JPH08215570A - Catalyst for synthesis of methanol, production thereof and synthesis of methanol - Google Patents

Catalyst for synthesis of methanol, production thereof and synthesis of methanol

Info

Publication number
JPH08215570A
JPH08215570A JP7029394A JP2939495A JPH08215570A JP H08215570 A JPH08215570 A JP H08215570A JP 7029394 A JP7029394 A JP 7029394A JP 2939495 A JP2939495 A JP 2939495A JP H08215570 A JPH08215570 A JP H08215570A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
alloy
group
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7029394A
Other languages
Japanese (ja)
Inventor
Hideo Fukui
英夫 福井
Masashi Yamaguchi
正志 山口
Masayuki Kobayashi
正幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP7029394A priority Critical patent/JPH08215570A/en
Publication of JPH08215570A publication Critical patent/JPH08215570A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE: To provide a catalyst to be used to produce methanol from CO2 and H2 gas and to provide a production method of the catalyst and a synthesis method of methanol using this catalyst. CONSTITUTION: This catalyst for synthesis of methanol consists of an alloy expressed by general formula TM, (wherein T is at least one element selected from rare earth elements and Mg, Ca, Mn, Zr, Hf, Al and Ga and M is at least one element selected from IB group [Cu, Ag, Au] and VIII group [Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt] in the periodical table). This catalyst has such a structure that metal fine particles of M element are dispersed on an oxide having the surface comprising the T element. The catalyst is produced by heating an alloy containing an amorphous and/or fine crystalline phase of the compsn. above described in an oxidative atmosphere or in an equal atmosphere for synthesis of methanol at 50-700 deg.C. This catalyst is used for the synthesis of methanol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCO2を主成分とする燃
焼排ガスとH2ガスからメタノールを製造する触媒及び
その製造法並びにメタノールの合成法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for producing methanol from combustion exhaust gas containing CO 2 as a main component and H 2 gas, a method for producing the same, and a method for synthesizing methanol.

【0002】[0002]

【従来の技術】経済活動の活発化に伴いCO2の排出量
は年と共に増加の傾向にあり、このCO2の蓄積による
地球温暖化が最近深刻化し、CO2排出量の削減が急務
となっている。その解決策の一つとして種々CO2削減
法が検討されているが、中でも有力な方法としてCO2
をH2と反応させメタノールなどのアルコール原料に変
換し、再資源化する方法がある。この方法により得られ
るメタノールは、エネルギー源として利用することもで
きるが、化学品合成の際の基幹原料でもあるため、この
方法が確立できれば、CO2排出量の削減ができるだけ
でなく、石油資源の節約にも貢献できるのである。この
種の反応を行うための触媒は、従来から研究されてお
り、金属塩を出発原料とした共沈、含浸法などの化学的
手法を用いて作ったCu−Zn系等の触媒が有望視され
ており、システム的なところまで検討がなされるように
なりはじめてきたが、副生成物の除去や未反応ガスのリ
サイクルに大きな電力を必要とするといった問題点があ
り、触媒性能の更なる向上が期待されていた。又、金属
塩を出発原料にしているため、不純物イオンの残存があ
ることや触媒粒子の分散度が小さい問題がある。さらに
特開昭60−87233号公報には、水素と一酸化炭素
とからなる合成ガスを触媒材料である非晶質合金に直接
接触させることによりメタノールを製造する方法が開示
されている。また、この方法では触媒として機能するの
は非晶質合金そのものであることが示されているが、非
晶質合金そのものは熱的に不安定であり、しかも表面積
も小さいため、そのままでは大きな活性を得ることがで
きない。
2. Description of the Related Art CO 2 emissions tend to increase over the years as economic activities become more active, and global warming due to the accumulation of CO 2 has recently become more serious, and there is an urgent need to reduce CO 2 emissions. ing. Various CO 2 reduction method has been studied as one of the solutions, CO 2 as inter alia effective method
Is reacted with H 2 to be converted into an alcohol raw material such as methanol and then recycled. Methanol obtained by this method can be used as an energy source, but since it is also a basic raw material in the synthesis of chemical products, if this method can be established, not only CO 2 emissions can be reduced, but also petroleum resources can be reduced. It can also contribute to savings. A catalyst for carrying out this kind of reaction has been studied so far, and a Cu—Zn-based catalyst produced by a chemical method such as coprecipitation using a metal salt as a starting material or an impregnation method is considered promising. However, there is a problem that a large amount of electricity is required to remove by-products and recycle unreacted gas, and further improvement of catalyst performance has started. Was expected. Further, since a metal salt is used as a starting material, there are problems that impurity ions remain and the degree of dispersion of catalyst particles is small. Further, Japanese Patent Laid-Open No. 60-87233 discloses a method for producing methanol by directly contacting a synthetic gas composed of hydrogen and carbon monoxide with an amorphous alloy which is a catalyst material. In addition, although it is shown that the amorphous alloy itself functions as a catalyst in this method, the amorphous alloy itself is thermally unstable and has a small surface area. Can't get

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、従来
から知られている共沈法などで作ったCu−Zn系や非
晶質合金等の触媒よりも優れた活性、選択性を有するC
2とH2ガスからメタノールを製造する触媒材料及びそ
の触媒の製造法並びにメタノールの合成法を提供するも
のである。
The object of the present invention is to have a higher activity and selectivity than catalysts such as Cu--Zn type and amorphous alloys prepared by the conventionally known coprecipitation method. C
The present invention provides a catalyst material for producing methanol from O 2 and H 2 gas, a method for producing the catalyst, and a method for synthesizing methanol.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
には、触媒中の不純物イオンの除去、活性な金属粒
子の更なる微細化、金属超微粒子の更なる分散度の向
上を達成する必要があり、本発明は急速凝固した合金を
出発材料に用いることにより、〜を達成した内容を
開示したものである。本発明の第一は、一般式:TM
(ただし、Tは希土類元素〔Y,La,Ce,Pr,N
d,Pm,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Lu〕およびMg,Ca,Mn,Z
r,Hf,Al,Gaから選ばれる少なくとも一種の元
素、Mは周期律表IB族〔Cu,Ag,Au〕およびVI
II族〔Fe,Co,Ni,Ru,Rh,Pd,Os,I
r,Pt〕から選ばれる少なくとも一種の元素)で示さ
れる合金からなり、その表面がT元素からなる酸化物上
にM元素からなる金属微細粒子が分散にてなることを特
徴とするメタノール合成用触媒である。上記一般式にお
いて、原子パーセントでT元素は1〜99%、M元素は
1〜99%である。また、島状に分散したM元素からな
る金属微粒子の大きさはサブナノメートルから数十ナノ
メートル、より具体的には30nm以下の微粒子が触媒
として特に有効に働く。
In order to solve the above problems, it is necessary to remove impurity ions in the catalyst, further miniaturize active metal particles, and further improve the dispersity of ultrafine metal particles. Therefore, the present invention discloses the fact that is achieved by using a rapidly solidified alloy as a starting material. The first aspect of the present invention is the general formula: TM
(However, T is a rare earth element [Y, La, Ce, Pr, N
d, Pm, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, Lu] and Mg, Ca, Mn, Z
At least one element selected from r, Hf, Al and Ga, M is Group IB [Cu, Ag, Au] and VI of the periodic table.
Group II [Fe, Co, Ni, Ru, Rh, Pd, Os, I
[at least one element selected from r, Pt]), the surface of which is an oxide of T element and fine metal particles of M element dispersed therein for methanol synthesis. It is a catalyst. In the above general formula, T element is 1 to 99% and M element is 1 to 99% in atomic percent. In addition, the size of the metal fine particles composed of M elements dispersed in an island shape is from sub-nanometer to several tens of nanometers, and more specifically, fine particles of 30 nm or less work particularly effectively as a catalyst.

【0005】一般式で示されるT元素とM元素とを組み
合わせることにより、その溶融合金の急速凝固体が非晶
質あるいは非晶質と微細結晶質相との混相からなる合金
(非晶質相を含む合金)又は微細結晶質相からなる合金
を得て、それを所定の酸化処理または酸化−還元処理を
してT元素よりなる酸化物上にM元素の金属微細粒子又
は表層が金属よりなる金属酸化物超微粒子が分散してな
る表面層を得ることができる。T元素よりなる酸化物
は、M元素よりなる金属微細粒子と強い相互作用で結び
つき、金属微細粒子をそのまま安定に固定し、大きな活
性を示す。T元素とM元素の組み合わせから外れると非
晶質相を前駆体としても活性は低い。
By combining the T element and the M element represented by the general formula, the rapidly solidified body of the molten alloy is an amorphous alloy or a mixed phase of an amorphous and a fine crystalline phase (amorphous phase). Or an alloy containing a fine crystalline phase, and subjecting it to a predetermined oxidation treatment or oxidation-reduction treatment, the metal fine particles of the M element or the surface layer are formed of a metal on the oxide consisting of the T element. It is possible to obtain a surface layer in which ultrafine metal oxide particles are dispersed. The oxide composed of the T element is bound to the metal fine particles composed of the M element through a strong interaction, stably fixes the metal fine particles as they are, and exhibits great activity. If the combination of the T element and the M element deviates, the activity is low even if the amorphous phase is used as a precursor.

【0006】T元素およびM元素の好ましい範囲は、合
金状態図上での共晶点付近が非晶質相や微細な結晶組織
を得るのに最も効果的であり、そのため触媒活性も高
い。原子パーセントでT元素が1〜99%、M元素が9
9〜1%の範囲とすることにより酸化物上に金属微細粒
子が分散してなる組織がより顕著に表れ、高活性を示
す。具体例としては、LaAu合金ではLabalAu
10〜95、CeCo合金ではCebalCo5〜50、NdAg
合金ではNdbalAg10〜95、GdAu合金ではGdbal
Au5〜90、MgPd合金ではMgbalPd5〜30、Ca
Cu合金ではCabalCu10〜50、MnCu合金ではM
balCu40〜80(但し、balは残部、数字は原子パ
ーセントを示す)などが挙げられる。もちろん、他の組
み合わせ例でも同程度の範囲となる。又、それぞれの元
素の好ましい組成範囲はT元素30〜70%、M元素7
0〜30%である。この範囲で大きな活性が得られる。
金属微粒子の大きさは前述のようにサブナノメートルか
ら数十ナノメートル、より具体的には30nm以下、特
に10nm以下で触媒効果が飛躍的に向上する。さらに
は5nm以下が好ましい。本発明触媒の対象反応は、下
記のCO2の接触水素化によるメタノール合成反応であ
る。 CO2+3H2 → CH3OH+H2O 本発明の第二は上記一般式TMに示す合金の溶融組成よ
り非晶質相および/又は微細結晶質相を含む合金を作製
し、これを酸化雰囲気下で50〜700℃に加熱し、T
元素からなる酸化物上にM元素からなる金属微細粒子を
析出分散せしめることを特徴とするメタノール合成用触
媒の製造法である。
The preferred ranges of the T element and the M element are most effective near the eutectic point on the alloy phase diagram for obtaining an amorphous phase or a fine crystal structure, and therefore the catalytic activity is also high. 1 to 99% of T element and 9 of M element in atomic percent
When the content is in the range of 9 to 1%, a structure in which fine metal particles are dispersed on the oxide is more remarkably exhibited, and high activity is exhibited. As a specific example, for LaAu alloy, La bal Au is used.
10 to 95 , Ce bal Co 5 to 50 in CeCo alloy, NdAg
Nd bal Ag 10-95 for alloys, Gd bal for GdAu alloys
Au 5 to 90 , Mg bal Pd 5 to 30 in the case of MgPd alloy, Ca
Cu bal Cu 10-50 for Cu alloys, M for MnCu alloys
n bal Cu 40 to 80 (however, bal represents the rest and numbers represent atomic percentages) and the like. Of course, the range is about the same for other combinations. Further, the preferable composition range of each element is 30 to 70% of T element and 7 of M element.
0 to 30%. Great activity is obtained in this range.
As described above, when the size of the metal fine particles is from sub-nanometer to several tens of nanometers, more specifically 30 nm or less, particularly 10 nm or less, the catalytic effect is dramatically improved. Furthermore, 5 nm or less is preferable. The target reaction of the catalyst of the present invention is the following methanol synthesis reaction by catalytic hydrogenation of CO 2 . CO 2 + 3H 2 → CH 3 OH + H 2 O In the second aspect of the present invention, an alloy containing an amorphous phase and / or a fine crystalline phase is prepared from the molten composition of the alloy represented by the above general formula TM, and the alloy is prepared under an oxidizing atmosphere. Heat to 50-700 ° C with
A method for producing a catalyst for methanol synthesis, which comprises depositing and dispersing fine metal particles of M element on an oxide of element.

【0007】上記非晶質相および/又は微細結晶質相を
含む合金を作製する手段としては、溶融金属の液体急冷
法により104〜106K/sの冷却速度で急速凝固させ
る方法やアトマイズ法、液中紡糸法、MA(メカニカル
アロイング)法、スパッタ法、メッキ法などがある。か
かる合金は酸化雰囲気下で加熱することにより表面層か
ら酸化され、T元素からなる酸化物(Tが二種以上の場
合は、それぞれの複合酸化物および/混合酸化物)上に
数十ナノメートルのM元素からなる金属微細粒子が分散
した状態になり、高い触媒活性を示す。上記に示す酸化
物上に金属微粒子が存在する触媒を製造する酸化雰囲気
としては酸化性の雰囲気なら、液相、気相いずれでもか
まわないが、操作性からすると気相の方が簡易で望まし
く、特に空気または酸素と不活性ガスの混合ガスで行う
ことが望ましい。不活性ガスと酸素との濃度比は、それ
ぞれの合金の酸化のされ易さによって異なり、酸化され
易い合金ほど急激に酸化され発熱し、微粒子の焼結等が
起こるため、不活性ガス濃度を高める必要がある。また
その時の酸化処理温度に関しては、50〜700℃の範
囲で行う必要がある。これも合金の種類により温度は異
なるが、高温で処理すると酸化はされ易いが、微粒子の
焼結等も起こり易いためできるかぎり低い温度で行うこ
とが望ましい。
As means for producing the alloy containing the amorphous phase and / or the fine crystalline phase, a method of rapidly solidifying a molten metal by a liquid quenching method at a cooling rate of 10 4 to 10 6 K / s, or atomizing. Method, submerged spinning method, MA (mechanical alloying) method, sputtering method, plating method and the like. Such an alloy is oxidized from the surface layer by heating in an oxidizing atmosphere, and it is tens of nanometers on an oxide composed of T element (in the case of two or more kinds, each complex oxide and / or mixed oxide). The fine metal particles composed of the M element are dispersed and exhibit high catalytic activity. The oxidizing atmosphere for producing the catalyst in which the metal fine particles are present on the oxide shown above may be either a liquid phase or a gas phase as long as it is an oxidizing atmosphere, but in view of operability, the gas phase is simpler and desirable, In particular, it is desirable to use air or a mixed gas of oxygen and an inert gas. The concentration ratio of the inert gas and oxygen varies depending on the degree of oxidization of each alloy, and the more easily the alloy is oxidized, the more rapidly it is oxidized and heat is generated, and the sintering of fine particles occurs. There is a need. Further, the oxidation treatment temperature at that time needs to be in the range of 50 to 700 ° C. Although the temperature also varies depending on the type of alloy, it is desirable to carry out the treatment at a high temperature as low as possible because it is easily oxidized if it is treated at a high temperature, but sintering of fine particles is also likely to occur.

【0008】さらに合金の種類によっては、この酸化処
理によってM元素まで完全に酸化されてしまう場合もあ
る。その時は水素気流中、または水素と不活性ガスの混
合ガス気流中などの還元雰囲気下で加熱し、M元素又は
M元素表面を還元する必要もでてくる。またこの還元処
理温度に関しても、50〜700℃の範囲で行う必要が
ある。これも合金の種類により温度は異なるが、高温で
処理すると、微粒子の焼結等も起こり易いためできるか
ぎり低い温度で行うことが望ましい。上記発明により、
反応温度200〜300℃、圧力30〜100気圧の範
囲のCO2の接触水素化反応で高活性、高選択性を示す
結果となった。なお、本発明の触媒は、COとH2ガス
からメタノールを合成する際にも適用できる。本発明の
第三は、上記一般式TMに示す合金よりなる触媒に二酸
化炭素と水素を導入するとともに加圧、加熱することを
特徴とするメタノール合成用触媒の製造法である。かか
る方法により、反応温度200〜300℃、圧力30〜
100気圧の範囲の前記CO2の接触水素化反応におい
て、触媒の高活性、高選択性により、高効率でメタノー
ルを合成することができる。
Further, depending on the type of alloy, even the M element may be completely oxidized by this oxidation treatment. At that time, it is also necessary to reduce the M element or the surface of the M element by heating in a reducing atmosphere such as a hydrogen stream or a mixed gas stream of hydrogen and an inert gas. Also, regarding the reduction treatment temperature, it is necessary to perform the reduction treatment within the range of 50 to 700 ° C. The temperature also varies depending on the type of alloy, but if the treatment is performed at a high temperature, sintering of fine particles and the like are likely to occur, so it is desirable to perform the treatment at a temperature as low as possible. According to the above invention,
The catalytic hydrogenation reaction of CO 2 at a reaction temperature of 200 to 300 ° C. and a pressure of 30 to 100 atm resulted in high activity and high selectivity. The catalyst of the present invention can also be applied when synthesizing methanol from CO and H 2 gas. A third aspect of the present invention is a method for producing a catalyst for methanol synthesis, which comprises introducing carbon dioxide and hydrogen into a catalyst made of an alloy represented by the general formula TM, and applying pressure and heat. According to this method, the reaction temperature is 200 to 300 ° C. and the pressure is 30 to
In the catalytic hydrogenation reaction of CO 2 in the range of 100 atm, methanol can be synthesized with high efficiency due to the high activity and high selectivity of the catalyst.

【0009】[0009]

【実施例】以下、本発明を実施例に基づき具体的に説明
する。 実施例1 アーク溶解炉によりY40Ag60の合金を作り、これを先
端に小孔を有する石英管に挿入し、加熱溶融後、その石
英管を200mmの銅ロール直上に設置し、回転数40
00r.p.mの高速回転下、石英管内の溶融金属をA
r加圧下0.4kg/cm2により石英管の小孔から噴
出し、ロールの表面と接触することにより急速凝固させ
て幅約1mmの薄体を得た。この際の冷却速度は105
K/sである。かかる薄体を用いて空気中300℃で5
時間酸化処理し、Y23上にAg超微粒子が高密度で分
散した状態の触媒とした。
EXAMPLES The present invention will be specifically described below based on examples. Example 1 An alloy of Y 40 Ag 60 was made by an arc melting furnace, inserted into a quartz tube having a small hole at the tip, heated and melted, and the quartz tube was placed directly on a 200 mm copper roll at a rotation speed of 40.
00r. p. The molten metal inside the quartz tube was
It was jetted from a small hole of a quartz tube under a pressure of 0.4 kg / cm 2 and rapidly solidified by coming into contact with the surface of a roll to obtain a thin body having a width of about 1 mm. The cooling rate at this time is 10 5
K / s. Using such a thin body, in air at 300 ℃ 5
Oxidation treatment was carried out for a period of time to obtain a catalyst in which Ag ultrafine particles were dispersed in high density on Y 2 O 3 .

【0010】実施例2 La70Au30合金から実施例1と同様な方法により、L
23上にAu超微粒子が高密度で分散した触媒を作っ
た。 実施例3 Ce40Ag50Cu10合金から実施例1と同様な方法によ
り、CeO2上にCu,Agの超微粒子が高密度で分散
した触媒を作った。 比較例 触媒塩を出発原料として共沈法で作ったCu−Zn−O
系触媒を用いた。上記これらの材料1gに250℃、5
0気圧の条件でCO2とH2の混合ガス(CO2:H2
1:3)を100ml/minの流速で通過させたとき
の、このCO2接触水素化反応に体する触媒性能評価の
結果を以下に示す。
Example 2 From the La 70 Au 30 alloy, by the same method as in Example 1, L
A catalyst was prepared in which Au ultrafine particles were dispersed at high density on a 2 O 3 . Example 3 A catalyst in which ultrafine particles of Cu and Ag were dispersed at high density on CeO 2 was prepared from the Ce 40 Ag 50 Cu 10 alloy by the same method as in Example 1. Comparative Example Cu-Zn-O prepared by a coprecipitation method using a catalyst salt as a starting material
A system catalyst was used. 250g for 5g of these materials
A mixed gas of CO 2 and H 2 (CO 2 : H 2 =
The results of the evaluation of the catalyst performance involved in this CO 2 catalytic hydrogenation reaction when passing 1: 3) at a flow rate of 100 ml / min are shown below.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】本発明の触媒はCO2の接触水素化反応
に対して、高い活性と選択性を兼ね備えた性質を有する
ため、従来の触媒に比較して、副生成物の除去設備を簡
略化でき、また未反応ガスのリサイクル回転も減らすこ
とが出来るなどの点で有利である。これらにより、本発
明ではCO2よりメタノールを合成し再資源化技術とし
て有効である。
EFFECTS OF THE INVENTION Since the catalyst of the present invention has the property of having both high activity and selectivity for the catalytic hydrogenation reaction of CO 2 , the by-product removal facility is simpler than that of conventional catalysts. It is advantageous in that it is possible to reduce the number of recycles of unreacted gas. As a result, the present invention is effective as a resource recycling technology by synthesizing methanol from CO 2 .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/68 B01J 23/78 Z 23/76 23/89 Z 23/78 C07C 29/154 23/835 29/156 23/889 9155−4H 31/04 23/89 C07B 61/00 300 C07C 29/154 B01J 23/56 301Z 29/156 23/64 104Z 31/04 23/82 Z // C07B 61/00 300 23/84 311Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B01J 23/68 B01J 23/78 Z 23/76 23/89 Z 23/78 C07C 29/154 23 / 835 29/156 23/889 9155-4H 31/04 23/89 C07B 61/00 300 C07C 29/154 B01J 23/56 301Z 29/156 23/64 104Z 31/04 23/82 Z // C07B 61/00 300 23/84 311Z

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一般式:TM(ただし、Tは希土類元素
〔Y,La,Ce,Pr,Nd,Pm,Sm,Eu,G
d,Tb,Dy,Ho,Er,Tm,Yb,Lu〕およ
びMg,Ca,Mn,Zr,Hf,Al,Gaから選ば
れる少なくとも一種の元素、Mは周期律表IB族〔C
u,Ag,Au〕およびVIII族〔Fe,Co,Ni,R
u,Rh,Pd,Os,Ir,Pt〕から選ばれる少な
くとも一種の元素)で示される合金からなり、その表面
がT元素からなる酸化物上にM元素からなる金属微細粒
子が分散してなることを特徴とするメタノール合成用触
媒。
1. A general formula: TM (where T is a rare earth element [Y, La, Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm, Yb, Lu] and at least one element selected from Mg, Ca, Mn, Zr, Hf, Al and Ga, and M is a group IB [C] of the periodic table.
u, Ag, Au] and Group VIII [Fe, Co, Ni, R]
u, Rh, Pd, Os, Ir, Pt], and at least one element selected from the group consisting of an alloy of which the surface is an oxide of T element and fine metal particles of M element dispersed therein. A catalyst for methanol synthesis characterized by the following.
【請求項2】 原子パーセントで、T元素は1〜99
%、M元素は99〜1%である請求項1記載のメタノー
ル合成用触媒。
2. The atomic percentage of T element is 1 to 99.
%, M element is 99-1%, The catalyst for methanol synthesis according to claim 1.
【請求項3】 M元素からなる金属微細粒子の大きさが
サブナノメートルから数十ナノメートルである請求項1
記載のメタノール合成用触媒。
3. The size of the fine metal particles composed of M element is from sub-nanometer to several tens of nanometers.
The described catalyst for synthesizing methanol.
【請求項4】 一般式:TM(ただし、Tは希土類元素
〔Y,La,Ce,Pr,Nd,Pm,Sm,Eu,G
d,Tb,Dy,Ho,Er,Tm,Yb,Lu〕およ
びMg,Ca,Mn,Zr,Hf,Al,Gaから選ば
れる少なくとも一種の元素、Mは周期律表IB族〔C
u,Ag,Au〕およびVIII族〔Fe,Co,Ni,R
u,Rh,Pd,Os,Ir,Pt〕から選ばれる少な
くとも一種の元素)の溶融組成より非晶質相および/又
は微細結晶質相を含む合金を作製し、これを酸化雰囲気
又はメタノール合成と同等の雰囲気中で50〜700℃
に加熱し、合金表面を酸化させT元素からなる酸化物上
にM元素からなる金属微細粒子を析出分散せしめること
を特徴とするメタノール合成用触媒の製造方法。
4. A general formula: TM (where T is a rare earth element [Y, La, Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm, Yb, Lu] and at least one element selected from Mg, Ca, Mn, Zr, Hf, Al and Ga, and M is a group IB [C] of the periodic table.
u, Ag, Au] and Group VIII [Fe, Co, Ni, R]
u, Rh, Pd, Os, Ir, Pt] and at least one element selected from the melting composition of an alloy containing an amorphous phase and / or a fine crystalline phase. 50 to 700 ℃ in an equivalent atmosphere
A method for producing a catalyst for methanol synthesis, which comprises heating the alloy surface to oxidize the surface of the alloy to deposit and disperse fine metal particles of M element on an oxide of T element.
【請求項5】 請求項4記載の酸化雰囲気下での熱処理
後、さらに還元雰囲気で50〜700℃に加熱すること
により、T元素からなる酸化物上にM元素からなる金属
微細粒子を析出分散せしめることを特徴とするメタノー
ル合成用触媒の製造法。
5. After the heat treatment in the oxidizing atmosphere according to claim 4, by further heating to 50 to 700 ° C. in a reducing atmosphere, the fine metal particles of the M element are deposited and dispersed on the oxide of the T element. A method for producing a catalyst for methanol synthesis, characterized by comprising:
【請求項6】 請求項4,5に記載した酸化処理、還元
処理を繰り返すことにより、T元素からなる酸化物上に
M元素からなる金属微細粒子を析出分散せしめることを
特徴とするメタノール合成用触媒の製造法。
6. A method for synthesizing methanol, characterized in that fine metal particles consisting of M element are deposited and dispersed on an oxide consisting of T element by repeating the oxidation treatment and the reduction treatment described in claim 4. Catalyst manufacturing method.
【請求項7】 一般式:TM(ただし、Tは希土類元素
〔Y,La,Ce,Pr,Nd,Pm,Sm,Eu,G
d,Tb,Dy,Ho,Er,Tm,Yb,Lu〕およ
びMg,Ca,Mn,Zr,Hf,Al,Gaから選ば
れる少なくとも一種の元素、Mは周期律表IB族〔C
u,Ag,Au〕およびVIII族〔Fe,Co,Ni,R
u,Rh,Pd,Os,Ir,Pt〕から選ばれる少な
くとも一種の元素)で示される合金からなり、その表面
がT元素からなる酸化物上にM元素からなる金属微細粒
子が分散してなる触媒に二酸化炭素と水素を導入すると
ともに、加圧、加熱することを特徴とするメタノールの
合成法。
7. The general formula: TM (where T is a rare earth element [Y, La, Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm, Yb, Lu] and at least one element selected from Mg, Ca, Mn, Zr, Hf, Al and Ga, and M is a group IB [C] of the periodic table.
u, Ag, Au] and Group VIII [Fe, Co, Ni, R]
u, Rh, Pd, Os, Ir, Pt], and at least one element selected from the group consisting of an alloy of which the surface is an oxide of T element and fine metal particles of M element dispersed therein. A method for synthesizing methanol, which comprises introducing carbon dioxide and hydrogen into a catalyst, and applying pressure and heating.
【請求項8】 原子パーセントでT元素は1〜99%、
M元素は99〜1%である触媒を用いる請求項7記載の
メタノールの合成法。
8. The T element is 1 to 99% in atomic percent,
The method for synthesizing methanol according to claim 7, wherein a catalyst in which the M element is 99 to 1% is used.
JP7029394A 1995-02-17 1995-02-17 Catalyst for synthesis of methanol, production thereof and synthesis of methanol Pending JPH08215570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7029394A JPH08215570A (en) 1995-02-17 1995-02-17 Catalyst for synthesis of methanol, production thereof and synthesis of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7029394A JPH08215570A (en) 1995-02-17 1995-02-17 Catalyst for synthesis of methanol, production thereof and synthesis of methanol

Publications (1)

Publication Number Publication Date
JPH08215570A true JPH08215570A (en) 1996-08-27

Family

ID=12274934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7029394A Pending JPH08215570A (en) 1995-02-17 1995-02-17 Catalyst for synthesis of methanol, production thereof and synthesis of methanol

Country Status (1)

Country Link
JP (1) JPH08215570A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102437C (en) * 1999-05-24 2003-03-05 中国科学院山西煤炭化学研究所 Methanol synthesizing catalyst
JP2009215263A (en) * 2008-03-12 2009-09-24 Tokyo Electric Power Co Inc:The Method for synthesizing methanol
WO2012105631A1 (en) 2011-02-02 2012-08-09 独立行政法人産業技術総合研究所 Noble metal-oxide joined nanoparticles and method for high-purity production of the same
WO2012122057A3 (en) * 2011-03-04 2012-11-22 Felix Studt Catalysts for the reduction of carbon dioxide to methanol

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102437C (en) * 1999-05-24 2003-03-05 中国科学院山西煤炭化学研究所 Methanol synthesizing catalyst
JP2009215263A (en) * 2008-03-12 2009-09-24 Tokyo Electric Power Co Inc:The Method for synthesizing methanol
WO2012105631A1 (en) 2011-02-02 2012-08-09 独立行政法人産業技術総合研究所 Noble metal-oxide joined nanoparticles and method for high-purity production of the same
US9675964B2 (en) 2011-02-02 2017-06-13 National Institute Of Advanced Industrial Science And Technology Noble metal-oxide combined nanoparticle, and, method of producing the same with high purity
WO2012122057A3 (en) * 2011-03-04 2012-11-22 Felix Studt Catalysts for the reduction of carbon dioxide to methanol
EP2680964A2 (en) * 2011-03-04 2014-01-08 The Board Of Trustees Of The University Of the Leland Stanford Junior University Catalysts for the reduction of carbon dioxide to methanol
CN103547366A (en) * 2011-03-04 2014-01-29 里兰斯坦福初级大学理事会 Catalysts for the reduction of carbon dioxide to methanol
EP2680964A4 (en) * 2011-03-04 2014-11-19 Univ Leland Stanford Junior Catalysts for the reduction of carbon dioxide to methanol

Similar Documents

Publication Publication Date Title
WO2021020377A1 (en) Alloy nanoparticles, aggregate of alloy nanoparticles, catalyst, and method for producing alloy nanoparticles
JP4777670B2 (en) Ammonia synthesis catalyst and method for producing the same
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
JPH07116517A (en) Methanol reforming catalyst, its production and methanol reforming method
US6827917B1 (en) Process for oxidation of ammonia
US20070264174A1 (en) Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
JPS6111130A (en) Novel minute aggregate of metal being not noble metal and its production
JPH08215576A (en) Composite superfine particle, its production and catalyst for synthesis and refining of methanol using the same
CN110064423A (en) Extra small multicomponent alloy composite material, preparation method and its application
EP1666144B1 (en) Catalyst for use in reforming methanol with steam and method for preparation thereof
JPWO2018159644A1 (en) PdRu solid solution nanoparticles, method for producing the same and catalyst, method for controlling crystal structure of PtRu solid solution nanoparticles, and AuRu solid solution nanoparticles and method for producing the same
US20090298683A1 (en) Production of a material comprising a mixture of noble metal nanoparticles and rare-earth oxide nanoparticles
Liu et al. Recent progress in intermetallic nanocrystals for electrocatalysis: From binary to ternary to high‐entropy intermetallics
JPH10216519A (en) Oxide catalyst carrying fine metal particle
US4590177A (en) Method for preparing dual colloid catalyst compositions
JP2005144402A (en) Catalyst for partial oxidation of hydrocarbon and method of producing synthetic gas using the same
JP2002226926A (en) Composite functional material and its manufacturing method
JPH08215570A (en) Catalyst for synthesis of methanol, production thereof and synthesis of methanol
JP3497652B2 (en) Catalyst production method
JPH08215571A (en) Composite superfine particle and catalyst for synthesis and refining of methanol using the same
JP3757248B2 (en) Composite ultrafine particles useful as catalysts for methanol synthesis and reforming, and methods for producing the same
JP2007075799A (en) Catalyst for hydrogen production, and its production method
JP3819516B2 (en) Amorphous alloy catalysts for methanation of carbon dioxide
JP3300460B2 (en) Method for producing ultrafine monodispersed gold particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071215

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees