JPH0821388B2 - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPH0821388B2
JPH0821388B2 JP58132363A JP13236383A JPH0821388B2 JP H0821388 B2 JPH0821388 B2 JP H0821388B2 JP 58132363 A JP58132363 A JP 58132363A JP 13236383 A JP13236383 A JP 13236383A JP H0821388 B2 JPH0821388 B2 JP H0821388B2
Authority
JP
Japan
Prior art keywords
group
polymer
solid electrolyte
salt
anionic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58132363A
Other languages
Japanese (ja)
Other versions
JPS6023974A (en
Inventor
礼 三川
師郎 豊田
隆 野上
政良 名和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP58132363A priority Critical patent/JPH0821388B2/en
Publication of JPS6023974A publication Critical patent/JPS6023974A/en
Publication of JPH0821388B2 publication Critical patent/JPH0821388B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明は固体電解質電池に関し、更に詳しくは、極め
て成形容易な有機高分子電解質を用いた固体電解質電池
に関するものである。
The present invention relates to a solid electrolyte battery, and more particularly to a solid electrolyte battery using an organic polymer electrolyte that is extremely easy to mold.

従来電池を構成する電解質は、イオンの移動の容易さ
から、水溶液状またはペースト状で用いられている。し
かし、電解質を水溶液状又はペースト状にした電池に
は、電極の金属の腐蝕電解質水溶液もしくはペーストの
漏洩の問題があり、特に電池が時計やカメラなどの精密
機器や、測定装置や計算機など電子機器に使用されてい
る時に、かかる問題が生ずれば、機器は著しく損傷を受
けることとなり、その解決のために種々の工夫がなされ
ている。
Conventionally, the electrolyte that constitutes a battery has been used in the form of an aqueous solution or a paste because of the ease of ion migration. However, a battery in which the electrolyte is in the form of an aqueous solution or paste has a problem of leakage of the aqueous electrolyte solution or paste in which the metal of the electrode is corroded. In particular, the battery is a precision device such as a clock or a camera, or an electronic device such as a measuring device or a calculator. If such a problem does not occur during use, the device will be seriously damaged, and various measures have been taken to solve it.

これらの工夫の1つとして、電解質に固体電解質を用
いる方法が採用され、ほぼ解決の方向が得られている。
用いられる固体電解質はイオン導電性であり、たとえ
ば、ナトリウムイオン導電体のNaO・11Al2O3、リチウム
イオン導電体のLi3N、銅イオン導電体の7CuBr・C6H12N4
CH2Br、銀イオン導電体のRbAg4I5等が知られている。こ
こに挙げたものは、カチオン導電体であるがアニオンは
通常カチオンに較べてイオン半径が大きいことから固体
中を動きにくいものであるためアニオン導電体は少なく
知られているものは高温で導電性を示すものである。た
とえば200℃でフツ素アニオン導電性を示すPbF2、300℃
で塩素アニオン導電性を示すPbCl2、800℃でO2-の導電
性を示す(ZrO20.9(Y2O30.1などが知られている。
As one of these measures, a method of using a solid electrolyte as an electrolyte is adopted, and a direction for solving the problem is almost obtained.
The solid electrolyte used is ionic conductive, for example, NaO.11Al 2 O 3 which is a sodium ion conductor, Li 3 N which is a lithium ion conductor, and 7CuBrC 6 H 12 N 4 which is a copper ion conductor.
CH 2 Br and silver ion conductor RbAg 4 I 5 are known. The ones listed here are cation conductors, but the anions have a large ionic radius compared to cations, so they are difficult to move in solids, so few anion conductors are known to be conductive at high temperatures. Is shown. For example, PbF 2 , which shows fluorine anion conductivity at 200 ℃, 300 ℃
It is known that PbCl 2 which exhibits chlorine anion conductivity at ( 2 ) and (ZrO 2 ) 0.9 (Y 2 O 3 ) 0.1 which exhibits O 2− conductivity at 800 ° C.

しかし、これらの固体電解質はすべて無機物質であつ
て、無機物質に共通して成形しにくいという問題点があ
る。工業的規模で固体電解質を電池に利用しようとする
ときは、所望の形状に成形し得べきことが極めて重要な
条件である。
However, since all of these solid electrolytes are inorganic substances, there is a problem that they are difficult to form in common with inorganic substances. When a solid electrolyte is to be used in a battery on an industrial scale, it is a very important condition that it can be molded into a desired shape.

そこで本発明者らは、かかる問題を解決し成形容易な
固体電解質を用いた電池を開発すべく鋭意研究を重ねた
結果、ある特定の有機高分子化合物の複合体が電池用電
解質として優れた特性を有し、かつ成形容易であること
を見出し、本発明を完成した。
Therefore, as a result of repeated studies to solve the above problems and develop a battery using a solid electrolyte that is easy to mold, the present inventors have found that a composite of a specific organic polymer compound has excellent characteristics as a battery electrolyte. The present invention has been completed by finding out that it has the following characteristics and is easy to mold.

すなわち本発明は、カチオン性ポリマーの溶液もしく
は液体のカチオン性ポリマー、及びアニオン性ポリマー
の溶液もしくは液状のアニオン性ポリマーを混合し、次
いで所望により脱溶媒することにより得られるポリカチ
オン・ポリアニオン複合体を電解質として用いたことを
特徴とする固体電解質電池を提供するものである。
That is, the present invention provides a polycation / polyanion complex obtained by mixing a solution of a cationic polymer or a liquid cationic polymer, and a solution of an anionic polymer or a liquid anionic polymer, and then optionally removing the solvent. A solid electrolyte battery characterized by being used as an electrolyte.

本発明において、カチオン性ポリマーとしては第4級
アンモニウム含有ポリマーの塩、スルホニウム基含有ポ
リマーの塩、ホスホニウム基含有ポリマーの塩の群から
選ばれた1種または2種以上のものが用いられる。第4
級アンモニウム基含有ポリマーの塩の例としては、カチ
オン化セルロース、カチオン化澱粉、ポリエチレンイミ
ン第4級塩、ポリN−メチルビニルピリジンの塩などの
ポリビニルピリジンの塩;ポリベンジルトリメチルアン
モニウム塩などのポリベンジルアンモニウムの塩;ポリ
ビニルトリメチルアンモニウムクロライドなどのポリビ
ニルアミンの塩;ポリアリルトリメチルアンモニウムク
ロライドなどのポリアリルアミンの塩;ジクロロメチル
ジフエニルエーテルホルマリン縮合物のトリアルキルア
ミンの塩;ポリ(N−ビニル−2,3−ジメチルイミダゾ
リウム塩);ポリジアリルアンモニウム塩;ポリ(2−
ヒドロキシ−3−メタクリロイルオキシプロピルトリメ
チルアンモニウムクロライド)などのポリ(2−ヒドロ
キシ−3−メタクリロイルオキシアルキル,トリアルキ
ルアンモニウム塩);ポリ(2−ヒドロキシ−3−アク
リロイルオキシプロピルトリメチルアンモニウムクロラ
イド)などのポリ(2−ヒドロキシ−3−アクリロイル
オキシアルキルトリアルキルアンモニウム塩);ポリ
(N−メタクリルアミドプロピル−3−トリメチルアン
モニウムクロライド)などのポリ(N−メタクリルアミ
ドプロピル−3−トリアルキルアンモニウム塩)が挙げ
られる。スルホニウム基含有ポリマーの塩の例として
は、ポリ(2−メタクリルオキシエチルジメチルスルホ
ニウムクロライド)などのポリ(2−メタクリロオキシ
アルキルジアルキルスルホニウム塩);ポリ(2−アク
リロオキシエチルジメチルスルホニウムクロライド)な
どのポリ(2−アクリロオキシアルキルジアルキルスル
ホニウム塩)ポリビニルベンジルスルホニウム塩が、ま
たホスホニウム基含有ポリマーの塩の例としては、ポリ
(グリシジルトリブチルホスホニウムクロライド)など
のポリ(グリシジルトリアルキルホスホニウム塩)ポリ
ビニルベンジルホスホニウム塩が挙げられる。カチオン
性ポリマーの重合度は、特に制限はないが、数千〜数十
万が好ましい。
In the present invention, as the cationic polymer, one kind or two or more kinds selected from the group of a quaternary ammonium-containing polymer salt, a sulfonium group-containing polymer salt, and a phosphonium group-containing polymer salt is used. Fourth
Examples of salts of polymers containing a quaternary ammonium group include cationized cellulose, cationized starch, quaternary salts of polyethyleneimine, polyvinyl pyridine salts such as salts of poly N-methyl vinyl pyridine, and poly benzyl trimethyl ammonium salts. Benzyl ammonium salt; polyvinyl amine salt such as polyvinyl trimethyl ammonium chloride; polyallyl amine salt such as polyallyl trimethyl ammonium chloride; trialkylamine salt of dichloromethyldiphenyl ether formalin condensate; poly (N-vinyl-2) , 3-Dimethylimidazolium salt); polydiallylammonium salt; poly (2-
Hydroxy (3-methacryloyloxypropyltrimethylammonium chloride) and other poly (2-hydroxy-3-methacryloyloxyalkyl, trialkylammonium salts); poly (2-hydroxy-3-acryloyloxypropyltrimethylammonium chloride) and other poly ( 2-hydroxy-3-acryloyloxyalkyl trialkylammonium salt); poly (N-methacrylamidopropyl-3-trialkylammonium salt) such as poly (N-methacrylamidopropyl-3-trimethylammonium chloride). Examples of salts of sulfonium group-containing polymers include poly (2-methacryloxyethyldimethylsulfonium chloride) and other poly (2-methacrylooxyalkyldialkylsulfonium salts); poly (2-acrylooxyethyldimethylsulfonium chloride) and the like. Poly (2-acryloyloxyalkyldialkylsulfonium salt) polyvinylbenzylsulfonium salt, and examples of salts of phosphonium group-containing polymers include poly (glycidyltributylphosphonium chloride) and other poly (glycidyltrialkylphosphonium salt) polyvinylbenzyl. Examples include phosphonium salts. The degree of polymerization of the cationic polymer is not particularly limited, but is preferably several thousands to several hundreds of thousands.

本発明において、アニオン性ポリマーは、カルボキシ
ル基、スルホン酸基、硫酸エステル基、リン酸基、亜リ
ン酸基、次亜リン酸基等を含有するものであり、例え
ば、アクリル酸、メタクリル酸、クロトン酸、マレイン
酸、イタコン酸、ビニルスルホン酸、アクリロイルエタ
ンスルホン酸、アクリロイルプロパンスルホン酸、メタ
クリロイルエタンスルホン酸、メタクリロイルプロパン
スルホン酸、スチレンスルホン酸、ビニルトルエンスル
ホン酸、アリルスルホン酸、アクリルアミド−2−メチ
ルプロパンスルホン酸、メタクリルアミド−2−メチル
プロパンスルホン酸などの上述のアニオン性基及び重合
性二重結合を有する化合物より得られる重合体又は共重
合体や、これらの化合物の上述のアニオン性基をもたな
いモノマーとの共重合体を挙げることができる。また、
ナフタレンスルホン酸もしくはその塩、メラミンスルホ
ン酸もしくはその塩のホルマリン縮合物などの縮合物を
挙げることもできる。アニオン性ポリマーの重合度は、
特に制限は無いが、数百〜数百万が好ましい。
In the present invention, the anionic polymer contains a carboxyl group, a sulfonic acid group, a sulfuric ester group, a phosphoric acid group, a phosphorous acid group, a hypophosphorous acid group, etc., for example, acrylic acid, methacrylic acid, Crotonic acid, maleic acid, itaconic acid, vinylsulfonic acid, acryloylethanesulfonic acid, acryloylpropanesulfonic acid, methacryloylethanesulfonic acid, methacryloylpropanesulfonic acid, styrenesulfonic acid, vinyltoluenesulfonic acid, allylsulfonic acid, acrylamido-2- Polymers or copolymers obtained from compounds having the above-mentioned anionic groups and polymerizable double bonds such as methylpropanesulfonic acid and methacrylamide-2-methylpropanesulfonic acid, and the above-mentioned anionic groups of these compounds Copolymerization with monomers that do not have It can be mentioned. Also,
Other examples include condensates such as naphthalene sulfonic acid or a salt thereof and melamine sulfonic acid or a salt thereof such as a formalin condensate. The degree of polymerization of the anionic polymer is
Although not particularly limited, it is preferably several hundreds to several millions.

本発明に係るポリカチオン・ポリアニオン複合体は、
カチオン性ポリマーの溶液もしくは液状のカチオン性ポ
リマー、及びアニオン性ポリマーの溶液もしくは液状の
アニオン性ポリマーを混合し、所望により加熱又は脱溶
媒することにより製造される。なお、ここで液状とは、
常温で液体又は加熱により溶融させたものを意味する。
The polycation / polyanion complex according to the present invention is
It is produced by mixing a cationic polymer solution or liquid cationic polymer, and an anionic polymer solution or liquid anionic polymer, and heating or desolvating as desired. In addition, the liquid here means
It means a liquid at room temperature or one melted by heating.

カチオン性ポリマー又はアニオン性ポリマーの溶液に
使用する溶媒としては、例えば水、テトラヒドロフラ
ン、ジメチルホルムアミド、ジメチルスルホキシド、エ
タノール等が好ましく、溶液の濃度は特に制限はないが
5〜50重量%が好ましい。また、ポリカチオン・ポリア
ニオン複合体中のカチオン性ポリマーとアニオン性ポリ
マーの混合比は、複合体中のイオンのモル比にして、カ
チオン性ポリマー:アニオン性ポリマー=1:0.1〜1:10
とするのが好ましい。
The solvent used for the solution of the cationic polymer or the anionic polymer is preferably water, tetrahydrofuran, dimethylformamide, dimethylsulfoxide, ethanol or the like, and the concentration of the solution is not particularly limited, but is preferably 5 to 50% by weight. In addition, the mixing ratio of the cationic polymer and the anionic polymer in the polycation / polyanion complex is a molar ratio of the ions in the complex, and the cationic polymer: anionic polymer = 1: 0.1 to 1:10.
Is preferred.

本発明の固体電解質電池に用いる固体電解質は、上述
の複合体そのものであつても、副生する電解質を除去し
たものでも、あるいは他の電解質を混合せしめたもので
もよい。この場合、混合する電解質としては、アルカリ
金属、アルカリ土類金属、鉄属の金属、銅属の金属、両
性金属等の金属のハロゲン塩、硫酸塩、硝酸塩、燐酸
塩、水酸化物、酸化物などが使用でき、また有機物の塩
であつてもよい。
The solid electrolyte used in the solid electrolyte battery of the present invention may be the above-mentioned complex itself, the one in which the by-produced electrolyte is removed, or the one in which another electrolyte is mixed. In this case, as the electrolyte to be mixed, alkali metal, alkaline earth metal, metal of iron group, metal of copper group, halogen salt of metal such as amphoteric metal, sulfate, nitrate, phosphate, hydroxide, oxide Etc. can be used, and an organic salt may be used.

斯しくして得られた固体電解質は、後述の実施例にお
いて示される如く、イオンの移動を可能にするものであ
り、カチオン、アニオン両者のイオン導電体となり得
る。即ち、カチオン性ポリマー及びアニオン性ポリマー
のマトリツクスがそれぞれ反対の電荷を有するイオンの
導電経路となり得るからである。しかし、アニオンとカ
チオンではそのイオン半径に大きな差がある場合が多
く、物質移動に伴うイオン電導では出来るだけ小さなイ
オンの方が動き易いため、電導度を上げる目的では陽イ
オン電導体が好んで使われる。
The solid electrolyte thus obtained enables the movement of ions, as shown in the examples described later, and can be an ionic conductor for both cations and anions. That is, the matrix of the cationic polymer and the matrix of the anionic polymer can serve as conductive paths for ions having opposite charges. However, there are often large differences in the ionic radii between anions and cations, and in ion conduction associated with mass transfer, smaller ions are easier to move, so cation conductors are preferred for the purpose of increasing conductivity. Be seen.

以下、製造例により本発明を具体的に説明する。 The present invention will be specifically described below with reference to production examples.

実施例1 水溶液150gをポリアクリル酸ナトリウム(PA)2%水
溶液500gを混合し、得られた沈澱をソツクスレー抽出器
にかけ、未反応ポリマー及び無機塩を除き、減圧下に加
熱乾燥した。元素分析により、得られたポリマーはアニ
オン基とカチオン基がほぼ1対1の複合体を形成してい
ることを確認した。次いで、電解質を含有せしめるた
め、この複合体1.8g及びLiClO41gを混合し、水を加えて
撹拌した後、減圧下に加熱乾燥して、LiClO4が均一に分
散したポリカチオン・ポリアニオン複合体を得た。
Example 1 150 g of the aqueous solution was mixed with 500 g of a 2% aqueous solution of sodium polyacrylate (PA), and the obtained precipitate was placed in a Soxhlet extractor to remove unreacted polymer and inorganic salt, and dried by heating under reduced pressure. It was confirmed by elemental analysis that the obtained polymer formed an approximately 1: 1 complex of anion groups and cation groups. Next, in order to contain an electrolyte, 1.8 g of this complex and 1 g of LiClO 4 were mixed, water was added and the mixture was stirred, and then dried by heating under reduced pressure to obtain a polycation / polyanion complex in which LiClO 4 was uniformly dispersed. Got

製造例2 PAの代りにポリアクリロアミド−2−メチル−プロパ
ンスルホン酸ソーダ(PAMPS)を用いる以外は製造例1
と同様にしてポリカチオン・ポリアニオン複合体を得
た。
Production Example 2 Production Example 1 except that polyacryloamido-2-methyl-propanesulfonic acid sodium soda (PAMPS) was used in place of PA.
A polycation / polyanion complex was obtained in the same manner as in.

試験例1 製造例1で得たポリマー複合体(PA:ポリブレン:LiCl
O4=2:1:4、イオンのモル比)を厚さ1mm、直径13mmのペ
レツトに成形し、これを2枚の白金電極によりはさみ、
ベクトルインピーダスメータ(横河ヒユーレツトパツカ
ード製、4800A)に接続して試料のインピーダンス及び
位相のずれを測定した。試料のペレツトはガラス容器内
に入れ、真空ポンプで加熱下で充分ひいて、ペレツトに
含まれる水分をできるだけ除いた後、真空下77℃で測定
し、図1の結果を得た。
Test Example 1 Polymer composite (PA: polybrene: LiCl) obtained in Production Example 1
O 4 = 2: 1: 4, molar ratio of ions) was formed into a pellet with a thickness of 1 mm and a diameter of 13 mm, which was sandwiched between two platinum electrodes,
The impedance and phase shift of the sample were measured by connecting it to a vector impedometer (4800A, manufactured by Yokogawa Hiyuretsu Pats Card). The pellet of the sample was put in a glass container, sufficiently pulled under heating with a vacuum pump to remove water contained in the pellet as much as possible, and then measured at 77 ° C. under vacuum to obtain the result of FIG.

又、この試料の比抵抗値(ρ)を種々の温度にて測定
し、結果を図2に示した。190℃では約3.5×103Ωcmで
あつた。
The specific resistance value (ρ) of this sample was measured at various temperatures, and the results are shown in FIG. At 190 ° C, it was about 3.5 × 10 3 Ωcm.

試験例2 製造例2で得たポリマー複合体(PAMPS:ポリブレン:L
iClO4=2:1:4、イオンのモル比)の抵抗比値(ρ)を試
験例1と同様にして測定し、結果を図3に示した。205
℃では約4.1×103Ωcmであつた。
Test Example 2 Polymer composite (PAMPS: polybrene: L) obtained in Production Example 2
The resistance ratio value (ρ) of iClO 4 = 2: 1: 4, molar ratio of ions) was measured in the same manner as in Test Example 1, and the results are shown in FIG. 205
It was about 4.1 × 10 3 Ωcm at ℃.

実施例1 製造例1で得たポリマー複合体を厚さ1mm、直径13mm
のペレツト上に成形し、これを活性炭素繊維(布状、10
mg)とリチウム(箔状5mg)により互いに接触しないよ
うにはさみ、全体をテフロン製ホルダーにて固定した
後、これをガラス容器に入れ、アルゴン雰囲気下で密封
した。次にガラス容器を徐々に昇温し、100℃に保つた
後、リチウム及び活性炭素繊維間の電圧を測定したとこ
ろ、3Vの起電力が発生していた。リチウム及び活性炭素
繊維間のシヨートサーキツト電流は約50μAであつた。
この電池を10μAの定電流放電させた時の電池電圧の経
時変化を図4に示す。なお、この定電流放電により電池
電圧が2Vになつたところで、10μAの定電流により充電
を行つたところ、電池電圧は放電開始時の電圧まで回復
した。この充放電は10回以上繰り返しが可能であつた。
Example 1 The polymer composite obtained in Production Example 1 was prepared to have a thickness of 1 mm and a diameter of 13 mm.
Molded on a pellet of activated carbon fiber (fabric, 10
mg) and lithium (foil-like 5 mg) so as not to contact each other, and the whole was fixed with a Teflon holder, which was placed in a glass container and sealed under an argon atmosphere. Next, after gradually raising the temperature of the glass container and maintaining it at 100 ° C., the voltage between the lithium and the activated carbon fiber was measured, and an electromotive force of 3 V was generated. The short circuit current between the lithium and activated carbon fibers was about 50 μA.
FIG. 4 shows the change over time in the battery voltage when the battery was discharged at a constant current of 10 μA. When the battery voltage reached 2 V due to this constant current discharge, charging was performed at a constant current of 10 μA, and the battery voltage recovered to the voltage at the beginning of discharge. This charging / discharging could be repeated 10 times or more.

【図面の簡単な説明】[Brief description of drawings]

図1はポリマー複合体(PA:ポリブレン:LiClO4=2:1:
4、イオンのモル比)の真空下、77℃において測定したC
ole−Cole Plotを示す図面、図2は図1のポリマー複合
体の各温度における比抵抗値を示す図面、図3はポリマ
ー複合体(PAMPS:ポリブレン:LiClO4=2:1:4、イオンの
モル比)の各温度における比抵抗値を示す図面、図4は
活性炭素繊維、図1のポリマー複合体、リチウムにより
構成される電池の放電特性を示す図面である。
Figure 1 shows a polymer composite (PA: polybrene: LiClO 4 = 2: 1:
C, measured at 77 ° C under vacuum (4, molar ratio of ions)
2 is a drawing showing the ole-Cole plot, FIG. 2 is a drawing showing the specific resistance value of the polymer composite of FIG. 1 at each temperature, and FIG. 3 is the polymer composite (PAMPS: polybrene: LiClO 4 = 2: 1: 4, of the ion (Molar ratio) is a drawing showing the specific resistance value at each temperature, and FIG. 4 is a drawing showing the discharge characteristics of a battery composed of activated carbon fiber, the polymer composite of FIG. 1, and lithium.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 79/02 LQZ H01B 1/06 H01M 10/40 Z (56)参考文献 高分子,Vol.22,No.256,PP. 384−391(1973) 表面,Vol.14,No.9(10月号) PP.508−516(1976)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C08L 79/02 LQZ H01B 1/06 H01M 10/40 Z (56) References Polymer, Vol. 22, No. 256, PP. 384-391 (1973) surface, Vol. 14, No. 9 (October issue) PP. 508-516 (1976)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】カチオン性ポリマーの溶液もしくは液状の
カチオン性ポリマー、及びアニオン性ポリマーの溶液も
しくは液状のアニオン性ポリマーを混合し、次いで所望
により脱溶媒することにより得られるポリカチオン・ポ
リアニオン複合体を電解質として用いたことを特徴とす
る固体電解質電池。
1. A polycation / polyanion complex obtained by mixing a cationic polymer solution or liquid cationic polymer and an anionic polymer solution or liquid anionic polymer, and then optionally removing the solvent. A solid electrolyte battery characterized by being used as an electrolyte.
【請求項2】カチオン性ポリマーが第4級アンモニウム
含有ポリマーの塩、スルホニウム基含有ポリマーの塩お
よびホスホニウム基含有ポリマーの塩よりなる群から選
ばれるものであり、アニオン性ポリマーがカルボキシル
基、スルホン酸基、硫酸エステル基、リン酸基、亜リン
酸基および次亜リン酸基よりなる群から選ばれるアニオ
ン性基の1種又は2種以上を含有するものである特許請
求の範囲第1項記載の固体電解質電池。
2. The cationic polymer is selected from the group consisting of a quaternary ammonium-containing polymer salt, a sulfonium group-containing polymer salt and a phosphonium group-containing polymer salt, and the anionic polymer is a carboxyl group or a sulfonic acid. The group according to claim 1, which contains one or more anionic groups selected from the group consisting of a group, a sulfate ester group, a phosphoric acid group, a phosphorous acid group and a hypophosphorous acid group. Solid electrolyte battery.
【請求項3】カチオン性ポリマーとアニオン性ポリマー
の混合比が、得られるポリカチオン・ポリアニオン複合
体中のイオンのモル比にして、カチオン性ポリマー:ア
ニオン性ポリマー=1:0.1〜1:10のものである特許請求
の範囲第1項記載の固体電解質電池。
3. The mixing ratio of the cationic polymer and the anionic polymer is such that the molar ratio of ions in the resulting polycation / polyanion composite is such that cationic polymer: anionic polymer = 1: 0.1 to 1:10. The solid electrolyte battery according to claim 1, which is a battery.
JP58132363A 1983-07-20 1983-07-20 Solid electrolyte battery Expired - Lifetime JPH0821388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132363A JPH0821388B2 (en) 1983-07-20 1983-07-20 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132363A JPH0821388B2 (en) 1983-07-20 1983-07-20 Solid electrolyte battery

Publications (2)

Publication Number Publication Date
JPS6023974A JPS6023974A (en) 1985-02-06
JPH0821388B2 true JPH0821388B2 (en) 1996-03-04

Family

ID=15079611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132363A Expired - Lifetime JPH0821388B2 (en) 1983-07-20 1983-07-20 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPH0821388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075873A1 (en) * 2019-10-15 2021-04-22 한양대학교에리카산학협력단 Anode, method for manufacturing same by using electrolytic deposition, and device for manufacturing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353342U (en) * 1986-09-19 1988-04-09
JPS63137807A (en) * 1986-11-28 1988-06-09 Tokai Rubber Ind Ltd Molding mold
JP2668260B2 (en) * 1989-04-06 1997-10-27 富士写真フイルム株式会社 Polymer dispersion and method for producing polymer dispersion
JP4924641B2 (en) * 2009-03-27 2012-04-25 富士ゼロックス株式会社 Resin composition and resin molded body

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
表面,Vol.14,No.9(10月号)PP.508−516(1976)
高分子,Vol.22,No.256,PP.384−391(1973)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075873A1 (en) * 2019-10-15 2021-04-22 한양대학교에리카산학협력단 Anode, method for manufacturing same by using electrolytic deposition, and device for manufacturing same

Also Published As

Publication number Publication date
JPS6023974A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
Chen et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures
Tsuchida et al. Single-ion conduction in poly [(oligo (oxyethylene) methacrylate)-co-(alkali-metal methacrylates)]
Gray et al. Poly (ethylene oxide)-LiCF3SO3-polystyrene electrolyte systems
Weston et al. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes
EP0301774A2 (en) Polymer Electrolytes
KR20150097471A (en) Electropolymerization of a coating onto an electrode material
CN110429269A (en) A kind of nickelic tertiary cathode material and preparation method thereof of polymer blend cladding
JPH05262981A (en) Water-dispersible polyaniline composition and its production
Huq et al. Poly (ethylene oxide) complexes of lead halides: new polymeric conductors of Pb2+
CN107317049A (en) A kind of single ion conductive polymer electrolyte and its production and use
Croce et al. Properties of mixed polymer and crystalline ionic conductors
Croce et al. The lithium polymer electrolyte battery IV. Use of composite electrolytes
JPS61500618A (en) polymeric substance
US2731408A (en) Electrically conductive membranes and the like comprising copolymers of divinyl benzene and olefinic carboxylic compounds
Wang et al. Exploring the role of ion solvation in ethylene oxide based single-ion conducting polyanions and polycations
JPH0821388B2 (en) Solid electrolyte battery
WO1983003322A1 (en) Electrolytes formed of solid solutions of closoboranes in a plastic macromolecular material and electrochemical generators containing such electrolytes
Schauer et al. Heterogeneous ion-exchange membranes based on sulfonated poly (1, 4-phenylene sulfide)
JP2760090B2 (en) Solid electrolyte
Wustoni et al. Performance of PEDOTOH/PEO‐based Supercapacitors in Agarose Gel Electrolyte
WO1995002314A2 (en) A lithium-ion-conductive solid polymer electrolyte and method for its preparation
EP0347910B1 (en) A thin ribbonlike flexible rechargeable zinc/halide cell
CN106519282B (en) A kind of Kynoar is grafted the preparation method of poly- (α-methylstyrene) copolymer sulfonic acid proton exchange film
JP2003229021A (en) Polymer electrolyte and polymer secondary battery using it
CN113851649B (en) Positive electrode slurry, positive electrode plate and battery