) * 2010-09-20 2013-01-09 浙江诚信医化设备有限公司 Stirring type reacting kettle
CN102861548B (en) * 2010-09-20 2014-01-15 浙江诚信医化设备有限公司 Stirring type reacting kettle
WO2012083678A1 (en) * 2010-12-22 2012-06-28 四川天齐锂业股份有限公司 Method for preparing high-purity lithium carbonate
RU2721259C1 (en) * 2016-08-12 2020-05-18 Прк-Десото Интернэшнл, Инк. Preparation of treatment composition and bath maintenance system and method for treatment formed therefrom
CN109642327A (en) * 2016-08-12 2019-04-16 Prc-迪索托国际公司 The system and method that the preparation and maintenance for the treatment of compositions are formed by processing bath by it
JP2019524628A (en) * 2016-08-12 2019-09-05 ピーアールシー−デソト インターナショナル,インコーポレイティド System and method for preparing a treatment composition and maintaining a treatment bath formed therefrom
WO2018031985A1 (en) * 2016-08-12 2018-02-15 Prc-Desoto International, Inc. Preparation of treatment composition and system and method of maintaining a treatment bath formed therefrom
AU2017308214B2 (en) * 2016-08-12 2020-05-21 Prc-Desoto International, Inc. Preparation of treatment composition and system and method of maintaining a treatment bath formed therefrom
JP2021130605A (en) * 2016-08-12 2021-09-09 ピーアールシー−デソト インターナショナル,インコーポレイティド Preparation of treatment composition and system and method of maintaining treatment bath formed therefrom
KR20180109829A (en) * 2018-10-01 2018-10-08 주식회사 포스코 Device for manufactiring lithium carbonate, and the method
WO2020090145A1 (en) * 2018-10-29 2020-05-07 株式会社アサカ理研 Lithium carbonate production device
KR20210003203A (en) * 2018-10-29 2021-01-11 가부시키가이샤 아사카리켄 Lithium carbonate manufacturing apparatus
US11117114B2 (en) 2018-10-29 2021-09-14 Asaka Riken Co., Ltd. Lithium carbonate production device
CN109824066A (en) * 2019-04-18 2019-05-31 王东升 A method of LITHIUM BATTERY lithium hydroxide is prepared by industrial level lithium carbonate

Similar Documents

Publication Publication Date Title
US6416727B1 (en) Apparatus and process for the preparation of precipitated calcium carbonate
CN100404422C (en) Method for preparing alkaline type magnesium carbonate by low temperature pyrogenation of Mg(HCO3)2 water and coproducing magnesium silicate
US4780303A (en) Continuous process for the preparation of high strength sodium hypochlorite solutions
US4211733A (en) Gas-liquid mixing process and apparatus
US20090028774A1 (en) Carbonator and method for making calcium carbonate
US4310494A (en) Manganese nitrate spray decomposition
JPH11253796A (en) Pcb decomposition reaction vessel
US9056780B2 (en) Boundary layer carbonation of trona
JP2012529418A (en) Method for producing calcium carbonate
JPH08217438A (en) Production of lithium carbonate
CN113896280A (en) ultrasonic/ozone/H2O2System and method for combined removal of organic matters in sodium aluminate solution
KR830002388B1 (en) Method for Extracting Titanium Components from Titanium Iron-Containing Materials
CN101468816B (en) Process for production of iron oxyhydroxide particles
CN204911455U (en) Tympanic bulla oxidation reaction unit
US20050169832A1 (en) Concurrent packed tower manufacture of hypochlorite
JP2666206B2 (en) Slaked lime aqueous solution production equipment
CN114655972A (en) Method for efficiently removing organic matters in alumina solution by Bayer process
JPS6148428A (en) Process and apparatus for preparing aqueous solution of sodium carbonate
GB2034294A (en) Process for Producing Sodium Bicarbonate
CN1565716A (en) Method for preparing ultrafine particle by eddy flow gas-liquid phase micro reaction field
CN105800659A (en) Spraying reactor and carbonization reaction system of nano calcium carbonate
CN101456596B (en) Reactor suitable for sulphur dioxide gas leach manganese dioxide ore
CN114426298A (en) System for carbonization method preparation aluminium hydroxide and carbonization reactor thereof
WO1997042372A1 (en) Method and apparatus for making polysulfides by oxidizing sulfides
CN219092023U (en) Chemical reaction device and production line

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Effective date: 20041115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050309