JPH08213044A - Fuel cell - Google Patents

Fuel cell

Info

Publication number
JPH08213044A
JPH08213044A JP7039028A JP3902895A JPH08213044A JP H08213044 A JPH08213044 A JP H08213044A JP 7039028 A JP7039028 A JP 7039028A JP 3902895 A JP3902895 A JP 3902895A JP H08213044 A JPH08213044 A JP H08213044A
Authority
JP
Japan
Prior art keywords
fuel
gas
rectifying member
fuel cell
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7039028A
Other languages
Japanese (ja)
Inventor
Seiji Mizuno
誠司 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP7039028A priority Critical patent/JPH08213044A/en
Publication of JPH08213044A publication Critical patent/JPH08213044A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE: To uniformly supply fuel to respective unit cells by straightening the fuel flow in a distributing passage to distribute the fuel to the unit cells constituting a fuel cell. CONSTITUTION: A fuel gas supply passage and an oxidizing gas supply passage 12 to supply fuel gas and oxidizing gas to respective unit cells are formed in a fuel cell 10 by layering the unit cells. An upstream straightening member 70 composed of a porous body having a three-dimensional mesh structure is arranged in the vicinity of a through hole 62 of an end plate 60 forming an inflow port of the fuel gas supply passage and the oxidizing gas supply passage 12 by arranging a clearance with the end plate 60, and a downstream straightening member 72 is arranged by arranging a clearance with the upstream straightening member 70. The fuel gas and the oxidizing gas flow are straightened by the upstream straightening member 70 and the downstream straightening member 72, and are uniformly supplied to the respective unit cells. As a result, the respective unit cells can be made highly efficient and uniform, and can be formed as a highly efficient fuel cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池に関し、詳し
くは複数の単電池を積層してなりこの複数の単電池の各
々に燃料を分配する分配流路を備えた燃料電池または複
数の単電池を積層してなりこの複数の単電池の各々から
排出されるガスを収集して排出する排出流路を備えた燃
料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a fuel cell or a plurality of unit cells which are formed by stacking a plurality of unit cells and are provided with a distribution channel for distributing fuel to each of the plurality of unit cells. The present invention relates to a fuel cell that is formed by stacking cells and that has a discharge flow path that collects and discharges gas discharged from each of the plurality of unit cells.

【0002】[0002]

【従来の技術】燃料電池を効率よく運転するには、燃料
電池を構成する複数の単電池の各々を効率よく運転する
必要がある。このためには、各単電池の内部抵抗を小さ
くすると共に各単電池に適正な量の燃料を均等に供給す
る必要がある。燃料が均等に供給されない場合、各単電
池で均一な発電を行なうことができず、燃料電池全体と
しての効率が低下するからである。
2. Description of the Related Art In order to efficiently operate a fuel cell, it is necessary to efficiently operate each of a plurality of unit cells that form the fuel cell. To this end, it is necessary to reduce the internal resistance of each unit cell and evenly supply an appropriate amount of fuel to each unit cell. This is because if the fuel is not supplied evenly, it is not possible to generate electric power evenly in each unit cell, and the efficiency of the fuel cell as a whole decreases.

【0003】各単電池に燃料を均等に供給する燃料電池
としては、従来、単電池を積層してなる積層体の積層方
向に沿った側部に取り付けられた燃料供給マニホールド
内および酸化ガス供給マニホールド内に複数のオリフィ
スが形成された多孔板を設置するものが提案されている
(例えば、特開昭62−283569号公報や特開昭6
3−181271号公報等)。この燃料電池では、燃料
供給マニホールド内および酸化ガス供給マニホールド内
に設置された多孔板で燃料および酸化ガスを整流するこ
とにより、各単電池へ均等に燃料および酸化ガスを供給
しようとするものである。
As a fuel cell for uniformly supplying a fuel to each unit cell, conventionally, a fuel supply manifold and an oxidizing gas supply manifold are attached to a side portion along a stacking direction of a stack of stacked unit cells. It has been proposed to install a perforated plate having a plurality of orifices formed therein (for example, Japanese Patent Laid-Open No. 62-283569 and Japanese Patent Laid-Open No. 6-28369).
No. 3-181271, etc.). In this fuel cell, the perforated plates installed in the fuel supply manifold and the oxidizing gas supply manifold rectify the fuel and the oxidizing gas to uniformly supply the fuel and the oxidizing gas to each unit cell. .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、多孔板
により燃料および酸化ガスを整流する燃料電池では、十
分に整流されず、単電池に燃料や酸化ガスが均等に供給
されない場合があるという問題があった。燃料や酸化ガ
スの整流は、燃料や酸化ガスが多孔板に形成された複数
のオリフィスを均等に通過することにより行なわれる
が、マニホールドに形成された燃料や酸化ガスの流入口
が小さく、燃料や酸化ガスの流路の急拡の程度が著しい
場合には、多孔板の上流側表面に圧力は均一にならない
ため、燃料や酸化ガスが複数のオリフィスを均等に通過
することができず、十分に整流されなくなってしまう。
こうした場合に、オリフィスの径を小さくして圧力損失
を大きくすることも考えられるが、あまり圧力損失を大
きくすると燃料や酸化ガスの供給に必要なエネルギが大
きくなってしまう。
However, in the fuel cell in which the fuel and the oxidizing gas are rectified by the perforated plate, there is a problem that the fuel and the oxidizing gas may not be uniformly supplied to the unit cell due to insufficient rectification. It was Rectification of fuel or oxidizing gas is performed by allowing the fuel or oxidizing gas to uniformly pass through a plurality of orifices formed in the perforated plate, but the inlet of the fuel or oxidizing gas formed in the manifold is small and When the degree of rapid expansion of the flow path of the oxidizing gas is large, the pressure is not uniform on the upstream surface of the perforated plate, so that the fuel and the oxidizing gas cannot pass through the multiple orifices uniformly, It will not be rectified.
In such a case, it is possible to reduce the diameter of the orifice to increase the pressure loss, but if the pressure loss is increased too much, the energy required to supply the fuel and the oxidizing gas will increase.

【0005】本発明の燃料電池は、こうした問題を解決
し、燃料電池を構成する単電池へ燃料を分配する分配流
路内の燃料の流速分布を均一にし、各単電池に燃料を均
等に供給することを目的とし、次の構成を採った。
The fuel cell of the present invention solves these problems and makes the flow velocity distribution of the fuel in the distribution passage for distributing the fuel to the unit cells constituting the fuel cell uniform so that the fuel is evenly supplied to each cell. The following constitution was adopted for the purpose of doing.

【0006】[0006]

【課題を解決するための手段および作用】本発明の第1
の燃料電池は、複数の単電池を積層してなり、燃料の流
入口を有し該流入口から流入した燃料を前記複数の単電
池の各々に分配する分配流路を備えた燃料電池であっ
て、前記分配流路内に、前記流入口との間に隙間を設け
て配置され、燃料を透過する多孔質体により所定の厚み
に形成された燃料整流部材を備えたことを要旨とする。
Means and Actions for Solving the Problems First of the Invention
The fuel cell is a fuel cell that is formed by stacking a plurality of unit cells, has a fuel inlet port, and has a distribution channel that distributes the fuel flowing from the inlet port to each of the plurality of unit cells. In addition, a fuel rectifying member, which is disposed in the distribution flow path with a gap provided between the distribution flow path and the inflow port and is formed to have a predetermined thickness by a porous body that transmits fuel, is summarized.

【0007】以上のように構成された本発明の第1の燃
料電池は、燃料を透過する多孔質体により所定の厚みに
形成された燃料整流部材を、分配流路内に流入口との間
に隙間を設けて配置することにより、この燃料整流部材
が分配流路内の燃料を整流する。
In the first fuel cell of the present invention configured as described above, a fuel rectifying member formed of a porous material that allows fuel to have a predetermined thickness is provided in the distribution passage between the inlet and the inlet. The fuel rectifying member rectifies the fuel in the distribution passage by arranging with a gap therebetween.

【0008】ここで、前記第1の燃料電池において、前
記燃料整流部材の下流側に隙間を設けて配置され、燃料
を透過する多孔質体により所定の厚みに形成された第2
の燃料整流部材を備えた構成とすることもできる。この
構成とした場合、更に、前記燃料整流部材と前記第2の
燃料整流部材との隙間の前記流入口に対向する部分に配
置され、燃料を透過する多孔質体により所定の厚みに形
成された流速調整部材を備えた構成とすることもでき
る。
Here, in the first fuel cell, the second fuel cell is disposed at a downstream side of the fuel rectifying member with a gap, and is formed to have a predetermined thickness by a porous body permeable to fuel.
Alternatively, the fuel rectifying member may be provided. In the case of this configuration, it is further arranged in a portion of the gap between the fuel rectifying member and the second fuel rectifying member facing the inflow port, and is formed to have a predetermined thickness by a porous body that transmits fuel. It is also possible to adopt a configuration including a flow velocity adjusting member.

【0009】また、前記第1の燃料電池において、前記
燃料整流部材は、前記流入口に対向する部分のガスの透
過性を他の部分より低く形成してなる構成とすることも
できる。あるいは、前記第1の燃料電池において、前記
燃料整流部材は、前記流入口に対向する部分を他の部分
より燃料の流れ方向に厚く形成してなる構成とすること
もできる。
Further, in the first fuel cell, the fuel rectifying member may be formed such that a portion of the fuel rectifying member facing the inlet has a lower gas permeability than other portions. Alternatively, in the first fuel cell, the fuel rectifying member may be configured such that a portion facing the inflow port is thicker than other portions in the fuel flow direction.

【0010】本発明の第2の燃料電池は、複数の単電池
を積層してなり、ガスの排出口を有し前記複数の単電池
の各々から排出されるガスを収集して該排出口から排出
する排出流路を備えた燃料電池であって、前記排出流路
内に前記排出口との間に隙間を設けて配置され、ガスを
透過する多孔質体により所定の厚みに形成されたガス整
流部材を備えたことを要旨とする。
A second fuel cell of the present invention is formed by stacking a plurality of unit cells, has a gas discharge port, collects gas discharged from each of the plurality of unit cells, and collects the gas from the discharge port. A fuel cell having a discharge channel for discharging a gas, which is arranged in the discharge channel with a gap between the discharge port and the gas and is formed to have a predetermined thickness by a gas-permeable porous body. The gist of the invention is to have a rectifying member.

【0011】このように構成された本発明の第2の燃料
電池は、ガスを透過する多孔質体により所定の厚みに形
成されたガス整流部材を、排出流路内に排出口との間に
隙間を設けて配置することにより、このガス整流部材が
排出流路内のガスを整流する。
In the second fuel cell of the present invention having the above-mentioned structure, the gas rectifying member, which is formed of the gas-permeable porous body and has a predetermined thickness, is provided in the discharge passage between the discharge port. By arranging with a gap, the gas rectifying member rectifies the gas in the discharge passage.

【0012】ここで、前記第2の燃料電池において、前
記ガス整流部材の上流側に隙間を設けて配置され、ガス
を透過する多孔質体により所定の厚みに形成された第2
のガス整流部材を備えた構成とすることもできる。
Here, in the second fuel cell, the second fuel cell is arranged upstream of the gas rectifying member with a gap, and is formed to have a predetermined thickness by a porous body that allows gas to pass therethrough.
Alternatively, the gas rectifying member may be provided.

【0013】本発明の第3の燃料電池は、複数の単電池
を積層してなり、燃料の流入口を有し該流入口から流入
した燃料を前記複数の単電池の各々に分配する分配流路
と、ガスの排出口を有し前記複数の単電池の各々から排
出されるガスを収集して該排出口から排出する排出流路
とを備えた燃料電池であって、請求項1ないし5いずれ
か記載の燃料整流部材と、請求項6または7記載のガス
整流部材とを備えたことを要旨とする。
A third fuel cell of the present invention comprises a stack of a plurality of unit cells, has a fuel inlet, and distributes the fuel flowing from the inlet to each of the plurality of unit cells. A fuel cell comprising: a passage; and an exhaust flow path having a gas exhaust port and collecting gas exhausted from each of the plurality of unit cells and exhausting the gas from the exhaust port. The gist of the present invention is to provide the fuel rectifying member according to any one of claims 1 and 2, and the gas rectifying member according to claim 6 or 7.

【0014】こうして構成された本発明の第3の燃料電
池は、燃料整流部材が分配流路内の燃料を整流し、ガス
整流部材が排出流路内のガスを整流する。
In the thus constructed third fuel cell of the present invention, the fuel rectifying member rectifies the fuel in the distribution passage and the gas rectifying member rectifies the gas in the discharge passage.

【0015】[0015]

【実施例】以上説明した本発明の構成・作用を一層明ら
かにするために、以下本発明の好適な実施例について説
明する。図1は本発明の好適な一実施例である燃料電池
10の概観を例示する斜視図、図2は燃料電池10を構
成する単電池の構成の概略を示す分解斜視図である。ま
た、図3は図1の燃料電池10の3−3平面における断
面図、図4は図3の燃料電池10の4−4線断面図、図
5は図3の燃料電池の5ー5線断面図である。
Preferred embodiments of the present invention will be described below in order to further clarify the structure and operation of the present invention described above. FIG. 1 is a perspective view illustrating an overview of a fuel cell 10 that is a preferred embodiment of the present invention, and FIG. 2 is an exploded perspective view illustrating the outline of the configuration of a single cell that constitutes the fuel cell 10. 3 is a cross-sectional view of the fuel cell 10 of FIG. 1 taken along plane 3-3, FIG. 4 is a cross-sectional view of the fuel cell 10 of FIG. 3 taken along line 4-4, and FIG. 5 is a line 5-5 of the fuel cell of FIG. FIG.

【0016】燃料電池10は、図1および図2に示すよ
うに、電解質膜16と2つのガス拡散電極18とからな
るサンドイッチ構造と、隣接する単電池の隔壁をなす集
電極20と、をシール部材19と共に交互に複数積層
し、その両端に、集電極30と、燃料電池10の出力端
子を備えるターミナル部材40と、絶縁部材50とを取
り付け、後述する酸化ガス供給流路12内および燃料ガ
ス供給流路14内の流入口付近に整流部材75(図3な
いし図5)を接着固定し、更に両積層端にエンドプレー
ト60とを取り付けて構成されている。
As shown in FIGS. 1 and 2, the fuel cell 10 seals a sandwich structure composed of an electrolyte membrane 16 and two gas diffusion electrodes 18, and a collecting electrode 20 forming a partition wall of an adjacent unit cell. A plurality of members 19 are alternately laminated, and a collector electrode 30, a terminal member 40 having an output terminal of the fuel cell 10, and an insulating member 50 are attached to both ends of the member 19, and the inside of the oxidizing gas supply passage 12 and the fuel gas to be described later are attached. A straightening member 75 (FIGS. 3 to 5) is adhered and fixed near the inflow port in the supply flow path 14, and further end plates 60 are attached to both laminated ends.

【0017】電解質膜16は、高分子材料、例えば、フ
ッ素系樹脂により形成された厚さ100μmないし20
0μmのイオン交換膜であり、湿潤状態で良好な電気伝
導性を示す。2つのガス拡散電極18は、表面をポリ四
フッ化エチレンでコーティングした炭素繊維と何等処理
されていない炭素繊維とを1対1の割合とした糸で織成
したカーボンクロスにより形成されている。ガス拡散電
極18は、ポリ四フッ化エチレンが撥水性を呈するか
ら、その表面が水で覆われてガスの透過を阻害すること
はない。このカーボンクロスの電解質膜16側の表面お
よび隙間には、触媒として白金または白金と他の金属か
らなる合金等を担持したカーボン粉が練り込まれてい
る。この電解質膜16と2つのガス拡散電極18は、2
つのガス拡散電極18が電解質膜16を挟んでサンドイ
ッチ構造とした状態で、100℃ないし160℃好まし
くは110℃ないし130℃の温度で、1MPa{1
0.2kgf/cm2}ないし20MPa{204kgf/cm2
好ましくは5MPa{51kgf/cm2}ないし10MPa
{102kgf/cm2}の圧力を作用させて接合するホット
プレス法により接合されている。
The electrolyte membrane 16 is made of a polymer material, for example, a fluorine resin and has a thickness of 100 μm to 20 μm.
It is a 0 μm ion-exchange membrane and exhibits good electric conductivity in a wet state. The two gas diffusion electrodes 18 are formed of a carbon cloth woven with a yarn having a surface ratio of carbon fibers coated with polytetrafluoroethylene and carbon fibers not subjected to any treatment in a ratio of 1: 1. Since the polytetrafluoroethylene exhibits water repellency in the gas diffusion electrode 18, its surface is not covered with water and does not hinder gas permeation. Carbon powder carrying platinum or an alloy of platinum and another metal as a catalyst is kneaded into the surface of the carbon cloth on the side of the electrolyte membrane 16 and the gap. The electrolyte membrane 16 and the two gas diffusion electrodes 18 are
With one gas diffusion electrode 18 sandwiching the electrolyte membrane 16 in a sandwich structure, at a temperature of 100 ° C. to 160 ° C., preferably 110 ° C. to 130 ° C., 1 MPa {1
0.2 kgf / cm 2 } to 20 MPa {204 kgf / cm 2 }
Preferably 5 MPa {51 kgf / cm 2 } to 10 MPa
They are joined by a hot pressing method in which a pressure of {102 kgf / cm 2 } is applied.

【0018】集電極20は、カーボンを圧縮して緻密化
しガス不透過とした緻密質カーボンにより形成されてい
る。集電極20は、正方形の薄板状に形成されており、
各辺の縁付近には、辺に平行で細長い二対の貫通孔2
2,23および24,25(実施例の貫通孔22〜25
の断面は高さ10mmで長さ120mm)が形成されて
いる。この二対の貫通孔22,23および24,25
は、積層体が形成された際、積層体を積層方向に貫通す
る酸化ガス(空気等の酸素を含有するガス)の給排流路
である酸化ガス供給流路12,酸化ガス排出流路13お
よび燃料ガス(メタノール改質ガス等の水素を含有する
ガス)の給排流路である燃料ガス供給流路14,燃料ガ
ス排出流路15を形成する。集電極20のガス拡散電極
18と接触する面(図2の表示面)の一対の貫通孔22
と23との間には、一対の貫通孔24,25の長手方向
と平行に配置された複数のリブ26が形成されている。
このリブ26は、ガス拡散電極18とで酸化ガスの通路
28を形成する。また、集電極20のガス拡散電極18
と接触する面(図2の裏面)の一対の貫通孔24と25
との間には、一対の貫通孔22,23の長手方向と平行
(リブ26と直交する方向)に配置された複数のリブ2
7が形成されている。このリブ27もリブ26と同様
に、ガス拡散電極18とで燃料ガスの通路29を形成す
る。
The collector electrode 20 is made of dense carbon which is made compact by compressing carbon and made gas impermeable. The collecting electrode 20 is formed in a square thin plate shape,
Near the edge of each side, two pairs of elongated through holes 2 parallel to the side are provided.
2, 23 and 24, 25 (through holes 22 to 25 of the embodiment)
Has a height of 10 mm and a length of 120 mm). These two pairs of through holes 22, 23 and 24, 25
Is an oxidizing gas supply passage 12 and an oxidizing gas discharge passage 13 which are supply / exhaust passages of an oxidizing gas (gas containing oxygen such as air) that penetrates the laminated body in the stacking direction when the laminated body is formed. Further, a fuel gas supply passage 14 and a fuel gas discharge passage 15 which are supply and discharge passages of the fuel gas (gas containing hydrogen such as methanol reforming gas) are formed. A pair of through holes 22 on the surface of the collector electrode 20 that contacts the gas diffusion electrode 18 (display surface in FIG. 2).
And 23, a plurality of ribs 26 arranged parallel to the longitudinal direction of the pair of through holes 24, 25 are formed.
The rib 26 forms a passage 28 for the oxidizing gas together with the gas diffusion electrode 18. In addition, the gas diffusion electrode 18 of the collecting electrode 20
A pair of through holes 24 and 25 on the surface (the back surface in FIG. 2) that comes into contact with
And a plurality of ribs 2 arranged parallel to the longitudinal direction of the pair of through holes 22 and 23 (direction orthogonal to the rib 26).
7 are formed. Like the rib 26, the rib 27 also forms a fuel gas passage 29 with the gas diffusion electrode 18.

【0019】集電極30は、集電極20と同一の材料で
ある緻密質カーボンにより、集電極20の一方の積層面
を平坦な形状にしたものとして形成されている。すなわ
ち、集電極30は、図示しないが、その各辺の縁付近に
は集電極20に形成された二対の貫通孔22,23およ
び24,25と同一形状の二対の貫通孔(4つの細長い
孔)が形成されている。この二対の貫通孔は、集電極2
0の二対の貫通孔22,23および24,25と同様
に、積層体が形成された際、積層体を積層方向に貫通す
る酸化ガスの給排流路である酸化ガス供給流路12,酸
化ガス排出流路13および燃料ガスの給排流路である燃
料ガス供給流路14,燃料ガス排出流路15を形成す
る。また、集電極30のガス拡散電極18と接触する積
層面には集電極20の積層面に形成されたリブ26また
はリブ27と同一形状のリブが形成されており、ターミ
ナル部材40と接触する積層面にはリブ等は形成されず
平坦な形状に形成されている。ガス拡散電極18と接触
する積層面に形成されたリブは、ガス拡散電極18とで
酸化ガスまたは燃料ガスの通路を形成する。
The collector electrode 30 is formed of dense carbon, which is the same material as the collector electrode 20, and has one flat laminated surface of the collector electrode 20. That is, although not shown, the collector electrode 30 has two pairs of through holes (four pairs of through holes, which have the same shape as the two pairs of through holes 22, 23 and 24, 25 formed in the collector electrode 20 near the edges of the respective sides. Elongated holes) are formed. These two pairs of through holes are used for the collector electrode 2
Like the two pairs of through holes 22, 23 and 24, 25 of 0, when the laminated body is formed, the oxidizing gas supply passage 12, which is the supply and discharge passage of the oxidizing gas that penetrates the laminated body in the stacking direction, An oxidant gas discharge flow path 13, a fuel gas supply flow path 14, which is a fuel gas supply / discharge flow path, and a fuel gas discharge flow path 15 are formed. Further, a rib having the same shape as the rib 26 or the rib 27 formed on the stacking surface of the collector electrode 20 is formed on the stacking surface of the collector electrode 30 that contacts the gas diffusion electrode 18, and the stack that contacts the terminal member 40. No ribs or the like are formed on the surface, and the surface is formed in a flat shape. The rib formed on the laminated surface in contact with the gas diffusion electrode 18 forms a passage for the oxidizing gas or the fuel gas together with the gas diffusion electrode 18.

【0020】ターミナル部材40は、集電極20と同一
の材料である緻密質カーボンにより、集電極20の両方
の積層面を平坦に形成し出力端子48を取り付けた形状
に形成されている。すなわち、ターミナル部材40は、
図示しないが、その各辺の縁付近には集電極20に形成
された二対の貫通孔22,23および24,25と同一
形状の二対の貫通孔(4つの細長い孔)が形成されてお
り、その積層面は平坦な形状に形成されている。二対の
貫通孔は、集電極20の二対の貫通孔22,23および
24,25と同様に、積層体が形成された際、積層体を
積層方向に貫通する酸化ガスの給排流路である酸化ガス
供給流路12,酸化ガス排出流路13および燃料ガスの
給排流路である燃料ガス供給流路14,燃料ガス排出流
路15を形成する。また、ターミナル部材40の一辺の
外縁部には、正方形の出力端子48がその外縁部から突
出するように形成されている(図1参照)。
The terminal member 40 is formed in a shape in which both the stacking surfaces of the collecting electrode 20 are formed flat and the output terminal 48 is attached by using dense carbon which is the same material as the collecting electrode 20. That is, the terminal member 40 is
Although not shown, two pairs of through holes (four elongated holes) having the same shape as the two pairs of through holes 22, 23 and 24, 25 formed in the collector electrode 20 are formed near the edges of each side. The laminated surface is formed in a flat shape. Similar to the two pairs of through holes 22, 23 and 24, 25 of the collecting electrode 20, the two pairs of through holes are the supply and discharge passages of the oxidizing gas which penetrate the laminate in the stacking direction when the stack is formed. The oxidizing gas supply flow path 12, the oxidizing gas discharge flow path 13, and the fuel gas supply and discharge flow paths 14 and the fuel gas discharge flow path 15 are formed. A square output terminal 48 is formed on the outer edge of one side of the terminal member 40 so as to project from the outer edge (see FIG. 1).

【0021】絶縁部材50は、絶縁性材料、例えば、樹
脂等により、集電極20の両方の積層面を平坦な形状に
したものとして形成されている。すなわち、絶縁部材5
0は、図示しないが、その各辺の縁付近には集電極20
に形成された二対の貫通孔22,23および24,25
と同一形状の二対の貫通孔(4つの細長い孔)が形成さ
れており、その積層面は平坦な形状に形成されている。
二対の貫通孔は、集電極20の二対の貫通孔22,23
および24,25と同様に、積層体が形成された際、積
層体を積層方向に貫通する酸化ガスの給排流路である酸
化ガス供給流路12,酸化ガス排出流路13および燃料
ガスの給排流路である燃料ガス供給流路14,燃料ガス
排出流路15を形成する。
The insulating member 50 is formed of an insulating material, such as resin, in which both laminated surfaces of the collector electrode 20 are flat. That is, the insulating member 5
0 is not shown, but the collector electrode 20 is provided near the edge of each side.
Pairs of through holes 22, 23 and 24, 25 formed in the
Two pairs of through-holes (four elongated holes) having the same shape as the above are formed, and the laminated surface is formed into a flat shape.
The two pairs of through holes are the two pairs of through holes 22 and 23 of the collector electrode 20.
Similarly to 24 and 25, when the laminated body is formed, the oxidizing gas supply passage 12, the oxidizing gas exhaust passage 13 and the fuel gas which are the supply and exhaust passages of the oxidizing gas that penetrates the laminated body in the stacking direction. A fuel gas supply passage 14 and a fuel gas discharge passage 15 which are supply / discharge passages are formed.

【0022】エンドプレート60は、剛性材料、例え
ば、鋼等により正方形の薄板状に形成されている。図1
に示すように、エンドプレート60の隣接する2つの辺
には、その中央より若干離れた位置にエンドプレート6
0を貫通する貫通孔63,64が形成されている。この
貫通孔63,64は、それぞれ酸化ガス排出流路13,
燃料ガス供給流路14と整合している。なお、図1の燃
料電池10の右端に取り付けられたエンドプレート60
は、2つの貫通孔が図中上と右となるよう取り付けられ
ており、2つの貫通孔は、それぞれ酸化ガス供給流路1
2,燃料ガス排出流路15と整合している。それで、図
1の燃料電池10の右端に取り付けられたエンドプレー
ト60の2つの貫通孔のうち、酸化ガス供給流路12と
整合する貫通孔を貫通孔62と呼び(図3および図4参
照)、燃料ガス排出流路15と整合する貫通孔を貫通孔
65と呼ぶ。
The end plate 60 is formed of a rigid material such as steel into a square thin plate shape. FIG.
As shown in FIG. 2, the end plate 6 is provided on two adjacent sides of the end plate 60 at a position slightly apart from the center thereof.
Through holes 63 and 64 penetrating 0 are formed. The through holes 63 and 64 are respectively provided in the oxidizing gas discharge flow path 13,
It is aligned with the fuel gas supply channel 14. The end plate 60 attached to the right end of the fuel cell 10 in FIG.
Are attached so that the two through holes are on the upper side and the right side in the figure.
2. It is aligned with the fuel gas discharge passage 15. Therefore, of the two through holes of the end plate 60 attached to the right end of the fuel cell 10 of FIG. 1, the through hole that matches the oxidizing gas supply channel 12 is called a through hole 62 (see FIGS. 3 and 4). A through hole that is aligned with the fuel gas discharge flow path 15 is called a through hole 65.

【0023】図6は、整流部材75の概略を示す斜視図
である。図示するように、整流部材75は、3次元網目
構造の多孔質体、例えば、住友電工製の発砲金属で商品
名「セルメットNi」の品番#1〜品番#6等により形
成された上流側整流部材70,下流側整流部材72,連
絡部材74で構成される。なお、実施例の整流部材75
を形成した商品名「セルメットNi」は、材質がニッケ
ル,多孔率96%,厚さ10mm,網目の細かさにより
粗い方から品番#1〜品番#6として販売されている。
この品番#1ないし品番#6の多孔質体を透過するガス
(例えば空気)の流速とガスの圧力損失との関係を示す
グラフを図7に示す。また、品番#1〜品番#6の性状
を次表1に示す。
FIG. 6 is a perspective view showing the outline of the flow regulating member 75. As shown in the figure, the rectifying member 75 is a porous body having a three-dimensional mesh structure, for example, an upstream rectifying member made of foamed metal manufactured by Sumitomo Electric Industries under the product name “Celmet Ni” with product numbers # 1 to # 6. It is composed of a member 70, a downstream side rectifying member 72, and a connecting member 74. In addition, the flow regulating member 75 of the embodiment
The product name “Celmet Ni” formed with is made of nickel, has a porosity of 96%, a thickness of 10 mm, and is coarse due to the fineness of the mesh, and is sold as product numbers # 1 to # 6.
FIG. 7 is a graph showing the relationship between the flow velocity of gas (for example, air) that permeates the porous bodies of product numbers # 1 to # 6 and the pressure loss of the gas. The properties of product numbers # 1 to # 6 are shown in Table 1 below.

【0024】[0024]

【表1】 [Table 1]

【0025】上流側整流部材70と下流側整流部材72
は、酸化ガス供給流路12および燃料ガス供給流路14
の流向に直交する断面の形状と同一の形状で、所定の厚
み(例えば10mm)に形成されている。連絡部材74
は、上流側整流部材70と同一の厚みで、エンドプレー
ト60に形成された貫通孔62または貫通孔64の直径
より若干長い辺を有する矩形形状に形成されている。整
流部材75は、上流側整流部材70を酸化ガス供給流路
12または燃料ガス供給流路14に設置したときに上流
側整流部材70のエンドプレート60の貫通孔62また
は貫通孔64に対向する位置の裏側に連絡部材74が配
置され、上流側整流部材70と下流側整流部材72とで
連絡部材74を挟持した状態となるよう、上流側整流部
材70の外縁部および下流側整流部材72の外縁部を酸
化ガス供給流路12および燃料ガス供給流路14の形成
面に接着剤で固定される。
The upstream rectifying member 70 and the downstream rectifying member 72
Is the oxidizing gas supply passage 12 and the fuel gas supply passage 14
The shape is the same as the shape of the cross section orthogonal to the flow direction, and is formed with a predetermined thickness (for example, 10 mm). Contact member 74
Is formed in a rectangular shape having the same thickness as the upstream side rectifying member 70 and having a side slightly longer than the diameter of the through hole 62 or the through hole 64 formed in the end plate 60. The rectifying member 75 is located at a position facing the through hole 62 or the through hole 64 of the end plate 60 of the upstream rectifying member 70 when the upstream rectifying member 70 is installed in the oxidizing gas supply passage 12 or the fuel gas supply passage 14. The connecting member 74 is arranged on the back side of the upstream side rectifying member 70 and the downstream side rectifying member 72 so that the connecting member 74 is sandwiched between the upstream side rectifying member 70 and the downstream side rectifying member 72. The portion is fixed to the surface where the oxidizing gas supply passage 12 and the fuel gas supply passage 14 are formed with an adhesive.

【0026】こうした整流部材75を酸化ガス供給流路
12および燃料ガス供給流路14にエンドプレート60
と隙間を設けて設置することにより、図3ないし図5に
示すように、上流側整流部材70とエンドプレート60
との間に調圧室76が形成され、上流側整流部材70と
下流側整流部材72との間に連絡部材74を挟んで調圧
室77と調圧室78とが形成される。
The rectifying member 75 is attached to the oxidizing gas supply passage 12 and the fuel gas supply passage 14 to form the end plate 60.
And the end plate 60 as shown in FIG. 3 to FIG.
A pressure regulating chamber 76 is formed between the pressure regulating chamber 77 and the pressure regulating chamber 77, and a pressure regulating chamber 77 and a pressure regulating chamber 78 are formed between the upstream side rectifying member 70 and the downstream side rectifying member 72 with the connecting member 74 interposed therebetween.

【0027】なお、整流部材75を形成する多孔質体と
して如何なる性状のものを用いるかは、整流部材75の
形状,酸化ガスまたは燃料ガスの性状,酸化ガス供給流
路12および燃料ガス供給流路14の形状,酸化ガス供
給流路12および燃料ガス供給流路14の酸化ガスまた
は燃料ガスの流入口の形状等により決定されるものであ
る。実験では、整流部材を図6に示した形状とし、酸化
ガスとして空気を用い、燃料ガスとしてメタノール改質
ガスを用い、酸化ガス供給流路12および燃料ガス供給
流路14の形状を高さ10mm,幅120mm,長さ6
00mmとすると、圧力損失P[mmAq]/流速[m
/sec]が値5以上となる多孔質体が良好な整流作用
を示した(図7参照)。
The nature of the porous body forming the flow regulating member 75 depends on the shape of the flow regulating member 75, the nature of the oxidizing gas or the fuel gas, the oxidizing gas supply passage 12 and the fuel gas supply passage. 14 and the shape of the inflow port of the oxidizing gas or the fuel gas of the oxidizing gas supply passage 12 and the fuel gas supply passage 14 and the like. In the experiment, the rectifying member has the shape shown in FIG. 6, air is used as the oxidizing gas, methanol reformed gas is used as the fuel gas, and the shapes of the oxidizing gas supply passage 12 and the fuel gas supply passage 14 are 10 mm in height. , Width 120mm, length 6
If it is 00 mm, pressure loss P [mmAq] / flow velocity [m
/ Sec] of 5 or more showed a good rectifying effect (see FIG. 7).

【0028】こうして構成された電解質膜16とガス拡
散電極18と集電極20とをシール部材19と共に積層
し、その両積層端に、集電極30とターミナル部材40
と絶縁部材50とを取り付け、酸化ガス供給流路12内
および燃料ガス供給流路14内の酸化ガスまたは燃料ガ
スの流入口となる付近に整流部材75を設置し、更に両
積層端にエンドプレート60を取り付けて燃料電池10
を完成する。電解質膜16とガス拡散電極18と集電極
20とをシール部材19と共に積層する際、図2ないし
図5に示すように、電解質膜16および2つのガス拡散
電極18を挟んで対峙する集電極20のリブ26,27
が直交するように規則正しく配置する。また、整流部材
75は、エンドプレート60を取り付けた際、上流側整
流部材70とエンドプレート60とに調圧室76が形成
されるように隙間を設け、かつ、エンドプレート60に
形成された貫通孔62または貫通孔64に対向する位置
に連絡部材74が配置されるよう接着固定する。
The electrolyte membrane 16, the gas diffusion electrode 18, and the collector electrode 20 thus constructed are laminated together with the seal member 19, and the collector electrode 30 and the terminal member 40 are provided at both laminated ends.
And the insulating member 50 are attached, a rectifying member 75 is installed in the oxidizing gas supply passage 12 and the fuel gas supply passage 14 in the vicinity of the oxidizing gas or fuel gas inflow port, and further end plates are provided at both laminated ends. Fuel cell 10 with 60 attached
To complete. When stacking the electrolyte membrane 16, the gas diffusion electrode 18, and the collector electrode 20 together with the seal member 19, as shown in FIGS. 2 to 5, the electrolyte membrane 16 and the two collector electrodes 20 facing each other with the two gas diffusion electrodes 18 sandwiched therebetween. Ribs 26 and 27
Arrange regularly so that they are orthogonal to each other. Further, the rectifying member 75 is provided with a gap so that the pressure regulating chamber 76 is formed between the upstream rectifying member 70 and the end plate 60 when the end plate 60 is attached, and the rectifying member 75 penetrates through the end plate 60. The connecting member 74 is bonded and fixed so as to be arranged at a position facing the hole 62 or the through hole 64.

【0029】こうして構成された燃料電池10のエンド
プレート60の貫通孔62に図示しない酸化ガス供給装
置(例えば、空気を圧送するコンプレッサやブロア等)
を接続すると共に、貫通孔64に図示しない燃料供給装
置(例えば、メタノールと水とから水素リッチガスを生
成する改質器や水素ガスの貯蔵槽等)に接続し、酸化ガ
スおよび燃料ガスを供給すれば、酸化ガス供給流路12
および燃料ガス供給流路14を介して酸化ガスの通路2
8および燃料ガスの通路29に酸化ガスおよび燃料ガス
が流れ、電解質膜16を挟んで対峙する2つのガス拡散
電極18に燃料ガスおよび酸化ガスが供給されて、次式
(1)および(2)に示す電気化学反応が行なわれ、化
学エネルギが直接電気エネルギに変換される。なお、エ
ンドプレート60の貫通孔63および貫通孔65には、
それぞれ図示しない排ガス処理装置が接続される。燃料
ガス側の排ガス処理装置としては、例えば燃料ガス供給
装置が改質器のときには改質器が該当する。この場合、
貫通孔65から排出される燃料ガス側の排ガスは、改質
器が改質反応に必要とするエネルギ(熱)を得るために
通常備えるバーナに送られ、未反応の水素が燃料として
燃焼処理される。酸化ガス側の排ガス処理装置は、例え
ば酸化ガスが空気のときは不要であり、この場合、貫通
孔63には排ガスを外気に解放するためのパイプが接続
される。
An oxidizing gas supply device (not shown) (for example, a compressor or a blower for sending air under pressure) is provided in the through hole 62 of the end plate 60 of the fuel cell 10 thus constructed.
And a fuel supply device (not shown) (for example, a reformer for generating hydrogen-rich gas from methanol and water, a storage tank for hydrogen gas, etc.) in the through hole 64 to supply the oxidizing gas and the fuel gas. For example, the oxidizing gas supply channel 12
And the passage 2 for the oxidizing gas through the fuel gas supply passage 14
8 and the fuel gas passage 29, the oxidizing gas and the fuel gas flow, the fuel gas and the oxidizing gas are supplied to the two gas diffusion electrodes 18 facing each other with the electrolyte membrane 16 in between, and the following equations (1) and (2) The electrochemical reaction shown in is performed, and the chemical energy is directly converted into electrical energy. In addition, in the through hole 63 and the through hole 65 of the end plate 60,
An exhaust gas treatment device (not shown) is connected to each. The exhaust gas treatment device on the fuel gas side is, for example, a reformer when the fuel gas supply device is a reformer. in this case,
The exhaust gas on the fuel gas side discharged from the through holes 65 is sent to a burner that is usually provided in order to obtain the energy (heat) required by the reformer for the reforming reaction, and unreacted hydrogen is burned as fuel. It The exhaust gas treatment device on the oxidizing gas side is not necessary, for example, when the oxidizing gas is air, and in this case, a pipe for releasing the exhaust gas to the outside air is connected to the through hole 63.

【0030】 カソード反応(酸素極):2H++2e-+(1/2)O2→H2O …(1) アノード反応(燃料極):H2→2H++2e- …(2)Cathode reaction (oxygen electrode): 2H + + 2e + (1/2) O 2 → H 2 O (1) Anode reaction (fuel electrode): H 2 → 2H + + 2e (2)

【0031】次に、燃料電池10のエンドプレート60
の貫通孔62および貫通孔64に酸化ガス供給装置およ
び燃料ガス供給装置が接続され酸化ガスおよび燃料ガス
が供給されたときの酸化ガス供給流路12内および燃料
ガス供給流路14内のガスの流れについて説明する。酸
化ガス供給流路12内の酸化ガスの流れと燃料ガス供給
流路14内の燃料ガスの流れは同一なので、酸化ガス供
給流路12内の酸化ガスの流れについて説明する。図8
は、燃料電池10における酸化ガスの流路の模式図であ
る。図示するように、酸化ガスは、エンドプレート60
の貫通孔62から流入して整流部材75を透過し、酸化
ガス供給流路12から各単電池のガス拡散電極18に酸
化ガスの通路28を介して供給される。各単電池から排
出される排ガスは、酸化ガス排出流路13に収集されて
貫通孔63から排出される。
Next, the end plate 60 of the fuel cell 10
Of the gas in the oxidizing gas supply passage 12 and the fuel gas supplying passage 14 when the oxidizing gas supply device and the fuel gas supply device are connected to the through holes 62 and 64 of the The flow will be described. Since the flow of the oxidizing gas in the oxidizing gas supply passage 12 and the flow of the fuel gas in the fuel gas supplying passage 14 are the same, the flow of the oxidizing gas in the oxidizing gas supply passage 12 will be described. FIG.
FIG. 3 is a schematic diagram of an oxidizing gas flow path in the fuel cell 10. As shown, the oxidizing gas is transferred to the end plate 60.
Through the rectifying member 75, and is supplied from the oxidizing gas supply flow path 12 to the gas diffusion electrode 18 of each unit cell through the oxidizing gas passage 28. The exhaust gas discharged from each unit cell is collected in the oxidizing gas discharge flow path 13 and discharged from the through hole 63.

【0032】酸化ガスが整流部材75を透過する様子を
もう少し詳しく説明する。貫通孔62から流入した酸化
ガスは、調圧室76に拡散し、整流部材75の上流側整
流部材70を透過する。このとき、貫通孔62から調圧
室76へと続く酸化ガスの流路は、急拡の程度が著しい
流路となるので、調圧室76内に完全に酸化ガスが拡散
できず、上流側整流部材70のエンドプレート60側の
表面での酸化ガスの圧力は、貫通孔62に対向する部分
で最も高く、この部分から離れるに従って低くなる。こ
のため、酸化ガスの上流側整流部材70の透過速度は、
上流側整流部材70の上流側表面と下流側表面との間の
圧力勾配によるから、貫通孔62に対向する部分が最も
速く、この部分から離れるに従って遅くなる。
The manner in which the oxidizing gas passes through the rectifying member 75 will be described in more detail. The oxidizing gas flowing in from the through hole 62 diffuses into the pressure regulating chamber 76 and permeates the upstream side flow regulating member 70 of the flow regulating member 75. At this time, the flow path of the oxidizing gas continuing from the through hole 62 to the pressure adjusting chamber 76 is a flow path having a remarkable degree of rapid expansion, so that the oxidizing gas cannot be completely diffused in the pressure adjusting chamber 76, and the upstream side The pressure of the oxidizing gas on the surface of the rectifying member 70 on the end plate 60 side is highest at the portion facing the through hole 62 and becomes lower as the distance from this portion increases. Therefore, the permeation rate of the oxidizing gas through the upstream side rectifying member 70 is
Because of the pressure gradient between the upstream side surface and the downstream side surface of the upstream side rectifying member 70, the portion facing the through hole 62 is the fastest and becomes slower as the distance from this portion increases.

【0033】上流側整流部材70の貫通孔62に対向す
る部分を透過した酸化ガスは、連絡部材74および下流
側整流部材72を透過するが、連絡部材74を透過する
際、酸化ガスの一部は、調圧室77および調圧室78に
も流れ込む。上流側整流部材70の貫通孔62に対向す
る部分以外の部分を透過して調圧室77および調圧室7
8に流れ込んだ酸化ガスと連絡部材74から調圧室77
および調圧室78に流れ込んだ酸化ガスとは、調圧室7
7内および調圧室78内での圧力が均一化するよう分散
する。こうして下流側整流部材72の上流側での圧力が
均一化されるから、下流側整流部材72の上流側表面と
下流側表面との間の圧力勾配はその位置によらずほぼ一
定となり、下流側整流部材72を透過する酸化ガスの透
過速度もその位置によらずほぼ一定となる。したがっ
て、下流側整流部材72の下流側、すなわち、酸化ガス
供給流路12内での酸化ガスの流れに直交する断面での
流速はほぼ一定となる。
The oxidizing gas that has passed through the portion of the upstream side rectifying member 70 facing the through hole 62 passes through the connecting member 74 and the downstream side rectifying member 72. When passing through the connecting member 74, a part of the oxidizing gas is transmitted. Also flows into the pressure adjusting chamber 77 and the pressure adjusting chamber 78. The pressure adjusting chamber 77 and the pressure adjusting chamber 7 are transmitted through a portion other than the portion of the upstream side rectifying member 70 facing the through hole 62.
From the oxidizing gas flowing into 8 and the connecting member 74 to the pressure adjusting chamber 77
And the oxidizing gas flowing into the pressure adjusting chamber 78 is the same as the pressure adjusting chamber 7
The pressures in 7 and the pressure adjusting chamber 78 are dispersed so as to be uniform. In this way, the pressure on the upstream side of the downstream side rectifying member 72 is made uniform, so that the pressure gradient between the upstream side surface and the downstream side surface of the downstream side rectifying member 72 becomes substantially constant regardless of the position, and the downstream side The permeation rate of the oxidizing gas that permeates the flow regulating member 72 is also substantially constant regardless of its position. Therefore, the flow velocity on the downstream side of the downstream rectifying member 72, that is, on the cross section orthogonal to the flow of the oxidizing gas in the oxidizing gas supply flow path 12, is substantially constant.

【0034】次にこうして構成された燃料電池10の性
能について整流部材75を備えない燃料電池10Bと比
して説明する。図9は、燃料電池10と燃料電池10B
とにおける電流密度と電圧との関係の一例を示すグラフ
である。グラフ中、曲線Aは燃料電池10における電流
密度と電圧との関係を示し、曲線Bは燃料電池10Bに
おける電流密度と電圧との関係を示す。なお、燃料電池
10Bは、整流部材75を備えないことを除き燃料電池
10と同一の構成をしている。したがって、燃料電池1
0Bの構成のうち燃料電池10と同一の構成については
同一の符号を付し、その説明は省略する。グラフから明
らかなように、燃料電池10は、燃料電池10Bに比較
して全電流密度領域で性能の向上が認められ、特に高電
流密度領域で著しい性能の向上が認められた。
Next, the performance of the fuel cell 10 thus constructed will be described in comparison with the fuel cell 10B which does not include the rectifying member 75. FIG. 9 shows a fuel cell 10 and a fuel cell 10B.
5 is a graph showing an example of the relationship between the current density and voltage in and. In the graph, the curve A shows the relationship between the current density and the voltage in the fuel cell 10, and the curve B shows the relationship between the current density and the voltage in the fuel cell 10B. The fuel cell 10B has the same configuration as the fuel cell 10 except that the rectifying member 75 is not provided. Therefore, the fuel cell 1
Of the configurations of 0B, the same components as those of the fuel cell 10 are designated by the same reference numerals, and the description thereof will be omitted. As is clear from the graph, the fuel cell 10 was found to have improved performance in the entire current density region as compared with the fuel cell 10B, and in particular, markedly improved performance was observed in the high current density region.

【0035】図10(a)および図11(a)は、コン
ピュータシミュレーションにより求めた燃料電池10お
よび燃料電池10Bにおける酸化ガスの酸化ガス供給流
路12の流れ,各単電池の各通路28の流れ,酸化ガス
排出流路13の流れを速度ベクトルで表わした説明図で
ある。なお、酸化ガス供給流路12および酸化ガス排出
流路13での流向を示す矢印は省略した。また、図10
(b)および図11(b)は、コンピュータシミュレー
ションにより求めた燃料電池10および燃料電池10B
の各単電池の各通路28における酸化ガスの流速の3次
元グラフである。図12は、燃料電池10および燃料電
池10Bの酸化ガス供給流路12における酸化ガスの流
れを示す模式図である。
10 (a) and 11 (a) show the flow of the oxidizing gas supply passage 12 of the oxidizing gas and the passage 28 of each unit cell in the fuel cell 10 and the fuel cell 10B, which are obtained by computer simulation. FIG. 5 is an explanatory view showing the flow of the oxidizing gas discharge flow path 13 by a velocity vector. The arrows indicating the flow directions in the oxidizing gas supply passage 12 and the oxidizing gas discharge passage 13 are omitted. FIG.
(B) and FIG. 11 (b) show the fuel cell 10 and the fuel cell 10B obtained by computer simulation.
3 is a three-dimensional graph of the flow rate of oxidizing gas in each passage 28 of each unit cell of FIG. FIG. 12 is a schematic diagram showing the flow of the oxidizing gas in the oxidizing gas supply channel 12 of the fuel cell 10 and the fuel cell 10B.

【0036】燃料電池10では、図10(a),(b)
および図12(a)に示すように、貫通孔62から流入
した酸化ガスが上流側整流部材70,下流側整流部材7
2および連絡部材74からなる整流部材75により整流
されるから、酸化ガスは、酸化ガス供給流路12では流
向に直交する断面でのほぼ一定の流速分布となって流れ
る。各単電池の各通路28では、貫通孔62から遠くな
るに従って徐々に流速が増加する。しかし、貫通孔63
付近の単電池を除いて単電池内での各通路28の流速は
ほぼ一定である。酸化ガス排出流路13では、各単電池
の各通路28から排出される排ガスが集められるため、
貫通孔63に向かうに従って徐々に流速が大きくなる。
そして、排ガスは貫通孔63から勢いよく排出される。
なお、図10(b)に示すように、貫通孔63の近くの
単電池の通路28における酸化ガスの流速は、貫通孔6
3から勢いよく排出される排ガスに引っ張られるため
に、他の通路28に比較して著しく大きくなっている。
In the fuel cell 10, as shown in FIGS.
As shown in FIG. 12 (a), the oxidizing gas flowing in from the through hole 62 is the upstream rectifying member 70 and the downstream rectifying member 7.
The oxidant gas flows in the oxidant gas supply flow path 12 with a substantially constant flow velocity distribution in a cross section orthogonal to the flow direction because the rectifier member 75 including the second and the connecting members 74 rectifies the gas. In each passage 28 of each unit cell, the flow velocity gradually increases as the distance from the through hole 62 increases. However, the through hole 63
The flow velocities of the passages 28 in the unit cells are almost constant except for the unit cells in the vicinity. In the oxidizing gas discharge flow path 13, since exhaust gas discharged from each passage 28 of each unit cell is collected,
The flow velocity gradually increases toward the through hole 63.
Then, the exhaust gas is vigorously discharged from the through hole 63.
As shown in FIG. 10B, the flow velocity of the oxidizing gas in the passage 28 of the unit cell near the through hole 63 is determined by the through hole 6
Since it is pulled by the exhaust gas which is exhausted vigorously from No. 3, it is significantly larger than the other passages 28.

【0037】一方、整流部材75を備えない燃料電池1
0Bでは、図11(a),(b)および図12(b)に
示すように、酸化ガスが勢いよく貫通孔62から酸化ガ
ス供給流路12に流入するから、酸化ガス供給流路12
内の酸化ガスは複雑な渦流となる。こうした渦流が発生
すると、酸化ガス供給流路12内での圧力差が大きくな
り、各通路28での流速も区々となる。酸化ガス排出流
路13での排ガスの流速も、各通路の流速が区々となる
ことにより均一にならない。このため、酸化ガス排出流
路13でも圧力差が生じるが、酸化ガス供給流路12程
ではない。したがって、貫通孔62から流入する酸化ガ
スの流速が速いときには、酸化ガス供給流路12におけ
る渦の中心部の圧力が酸化ガス排出流路13の圧力より
低くなる場合も生じ、渦の中心部に開口した通路28で
は酸化ガス排出流路13から酸化ガス供給流路12に排
ガスが流れることも有り得る。なお、図11は、この状
態の酸化ガスの流れを現わしている。
On the other hand, the fuel cell 1 which does not have the rectifying member 75.
In 0B, as shown in FIGS. 11A, 11B and 12B, the oxidizing gas vigorously flows into the oxidizing gas supply passage 12 from the through hole 62, so that the oxidizing gas supply passage 12
The oxidizing gas inside becomes a complicated vortex flow. When such a vortex flow occurs, the pressure difference in the oxidizing gas supply flow path 12 becomes large, and the flow velocity in each passage 28 also becomes different. The flow rate of the exhaust gas in the oxidizing gas discharge flow path 13 is not uniform because the flow rates of the passages are different. For this reason, a pressure difference also occurs in the oxidizing gas discharge passage 13, but not as much as the oxidizing gas supply passage 12. Therefore, when the flow velocity of the oxidizing gas flowing from the through hole 62 is high, the pressure in the center portion of the vortex in the oxidizing gas supply flow channel 12 may be lower than the pressure in the oxidizing gas discharge flow channel 13, and the pressure in the central portion of the vortex is reduced. In the open passage 28, the exhaust gas may flow from the oxidizing gas discharge passage 13 to the oxidizing gas supply passage 12. Note that FIG. 11 shows the flow of the oxidizing gas in this state.

【0038】以上説明した実施例の燃料電池10によれ
ば、酸化ガス供給流路12および燃料ガス供給流路14
の酸化ガスおよび燃料ガスの流入口である貫通孔62お
よび貫通孔64付近に3次元網目構造の多孔質体により
形成された上流側整流部材70,下流側整流部材72,
連絡部材74からなる整流部材75を備えることによ
り、酸化ガス供給流路12および燃料ガス供給流路14
へ流入する酸化ガスおよび燃料ガスの流路が急拡の程度
が著しい場合であっても酸化ガス供給流路12内および
燃料ガス供給流路14内の酸化ガスおよび燃料ガスの流
速分布をほぼ一定にすることができる。この結果、各単
電池により均等に酸化ガスおよび燃料ガスを供給するこ
とができ、各単電池を高効率で均等なものにすることが
できる。したがって、より効率の良い燃料電池とするこ
とができる。
According to the fuel cell 10 of the embodiment described above, the oxidizing gas supply passage 12 and the fuel gas supply passage 14 are provided.
Upstream rectifying member 70, downstream rectifying member 72 formed of a porous body having a three-dimensional mesh structure in the vicinity of through holes 62 and 64, which are the inlets of the oxidizing gas and the fuel gas,
By providing the rectifying member 75 including the connecting member 74, the oxidizing gas supply passage 12 and the fuel gas supply passage 14 are provided.
The flow velocity distributions of the oxidizing gas and the fuel gas in the oxidizing gas supply passage 12 and the fuel gas supply passage 14 are substantially constant even when the passages of the oxidizing gas and the fuel gas flowing into Can be As a result, the oxidizing gas and the fuel gas can be evenly supplied to each unit cell, and each unit cell can be made highly efficient and uniform. Therefore, a more efficient fuel cell can be obtained.

【0039】実施例の燃料電池10では、別体で形成さ
れた上流側整流部材70と下流側整流部材72とで連絡
部材74を挟持して整流部材75を形成したが、一体で
形成してもよい。また、上流側整流部材70と連絡部材
74とを一体で形成し下流側整流部材72を別体で形成
してもよく、連絡部材74と下流側整流部材72とを一
体で形成し上流側整流部材70を別体で形成してもよ
い。この場合、別体形成した整流部材は、連絡部材74
に接触させて設置してもよく、連絡部材74と離して設
置してもよい。また、実施例の燃料電池10では、上流
側整流部材70,下流側整流部材72および連絡部材7
4を同一の3次元網目構造の多孔質体により同一の厚み
に形成したが、異なる多孔質体により形成する構成、異
なる厚みに形成する構成としてもよい。特に、連絡部材
74の厚みは、貫通孔62に対向する部分における酸化
ガスの流速を他の部分における流速に一致させるよう調
整するものであるため、酸化ガスまたは燃料ガスの性
状,酸化ガスまたは燃料ガスの流入速度,酸化ガス供給
流路12および燃料ガス供給流路14の断面形状等によ
って定まるものである。
In the fuel cell 10 of the embodiment, the rectifying member 75 is formed by sandwiching the connecting member 74 between the upstream rectifying member 70 and the downstream rectifying member 72 which are separately formed, but they are integrally formed. Good. Further, the upstream rectifying member 70 and the connecting member 74 may be integrally formed, and the downstream rectifying member 72 may be separately formed. Alternatively, the connecting member 74 and the downstream rectifying member 72 may be integrally formed to form the upstream rectifying member. The member 70 may be formed separately. In this case, the separately formed rectifying member is the connecting member 74.
May be installed in contact with the contact member 74, or may be installed apart from the communication member 74. Further, in the fuel cell 10 of the embodiment, the upstream side rectifying member 70, the downstream side rectifying member 72, and the connecting member 7
Although 4 is formed to have the same thickness with the same porous body having a three-dimensional network structure, different porous bodies may be used, or different thicknesses may be used. In particular, since the thickness of the connecting member 74 is adjusted so that the flow velocity of the oxidizing gas in the portion facing the through hole 62 matches the flow velocity of the other portion, the properties of the oxidizing gas or the fuel gas, the oxidizing gas or the fuel, and the like. It is determined by the gas inflow rate, the cross-sectional shapes of the oxidizing gas supply passage 12 and the fuel gas supply passage 14, and the like.

【0040】実施例の燃料電池10では、酸化ガスの流
入口と酸化ガス側の排ガスの排出口および燃料ガスの流
入口と燃料ガス側の排ガスの排出口をそれぞれ異なる積
層端に形成したが、同一の積層端に形成する構成として
もよい。
In the fuel cell 10 of the embodiment, the oxidizing gas inlet and the oxidizing gas side exhaust gas outlet, and the fuel gas inlet and the fuel gas side exhaust gas outlet are formed at different stack ends. It may be configured to be formed at the same laminated end.

【0041】実施例の燃料電池10では、整流部材75
を3次元網目構造の多孔質体による上流側整流部材7
0,下流側整流部材72,連絡部材74により形成した
が、上流側整流部材70のみを備える構成(以下「燃料
電池10C」という。)や上流側整流部材70および下
流側整流部材72を備え連絡部材74を備えない構成
(以下「燃料電池10D」という。)でも差し支えな
い。これらの構成による燃料電池10Cおよび10Dの
酸化ガス供給流路12における酸化ガスの流れを示す模
式図を図13(a)および(b)に示す。図13(c)
は、燃料電池10Dの構成の上流側整流部材70に代え
て、貫通孔62に対向する部分をガスの透過性が低い低
透過性部材71Eで形成した上流側整流部材70Eを備
える燃料電池10Eの酸化ガス供給流路12における酸
化ガスの流れを示す模式図である。燃料電池10C,1
0D,10Eは、整流部材75の構成が異なることを除
き燃料電池10と同一の構成をしているので、燃料電池
10C,10D,10Eの構成のうち燃料電池10と同
一の構成については同一の符号を付し、その説明は省略
する。
In the fuel cell 10 of the embodiment, the rectifying member 75
The upstream rectifying member 7 made of a porous material having a three-dimensional mesh structure
0, the downstream side rectifying member 72, and the connecting member 74, but the configuration including only the upstream side rectifying member 70 (hereinafter referred to as “fuel cell 10C”), the upstream side rectifying member 70, and the downstream side rectifying member 72, and connecting. A configuration without the member 74 (hereinafter referred to as "fuel cell 10D") may be used. 13A and 13B are schematic diagrams showing the flow of the oxidizing gas in the oxidizing gas supply passage 12 of the fuel cells 10C and 10D having these configurations. FIG. 13 (c)
In place of the upstream side rectifying member 70 of the fuel cell 10D, a fuel cell 10E including an upstream side rectifying member 70E in which a portion facing the through hole 62 is formed of a low permeability member 71E having low gas permeability. 6 is a schematic diagram showing a flow of an oxidizing gas in an oxidizing gas supply passage 12. FIG. Fuel cell 10C, 1
0D and 10E have the same configuration as the fuel cell 10 except that the configuration of the rectifying member 75 is different. Therefore, the same configuration as the fuel cell 10 among the configurations of the fuel cells 10C, 10D, and 10E is the same. The reference numerals are given and the description thereof is omitted.

【0042】燃料電池10Cは、図13(a)に示すよ
うに、上流側整流部材70による調圧室76が形成され
るのみなので、上流側整流部材70を圧力損失の大きな
ものにしなければ、調圧室76での圧力分布をほぼ一定
にすることができず、酸化ガス供給流路12での酸化ガ
スの流れを均等なものにすることができない。しかし、
上流側整流部材70の目を余程粗くしない限り発生する
渦流は小さく、酸化ガス供給流路12での圧力分布の変
化は小さいから、単電池の通路28で逆流するようなこ
とはない。したがって、燃料電池10Bに比して、各単
電池の性能を均一化させることができ、燃料電池の性能
を向上させることができる。
In the fuel cell 10C, as shown in FIG. 13 (a), since the pressure regulating chamber 76 is formed only by the upstream rectifying member 70, unless the upstream rectifying member 70 has a large pressure loss, The pressure distribution in the pressure adjusting chamber 76 cannot be made substantially constant, and the flow of the oxidizing gas in the oxidizing gas supply passage 12 cannot be made uniform. But,
Unless the mesh of the upstream side rectifying member 70 is made too coarse, the vortex flow generated is small, and the change in the pressure distribution in the oxidizing gas supply flow path 12 is small, so that no reverse flow occurs in the passage 28 of the unit cell. Therefore, compared to the fuel cell 10B, the performance of each unit cell can be made uniform and the performance of the fuel cell can be improved.

【0043】燃料電池10Dは、図13(b)に示すよ
うに、燃料電池10Cの構成に加えて下流側整流部材7
2を備えることにより、調圧室76の他、上流側整流部
材70と下流側整流部材72とにより調圧室77Dが形
成される。この調圧室77Dでは、調圧室76による圧
力分布の均一化を更に促進する。このため、燃料電池1
0Cに比して、酸化ガス供給流路12での酸化ガスの流
れは均等なものとなる。したがって、燃料電池10Dで
は、単電池の性能を更に均一化することができ、燃料電
池の性能を更に向上させることができる。なお、燃料電
池10Dでは、上流側整流部材70と下流側整流部材7
2とを備える構成としたが、下流側整流部材72の下流
側に下流側整流部材72と同様な材料により形成された
整流部材を下流側整流部材72との間に調圧室77Dと
同様な調圧室を形成するよう複数配置する構成としても
よい。整流部材の設置数を増やすほど、酸化ガス供給流
路12での酸化ガスの流れを均一なものとすることがで
きる。
As shown in FIG. 13 (b), the fuel cell 10D includes a downstream side rectifying member 7 in addition to the structure of the fuel cell 10C.
By providing the pressure adjusting chamber 76, the pressure adjusting chamber 77D is formed by the upstream side rectifying member 70 and the downstream side rectifying member 72 in addition to the pressure adjusting chamber 76. In the pressure adjusting chamber 77D, the pressure adjusting chamber 76 further promotes uniform pressure distribution. Therefore, the fuel cell 1
Compared with 0C, the flow of the oxidizing gas in the oxidizing gas supply passage 12 becomes more uniform. Therefore, in the fuel cell 10D, the performance of the unit cell can be made more uniform, and the performance of the fuel cell can be further improved. In the fuel cell 10D, the upstream rectifying member 70 and the downstream rectifying member 7
2 is provided, but a rectifying member formed of a material similar to that of the downstream rectifying member 72 on the downstream side of the downstream rectifying member 72 is provided between the downstream rectifying member 72 and the downstream rectifying member 72, similarly to the pressure adjusting chamber 77D. A plurality of pressure regulating chambers may be arranged to form a pressure regulating chamber. As the number of rectifying members installed increases, the flow of the oxidizing gas in the oxidizing gas supply passage 12 can be made more uniform.

【0044】また、燃料電池10Dでは、上流側整流部
材70と下流側整流部材72とを平行に配置したが、平
行に配置しない構成でもよい。例えば、図14に示すよ
うに、各単電池の各通路28を覆うように下流側整流部
材72Eを設置する燃料電池10Fとしてもよい。燃料
電池10Dでは、酸化ガス供給流路12における酸化ガ
スの流向と各単電池の各通路28とが直交する配置とし
たが、図15に示すように、積層体の積層方向の側面に
酸化ガス供給マニホールド80(または燃料ガス供給マ
ニホールド)と酸化ガス側排出マニホールド82(また
は燃料ガス側排出マニホールド)とを設置し、各単電池
の各通路28とこの各通路28に供給される酸化ガスま
たは燃料ガスの流向を平行にする構成でもよい。ただ
し、この構成の場合、上流側整流部材70Gおよび下流
側整流部材72Gは面積の大きなものとなる。また、燃
料電池10Gがこのようなマニホールドを備えるため、
図示しないが、集電極20Gには集電極20のような貫
通孔22〜25が形成されず、リブ26,27が集電極
20Gの外縁部まで到達するよう形成されており、ター
ミナル部材40G,絶縁部材50Gおよびエンドプレー
ト60Gの積層面には、酸化ガス供給流路12や燃料ガ
ス供給流路14等を形成するための貫通孔等は形成され
ない。
In the fuel cell 10D, the upstream side rectifying member 70 and the downstream side rectifying member 72 are arranged in parallel, but they may not be arranged in parallel. For example, as shown in FIG. 14, a fuel cell 10F in which a downstream side rectifying member 72E is installed so as to cover each passage 28 of each unit cell may be used. In the fuel cell 10D, the flow direction of the oxidizing gas in the oxidizing gas supply channel 12 and the passage 28 of each unit cell are arranged to be orthogonal to each other. However, as shown in FIG. 15, the oxidizing gas is provided on the side surface in the stacking direction of the stack. A supply manifold 80 (or a fuel gas supply manifold) and an oxidizing gas side discharge manifold 82 (or a fuel gas side discharge manifold) are installed, and each passage 28 of each unit cell and the oxidizing gas or fuel supplied to each passage 28 is installed. The gas flow direction may be parallel. However, in this configuration, the upstream side rectifying member 70G and the downstream side rectifying member 72G have large areas. In addition, since the fuel cell 10G includes such a manifold,
Although not shown, the through-holes 22 to 25 like the collecting electrode 20 are not formed in the collecting electrode 20G, and the ribs 26 and 27 are formed to reach the outer edge portion of the collecting electrode 20G. No through holes or the like for forming the oxidizing gas supply passage 12 and the fuel gas supply passage 14 are formed in the laminated surface of the member 50G and the end plate 60G.

【0045】燃料電池10Eは、図13(c)に示すよ
うに、燃料電池10Dの構成のうち上流側整流部材70
に代えて貫通孔62に対向する部分をガスの透過性が低
い低透過性部材71Eで形成した上流側整流部材70E
を備える。すなわち、燃料電池10Eは、上流側整流部
材70Eの低透過性部材71Eで燃料電池10の上流側
整流部材70と連絡部材74とによる圧力損失と同等の
圧力損失を生じるよう調整すれば、燃料電池10と等価
な構成となる。このように、燃料電池10Eは、低透過
性部材71Eを有することにより、酸化ガス供給流路1
2での酸化ガスの流れを均等なものとすることができ、
燃料電池の性能を向上させることができる。なお、図1
3(c)に示した燃料電池10Eでは、低透過性部材7
1Eの効果を強調するため、低透過性部材71Eを透過
性の極度に低いものを用いている。したがって、低透過
性部材71Eの透過性を調整することにより最適なもの
とすることができる。この低透過性部材71Eの透過性
は、酸化ガスまたは燃料ガスの性状,酸化ガスまたは燃
料ガスの流入速度,酸化ガス供給流路12の断面形状,
整流部材の設置数によって定まるものである。なお、図
13(a)に示す燃料電池10Cの上流側整流部材70
の貫通孔62に対向する部分を透過性の低い部材で形成
しても燃料電池10Eと同様な効果を得ることができる
ので、この貫通孔62に対向する部分を透過性の低い部
材で形成する構成では、整流部材の設置数が2以上に限
定されないことは勿論である。
As shown in FIG. 13 (c), the fuel cell 10E has an upstream side rectifying member 70 of the structure of the fuel cell 10D.
Instead of the above, the upstream side flow straightening member 70E in which the portion facing the through hole 62 is formed of a low permeability member 71E having low gas permeability
Is provided. That is, in the fuel cell 10E, if the low-permeability member 71E of the upstream rectifying member 70E is adjusted to generate a pressure loss equivalent to the pressure loss of the upstream rectifying member 70 of the fuel cell 10 and the connecting member 74, The configuration is equivalent to 10. As described above, the fuel cell 10E has the low-permeability member 71E, so that the oxidizing gas supply channel 1 is provided.
The flow of the oxidizing gas in 2 can be made uniform,
The performance of the fuel cell can be improved. FIG.
In the fuel cell 10E shown in FIG. 3 (c), the low permeability member 7
In order to emphasize the effect of 1E, the low-transmissivity member 71E having extremely low transparency is used. Therefore, it can be optimized by adjusting the permeability of the low permeability member 71E. The permeability of the low-permeability member 71E depends on the properties of the oxidizing gas or the fuel gas, the inflow speed of the oxidizing gas or the fuel gas, the cross-sectional shape of the oxidizing gas supply channel 12,
It is determined by the number of rectifying members installed. The upstream side rectifying member 70 of the fuel cell 10C shown in FIG.
Even if the portion facing the through hole 62 is formed of a member having low permeability, the same effect as that of the fuel cell 10E can be obtained. Therefore, the portion facing the through hole 62 is formed of a member having low permeability. Of course, in the configuration, the number of rectifying members installed is not limited to two or more.

【0046】次に本発明の第2の実施例である燃料電池
10Hについて説明する。図16は、本発明の第2の実
施例である燃料電池10Hにおける酸化ガスの流路の模
式図である。燃料電池10Hは、第1実施例の燃料電池
10と同一の構成を備える他、酸化ガス供給流路12内
および燃料ガス供給流路14内の流向方向の圧力を調整
する圧力調整部材79と、酸化ガス排出流路13および
燃料ガス排出流路15の排出口である貫通孔63および
貫通孔65付近に上流側排ガス整流部材86および下流
側排ガス整流部材88とを備える。なお、燃料電池10
Hの構成のうち第1実施例の燃料電池10と同一の構成
については同一の符号を付し、その説明は省略する。
Next, a fuel cell 10H which is a second embodiment of the present invention will be described. FIG. 16 is a schematic diagram of the flow path of the oxidizing gas in the fuel cell 10H that is the second embodiment of the present invention. The fuel cell 10H has the same configuration as that of the fuel cell 10 of the first embodiment, and also has a pressure adjusting member 79 for adjusting the pressure in the flow direction of the oxidizing gas supply passage 12 and the fuel gas supply passage 14. An upstream side exhaust gas rectifying member 86 and a downstream side exhaust gas rectifying member 88 are provided in the vicinity of the through holes 63 and the through holes 65 which are the outlets of the oxidizing gas exhaust flow path 13 and the fuel gas exhaust flow path 15. The fuel cell 10
Among the H components, the same components as those of the fuel cell 10 of the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

【0047】圧力調整部材79は、上流側整流部材70
と同一の材料により同一形状に形成されており、酸化ガ
ス供給流路12内および燃料ガス供給流路14内に、流
向方向に圧力差が生じるよう接着固定されている。圧力
調整部材79を酸化ガス供給流路12内および燃料ガス
供給流路14内に設置するのは、酸化ガス供給流路12
内および燃料ガス供給流路14内において圧力調整部材
79を挟んで上流側と下流側とに圧力差を生じさせるこ
とにより、上流側の単電池への酸化ガスまたは燃料ガス
の流量と下流側の単電池への流量とを均一化するためで
ある。
The pressure adjusting member 79 is the upstream rectifying member 70.
They are formed of the same material as and have the same shape, and are adhesively fixed in the oxidizing gas supply passage 12 and the fuel gas supply passage 14 so that a pressure difference occurs in the flow direction. The pressure adjusting member 79 is installed in the oxidizing gas supply passage 12 and the fuel gas supply passage 14 only when the oxidizing gas supply passage 12 is installed.
By creating a pressure difference between the upstream side and the downstream side across the pressure adjusting member 79 in the inside and in the fuel gas supply passage 14, the flow rate of the oxidizing gas or the fuel gas to the unit cell on the upstream side and the flow rate of the downstream side This is to make the flow rate to the unit cells uniform.

【0048】上流側排ガス整流部材86および下流側排
ガス整流部材88は、上流側整流部材70および下流側
整流部材72と同一材料により同一形状に形成されてい
る。下流側排ガス整流部材88は、エンドプレート60
の貫通孔63との間に調圧室89を設けるよう、すなわ
ち下流側排ガス整流部材88の貫通孔63に対する位置
関係が上流側整流部材70の貫通孔62に対する位置関
係と同一になるよう接着固定されている。また、上流側
排ガス整流部材86は、上流側排ガス整流部材86の上
流側に調圧室87を設けるよう、すなわち上流側排ガス
整流部材86の下流側排ガス整流部材88に対する位置
関係が下流側整流部材72の上流側整流部材70に対す
る位置関係と同一になるよう接着固定されている。
The upstream side rectifying member 86 and the downstream side rectifying member 88 are made of the same material as the upstream side rectifying member 70 and the downstream side rectifying member 72 and have the same shape. The downstream side exhaust gas rectifying member 88 includes the end plate 60.
The pressure regulating chamber 89 is provided between the through hole 63 and the through hole 63, that is, the downstream side exhaust gas rectifying member 88 has the same positional relationship with the through hole 63 as the positional relationship with the upstream rectifying member 70 with respect to the through hole 62. Has been done. Further, the upstream side exhaust gas rectifying member 86 is provided with the pressure adjusting chamber 87 on the upstream side of the upstream side exhaust gas rectifying member 86, that is, the positional relationship of the upstream side exhaust gas rectifying member 86 to the downstream side exhaust gas rectifying member 88 is the downstream side rectifying member. It is fixed by adhesion so that the positional relationship between 72 and the upstream rectifying member 70 is the same.

【0049】こうして構成された燃料電池10Hは、第
1実施例の燃料電池10と同様に、エンドプレート60
の貫通孔62に図示しない酸化ガス供給装置を接続する
と共に、貫通孔64に図示しない燃料供給装置に接続
し、酸化ガスおよび燃料ガスを供給すれば、酸化ガス供
給流路12および燃料ガス供給流路14を介して酸化ガ
スの通路28および燃料ガスの通路29に酸化ガスおよ
び燃料ガスが流れ、電解質膜16を挟んで対峙する2つ
のガス拡散電極18に燃料ガスおよび酸化ガスが供給さ
れて、前述した式(1)および(2)に示す電気化学反
応が行なわれ、化学エネルギが直接電気エネルギに変換
される。
The fuel cell 10H constructed in this manner has the end plate 60 similar to the fuel cell 10 of the first embodiment.
If the oxidizing gas supply device (not shown) is connected to the through hole 62 of the above and the fuel supply device (not shown) is connected to the through hole 64 to supply the oxidizing gas and the fuel gas, the oxidizing gas supply passage 12 and the fuel gas supply flow The oxidizing gas and the fuel gas flow through the passage 28 for the oxidizing gas and the passage 29 for the fuel gas through the passage 14, and the fuel gas and the oxidizing gas are supplied to the two gas diffusion electrodes 18 facing each other with the electrolyte membrane 16 in between, The electrochemical reaction represented by the above formulas (1) and (2) is performed, and the chemical energy is directly converted into electrical energy.

【0050】次に燃料電池10Hのエンドプレート60
の貫通孔62および貫通孔64に酸化ガス供給装置およ
び燃料ガス供給装置が接続され酸化ガスおよび燃料ガス
が供給されたときの酸化ガス排出流路13内および燃料
ガス排出流路15内の排ガスの流れについて説明する。
酸化ガス排出流路13内の排ガスの流れと燃料ガス排出
流路15内の排ガスの流れは同一なので、酸化ガス排出
流路13内の排ガスの流れについて説明する。各単電池
の各通路28から酸化ガス排出流路13に排出される排
ガスは、上流側排ガス整流部材86および下流側排ガス
整流部材88を透過して貫通孔63から流出する。酸化
ガス排出流路13内の排ガスは、酸化ガスが各単電池の
各通路28にほぼ均一に供給され排ガスがほぼ均一に排
出されることから、流向に直交する断面における流速分
布がほぼ均一になって流れる。酸化ガス排出流路13の
貫通孔63付近でも、上流側排ガス整流部材86および
下流側排ガス整流部材88が設置されていることによ
り、上流側排ガス整流部材86の上流側での流速分布は
ほぼ均一に維持される。
Next, the end plate 60 of the fuel cell 10H
Of the exhaust gas in the oxidizing gas exhaust passage 13 and the fuel gas exhaust passage 15 when the oxidizing gas supply device and the fuel gas supply device are connected to the through holes 62 and 64 of the The flow will be described.
Since the flow of the exhaust gas in the oxidizing gas discharge passage 13 and the flow of the exhaust gas in the fuel gas discharge passage 15 are the same, the flow of the exhaust gas in the oxidizing gas discharge passage 13 will be described. Exhaust gas discharged from each passage 28 of each unit cell to the oxidizing gas discharge flow path 13 passes through the upstream side exhaust gas rectifying member 86 and the downstream side exhaust gas rectifying member 88 and flows out from the through hole 63. As for the exhaust gas in the oxidizing gas discharge flow path 13, since the oxidizing gas is supplied to the passages 28 of each unit cell almost uniformly and the exhaust gas is discharged almost uniformly, the flow velocity distribution in the cross section orthogonal to the flow direction becomes substantially uniform. It flows. Since the upstream side exhaust gas rectifying member 86 and the downstream side exhaust gas rectifying member 88 are installed near the through hole 63 of the oxidizing gas exhaust flow path 13, the flow velocity distribution on the upstream side of the upstream side exhaust gas rectifying member 86 is substantially uniform. Maintained at.

【0051】上流側排ガス整流部材86および下流側排
ガス整流部材88付近の排ガスの流れについてもう少し
詳細に述べる。調圧室89の排ガスが貫通孔63から勢
いよく流出するから、調圧室89内の圧力は一様となら
ず、下流側排ガス整流部材88の下流側表面では圧力は
貫通孔63に対向する部分が最も低くなる。したがっ
て、下流側排ガス整流部材88の上流側表面の圧力が位
置によらず均一であるとすれば、下流側排ガス整流部材
88を透過する排ガスの流速は貫通孔63に対向する部
分が最も速くなる。実際は、貫通孔63に対向する部分
の下流側排ガス整流部材88の上流側表面の圧力は他の
部分より低くなる。しかし、下流側表面における他の部
分との圧力差より上流側表面における圧力差の方が小さ
いので、やはり、貫通孔63に対向する部分を透過する
排ガスの流速は、他の部分を透過する流速より速くな
る。上流側排ガス整流部材86の下流側表面では、上流
側排ガス整流部材86と下流側排ガス整流部材88との
間に形成された調圧室87内で排ガスの圧力差が打ち消
す方向に調圧されるから、その圧力分布は、下流側排ガ
ス整流部材88の上流側表面に比して均一なものにな
る。このため、上流側排ガス整流部材86を透過する排
ガスの流速分布は、下流側排ガス整流部材88の流速分
布より均一なものになる。この結果、上流側排ガス整流
部材86の上流側表面での圧力分布はほぼ均一なものと
なるから、上流側排ガス整流部材86付近の単電池の通
路28における酸化ガスの流速が他の単電池の通路28
における流速に比して大きくならない。
The flow of exhaust gas in the vicinity of the upstream side exhaust gas rectifying member 86 and the downstream side exhaust gas rectifying member 88 will be described in more detail. Since the exhaust gas in the pressure regulation chamber 89 vigorously flows out from the through hole 63, the pressure inside the pressure regulation chamber 89 is not uniform, and the pressure faces the through hole 63 on the downstream surface of the downstream side exhaust gas rectifying member 88. The part is the lowest. Therefore, if the pressure on the upstream surface of the downstream exhaust gas rectifying member 88 is uniform regardless of the position, the flow velocity of the exhaust gas passing through the downstream exhaust gas rectifying member 88 becomes highest at the portion facing the through hole 63. . Actually, the pressure on the upstream surface of the downstream exhaust gas rectifying member 88 in the portion facing the through hole 63 is lower than that in the other portions. However, since the pressure difference on the upstream surface is smaller than the pressure difference on the downstream surface with the other portions, the flow rate of the exhaust gas passing through the portion facing the through hole 63 is also the flow rate passing through the other portion. Get faster. On the downstream surface of the upstream side exhaust gas rectifying member 86, the pressure is adjusted in a direction in which the pressure difference of the exhaust gas is canceled in a pressure adjusting chamber 87 formed between the upstream side exhaust gas rectifying member 86 and the downstream side exhaust gas rectifying member 88. Therefore, the pressure distribution becomes more uniform than the upstream surface of the downstream exhaust gas rectifying member 88. Therefore, the flow velocity distribution of the exhaust gas passing through the upstream side exhaust gas rectifying member 86 becomes more uniform than that of the downstream side exhaust gas rectifying member 88. As a result, the pressure distribution on the upstream surface of the upstream side exhaust gas rectifying member 86 becomes substantially uniform, so that the flow rate of the oxidizing gas in the passage 28 of the unit cell near the upstream side exhaust gas rectifying member 86 is different from that of other unit cells. Passage 28
Does not increase compared to the flow velocity at.

【0052】図17は、コンピュータシミュレーション
により求めた燃料電池10Hの各単電池の各通路28に
おける酸化ガスの流速の3次元グラフである。図示する
ように、単電池の通路28を流れる酸化ガスの流速は、
若干ではあるが、酸化ガスの流出側ほど大きくなってい
る。しかし、酸化ガスの流出側である貫通孔63に最も
近い単電池でも、上流側排ガス整流部材86および下流
側排ガス整流部材88を設置したことにより酸化ガス排
出流路13を流れる酸化ガスの排ガスの速度分布がほぼ
均一となるから、各通路28における酸化ガスの流速も
ほぼ一定となる。したがって、燃料電池10Hを構成す
る各単電池の各通路28を流れる酸化ガスの流速は、い
ずれの単電池の通路28でもほぼ一定と言える。
FIG. 17 is a three-dimensional graph of the flow velocity of the oxidizing gas in each passage 28 of each unit cell of the fuel cell 10H obtained by computer simulation. As shown, the flow velocity of the oxidizing gas flowing through the passage 28 of the unit cell is
Although slightly, it is larger on the outflow side of the oxidizing gas. However, even in the unit cell closest to the through-hole 63 on the outflow side of the oxidizing gas, the exhaust gas of the oxidizing gas flowing through the oxidizing gas discharge flow path 13 is provided by installing the upstream exhaust gas straightening member 86 and the downstream exhaust gas straightening member 88. Since the velocity distribution is substantially uniform, the flow velocity of the oxidizing gas in each passage 28 is also substantially constant. Therefore, it can be said that the flow velocity of the oxidizing gas flowing through each passage 28 of each unit cell forming the fuel cell 10H is substantially constant in each unit cell passage 28.

【0053】以上説明した第2実施例の燃料電池10H
によれば、酸化ガス排出流路13および燃料ガス排出流
路15の排ガスの流出口である貫通孔63および貫通孔
65付近に3次元網目構造の多孔質体により形成された
上流側排ガス整流部材86,下流側排ガス整流部材88
を備えることにより、排ガスの流路が急縮構造であるこ
とによる酸化ガス排出流路13および燃料ガス排出流路
15の排ガスの流れの乱れを防止することができる。こ
の結果、各単電池から均等に排ガスを排出させることが
でき、各単電池を高効率で均等なものにすることができ
る。したがって、より効率の良い燃料電池とすることが
できる。
The fuel cell 10H of the second embodiment described above
According to the above, the upstream side exhaust gas rectifying member formed of a porous body having a three-dimensional mesh structure in the vicinity of the through holes 63 and the through holes 65 which are exhaust gas outlets of the oxidizing gas exhaust flow path 13 and the fuel gas exhaust flow path 15 86, downstream side exhaust gas rectifying member 88
By including the above, it is possible to prevent the disturbance of the flow of the exhaust gas in the oxidizing gas exhaust passage 13 and the fuel gas exhaust passage 15 due to the exhaust gas passage having the rapid compression structure. As a result, exhaust gas can be evenly discharged from each unit cell, and each unit cell can be made highly efficient and uniform. Therefore, a more efficient fuel cell can be obtained.

【0054】また、酸化ガス供給流路12および燃料ガ
ス供給流路14に圧力調整部材79を備えることによ
り、圧力調整部材79の上流側の単電池と下流側の単電
池とにより均一に酸化ガスおよび燃料ガスを供給するこ
とができる。したがって、各単電池を高効率で均等なも
のにすることができ、より効率の良い燃料電池とするこ
とができる。
Further, by providing the pressure adjusting member 79 in the oxidizing gas supply passage 12 and the fuel gas supplying passage 14, the oxidizing gas is more uniformly distributed between the unit cells on the upstream side and the unit cells on the downstream side of the pressure adjusting member 79. And fuel gas can be supplied. Therefore, each cell can be made highly efficient and uniform, and a more efficient fuel cell can be obtained.

【0055】実施例の燃料電池10Hでは、酸化ガス供
給流路12および燃料ガス供給流路14に整流部材75
を備えるが、酸化ガス供給流路12および燃料ガス供給
流路14において酸化ガスまたは燃料ガスが均等に流れ
るものであれば他の部材でもよく、設置しない構成でも
差し支えない。また、圧力調整部材79を備えない構成
でも差し支えない。
In the fuel cell 10H of the embodiment, the rectifying member 75 is provided in the oxidizing gas supply passage 12 and the fuel gas supply passage 14.
However, other members may be used as long as the oxidizing gas or the fuel gas flows evenly in the oxidizing gas supply flow path 12 and the fuel gas supply flow path 14, and it is not necessary to install them. Further, the structure without the pressure adjusting member 79 may be used.

【0056】実施例の燃料電池10Hでは、酸化ガス排
出流路13および燃料ガス排出流路15にそれぞれ上流
側排ガス整流部材86および下流側排ガス整流部材88
の2つの整流部材を備えるが、3以上の整流部材をそれ
ぞれ備える構成も好適である。また、1つの整流部材の
みを備える構成でも差し支えない。
In the fuel cell 10H of the embodiment, the upstream side exhaust gas rectifying member 86 and the downstream side exhaust gas rectifying member 88 are provided in the oxidizing gas exhaust passage 13 and the fuel gas exhaust passage 15, respectively.
However, a configuration in which three or more rectifying members are provided is also suitable. Further, a configuration including only one rectifying member may be used.

【0057】実施例の燃料電池10Hでは、酸化ガス排
出流路13における排ガスの流向と各単電池の各通路2
8とが直交する配置としたが、図18に示すように、積
層体の積層方向の側面に酸化ガス供給マニホールド80
と酸化ガス側排出マニホールド82とを設置し、各単電
池の各通路28とこの各通路28から排出される排ガス
の流向を平行にする構成でもよい。ただし、この構成の
場合、上流側排ガス整流部材86Jおよび下流側排ガス
整流部材88Jは面積の大きなものとなる。なお、この
燃料電池10Jは、上流側排ガス整流部材86Jと下流
側排ガス整流部材88Jとを備えることを除き、燃料電
池10Gと同一の構成をしている。
In the fuel cell 10H of the embodiment, the flow direction of the exhaust gas in the oxidizing gas discharge flow path 13 and the passages 2 of each unit cell.
However, as shown in FIG. 18, the oxidizing gas supply manifold 80 is provided on the side surface of the stacked body in the stacking direction.
And the oxidizing gas side discharge manifold 82 may be installed so that the passages 28 of the individual cells and the exhaust gas discharged from the passages 28 flow in parallel. However, in the case of this configuration, the upstream exhaust gas rectifying member 86J and the downstream exhaust gas rectifying member 88J have large areas. The fuel cell 10J has the same configuration as the fuel cell 10G except that the fuel cell 10J includes an upstream side exhaust gas rectifying member 86J and a downstream side exhaust gas rectifying member 88J.

【0058】以上本発明の実施例について説明したが、
本発明はこうした実施例に何等限定されるものではな
く、本発明の要旨を逸脱しない範囲内において、種々な
る態様で実施し得ることは勿論である。
The embodiments of the present invention have been described above.
The present invention is not limited to these examples, and it goes without saying that the present invention can be implemented in various modes without departing from the scope of the present invention.

【0059】[0059]

【発明の効果】以上説明したように本発明の第1の燃料
電池によれば、燃料を透過する多孔質体により形成され
た燃料整流部材を分配流路内に流入口との間に隙間を設
けて配置することにより、分配流路内の燃料の流速分布
を均一化することができる。この結果、各単電池により
均等に燃料を供給することができ、より効率の良い燃料
電池とすることができる。
As described above, according to the first fuel cell of the present invention, the fuel rectifying member formed of the porous material that allows the fuel to pass through is provided in the distribution passage with a gap between the fuel rectifying member and the inlet. By providing and arranging, the flow velocity distribution of the fuel in the distribution channel can be made uniform. As a result, the fuel can be evenly supplied to each unit cell, and a more efficient fuel cell can be obtained.

【0060】この本発明の第1の燃料電池において、燃
料を透過する多孔質体により形成された第2の燃料整流
部材を、燃料整流部材の下流側に隙間を設けて配置すれ
ば、分配流路内の燃料が極めて偏って流れる場合でも、
燃料の流速分布をより均一なものにすることができる。
In the first fuel cell of the present invention, if the second fuel rectifying member made of a porous material that allows the fuel to pass through is arranged on the downstream side of the fuel rectifying member with a gap, the distribution flow is improved. Even if the fuel in the road flows extremely unevenly,
The fuel flow velocity distribution can be made more uniform.

【0061】こうした第2の燃料整流部材を備えた本発
明の第1の燃料電池において、燃料整流部材と第2の燃
料整流部材との隙間の流入口に対向する部分に燃料を透
過する多孔質体により形成された流速調整部材を配置す
れば、最も流速の大きな流入口に対向する部分での燃料
の透過による圧力損失を大きくして流速の偏りを小さく
し、分配流路内の燃料の流速分布をより均一にすること
ができる。
In the first fuel cell of the present invention provided with such a second fuel rectifying member, a porous material which allows fuel to permeate into a portion of the gap between the fuel rectifying member and the second fuel rectifying member which faces the inlet port. By arranging the flow velocity adjusting member formed by the body, the pressure loss due to the permeation of the fuel at the portion facing the inlet with the highest flow velocity is increased to reduce the bias of the flow velocity, and the flow velocity of the fuel in the distribution flow passage is reduced. The distribution can be made more uniform.

【0062】本発明の第1の燃料電池において、流入口
に対向する部分を他の部分よりガスの透過性を低く形成
した燃料整流部材とすれば、最も流速の大きな流入口に
対向する部分での燃料の透過による圧力損失を大きくし
て流速の偏りを小さくし、分配流路内の燃料の流速分布
をより均一にすることができる。
In the first fuel cell of the present invention, if the portion facing the inlet is a fuel rectifying member having gas permeability lower than that of the other portions, the portion facing the inlet having the largest flow velocity is used. The pressure loss due to the permeation of the fuel can be increased to reduce the deviation of the flow velocity, and the fuel flow velocity distribution in the distribution passage can be made more uniform.

【0063】本発明の第1の燃料電池において、流入口
に対向する部分を他の部分より燃料の流れ方向に厚く形
成した燃料整流部材とすれば、最も流速の大きな流入口
に対向する部分での燃料の透過による圧力損失を大きく
して流速の偏りを小さくし、分配流路内の燃料の流速分
布をより均一にすることができる。
In the first fuel cell of the present invention, if the portion facing the inlet is a fuel rectifying member formed to be thicker than the other portions in the fuel flow direction, the portion facing the inlet having the highest flow velocity is formed. The pressure loss due to the permeation of the fuel can be increased to reduce the deviation of the flow velocity, and the fuel flow velocity distribution in the distribution passage can be made more uniform.

【0064】本発明の第2の燃料電池によれば、ガスを
透過する多孔質体により形成されたガス整流部材を排出
流路内に排出口との間に隙間を設けて配置することによ
り、排出流路内のガスの流速分布を均一化することがで
き、各単電池から均等にガスを排出させることができ
る。したがって、各単電池内での燃料またはガスの流速
を均一化しすることができ、より効率の良い燃料電池と
することができる。
According to the second fuel cell of the present invention, by arranging the gas rectifying member formed of the gas-permeable porous body in the discharge channel with a gap between the gas rectifying member and the discharge port, The flow velocity distribution of the gas in the discharge passage can be made uniform, and the gas can be uniformly discharged from each unit cell. Therefore, the flow velocity of fuel or gas in each unit cell can be made uniform, and a more efficient fuel cell can be obtained.

【0065】本発明の第2の燃料電池において、ガスを
透過する多孔質体により形成された第2のガス整流部材
をガス整流部材の上流側に隙間を設けて配置すれば、排
出流路内のガスが極めて偏って流れる場合でも、ガスの
流速分布をより均一なものにすることができる。
In the second fuel cell of the present invention, if the second gas rectifying member formed of a gas-permeable porous material is arranged upstream of the gas rectifying member with a gap, the inside of the discharge flow path Even when the gas of (1) flows extremely unevenly, the flow velocity distribution of the gas can be made more uniform.

【0066】本発明の第3の燃料電池によれば、分配流
路内の燃料の流速分布および排出流路内のガスの流速分
布を極めて均一なものにすることができる。この結果、
各単電池により均等に燃料を供給することができ、より
効率の良い燃料電池とすることができる。
According to the third fuel cell of the present invention, the fuel flow velocity distribution in the distribution passage and the gas flow velocity distribution in the discharge passage can be made extremely uniform. As a result,
Fuel can be evenly supplied to each unit cell, and a more efficient fuel cell can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の好適な一実施例である燃料電池10の
概略を示す斜視図である。
FIG. 1 is a perspective view showing the outline of a fuel cell 10 which is a preferred embodiment of the present invention.

【図2】燃料電池10を構成する単電池の構成の概略を
示す分解斜視図である。
FIG. 2 is an exploded perspective view showing the outline of the configuration of a single cell that constitutes the fuel cell 10.

【図3】図1の燃料電池10の3−3平面における断面
図である。
3 is a cross-sectional view of the fuel cell 10 of FIG. 1 taken along plane 3-3.

【図4】図3の燃料電池10の4−4線断面図である。4 is a cross-sectional view taken along line 4-4 of the fuel cell 10 of FIG.

【図5】図3の燃料電池の5ー5線断面図である。5 is a sectional view taken along line 5-5 of the fuel cell of FIG.

【図6】整流部材75の概略を示す斜視図である。6 is a perspective view showing an outline of a flow regulating member 75. FIG.

【図7】「セルメット」の品番#1ないし品番#6を透
過するガスの流速と圧力損失との関係を示すグラフであ
る。
FIG. 7 is a graph showing the relationship between the flow velocity of gas passing through the product numbers # 1 to # 6 of “Celmet” and the pressure loss.

【図8】燃料電池10における酸化ガスの流路の模式図
である。
FIG. 8 is a schematic diagram of a flow path of an oxidizing gas in the fuel cell 10.

【図9】燃料電池10と比較例とにおける電流密度と電
圧との関係の一例を示すグラフである。
FIG. 9 is a graph showing an example of the relationship between current density and voltage in the fuel cell 10 and the comparative example.

【図10】燃料電池10の酸化ガスの流れのコンピュー
タによるシミュレーション結果を示す説明図である。
FIG. 10 is an explanatory diagram showing a computer simulation result of a flow of an oxidizing gas in the fuel cell 10.

【図11】燃料電池10Bの酸化ガスの流れのコンピュ
ータによるシミュレーション結果を示す説明図である。
FIG. 11 is an explanatory diagram showing a computer simulation result of a flow of an oxidizing gas in the fuel cell 10B.

【図12】燃料電池10および燃料電池10Bの酸化ガ
ス供給流路12における酸化ガスの流れを示す模式図で
ある。
FIG. 12 is a schematic diagram showing the flow of an oxidizing gas in the oxidizing gas supply passage 12 of the fuel cell 10 and the fuel cell 10B.

【図13】燃料電池10の変形例の酸化ガス供給流路1
2における酸化ガスの流れを示す模式図である。
FIG. 13 is an oxidizing gas supply channel 1 of a modified example of the fuel cell 10.
3 is a schematic diagram showing the flow of an oxidizing gas in FIG.

【図14】燃料電池10の変形例である燃料電池10F
における酸化ガスの流路の模式図である。
FIG. 14 is a fuel cell 10F which is a modified example of the fuel cell 10.
FIG. 3 is a schematic diagram of a flow path of oxidizing gas in FIG.

【図15】燃料電池10の変形例である燃料電池10G
における酸化ガスの流路の模式図である。
15 is a fuel cell 10G which is a modified example of the fuel cell 10. FIG.
FIG. 3 is a schematic diagram of a flow path of oxidizing gas in FIG.

【図16】本発明の第2の実施例である燃料電池10H
における酸化ガスの流路の模式図である。
FIG. 16 is a fuel cell 10H according to a second embodiment of the present invention.
FIG. 3 is a schematic diagram of a flow path of oxidizing gas in FIG.

【図17】第2実施例の燃料電池10Hの酸化ガスの流
れのコンピュータによるシミュレーション結果を示す説
明図である。
FIG. 17 is an explanatory diagram showing the result of a computer simulation of the flow of oxidizing gas in the fuel cell 10H according to the second embodiment.

【図18】第2実施例の燃料電池10Hの変形例である
燃料電池10Jにおける酸化ガスの流路の模式図であ
る。
FIG. 18 is a schematic diagram of a flow path of oxidizing gas in a fuel cell 10J that is a modification of the fuel cell 10H of the second embodiment.

【符号の説明】[Explanation of symbols]

10…燃料電池 10B〜10J…燃料電池 12…酸化ガス供給流路 13…酸化ガス排出流路 14…燃料ガス供給流路 15…燃料ガス排出流路 16…電解質膜 18…ガス拡散電極 19…シール部材 20…集電極 22〜25…貫通孔 26,27…リブ 28,29…通路 30…集電極 40…ターミナル部材 48…出力端子 50…絶縁部材 60…エンドプレート 62〜65…貫通孔 70,70G…上流側整流部材 70E…上流側整流部材 71E…低透過性部材 72,72E,72G…下流側整流部材 74…連絡部材 75…整流部材 76,77,77D,78…調圧室 79…圧力調整部材 80…酸化ガス供給マニホールド 82…酸化ガス側排出マニホールド 86,86J…上流側排ガス整流部材 87,89…調圧室 88,88J…下流側排ガス整流部材 10 ... Fuel cell 10B-10J ... Fuel cell 12 ... Oxidizing gas supply flow path 13 ... Oxidizing gas discharge flow path 14 ... Fuel gas supply flow path 15 ... Fuel gas discharge flow path 16 ... Electrolyte membrane 18 ... Gas diffusion electrode 19 ... Seal Member 20 ... Collection electrode 22-25 ... Through hole 26, 27 ... Rib 28, 29 ... Passage 30 ... Collection electrode 40 ... Terminal member 48 ... Output terminal 50 ... Insulation member 60 ... End plate 62-65 ... Through hole 70, 70G ... Upstream side rectifying member 70E ... Upstream side rectifying member 71E ... Low permeability member 72, 72E, 72G ... Downstream side rectifying member 74 ... Communication member 75 ... Rectifying member 76, 77, 77D, 78 ... Pressure adjusting chamber 79 ... Pressure adjustment Member 80 ... Oxidizing gas supply manifold 82 ... Oxidizing gas side discharge manifold 86, 86J ... Upstream side exhaust gas rectifying member 87, 89 ... Pressure regulation chamber 88, 88J ... Downstream exhaust gas rectifying member

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 複数の単電池を積層してなり、燃料の流
入口を有し該流入口から流入した燃料を前記複数の単電
池の各々に分配する分配流路を備えた燃料電池であっ
て、 前記分配流路内に、前記流入口との間に隙間を設けて配
置され、燃料を透過する多孔質体により所定の厚みに形
成された燃料整流部材を備えた燃料電池。
1. A fuel cell comprising a stack of a plurality of unit cells, having a fuel inlet port, and having a distribution channel for distributing the fuel flowing from the inlet port to each of the plurality of unit cells. And a fuel cell provided with a fuel rectifying member, which is disposed in the distribution channel with a gap between the inlet and the inlet, and is formed to have a predetermined thickness by a porous body that transmits fuel.
【請求項2】 前記燃料整流部材の下流側に隙間を設け
て配置され、燃料を透過する多孔質体により所定の厚み
に形成された第2の燃料整流部材を備えた請求項1記載
の燃料電池。
2. The fuel according to claim 1, further comprising a second fuel rectifying member which is arranged at a downstream side of the fuel rectifying member with a gap and which is formed to have a predetermined thickness by a porous body which transmits fuel. battery.
【請求項3】 前記燃料整流部材と前記第2の燃料整流
部材との隙間の前記流入口に対向する部分に配置され、
燃料を透過する多孔質体により所定の厚みに形成された
流速調整部材を備えた請求項2記載の燃料電池。
3. A portion of the gap between the fuel rectifying member and the second fuel rectifying member facing the inflow port,
The fuel cell according to claim 2, further comprising a flow rate adjusting member formed to have a predetermined thickness by a porous body that allows fuel to permeate.
【請求項4】 前記燃料整流部材は、前記流入口に対向
する部分のガスの透過性を他の部分より低く形成してな
る請求項1または2記載の燃料電池。
4. The fuel cell according to claim 1, wherein the fuel rectifying member is formed so that the gas permeability of a portion facing the inflow port is lower than that of the other portion.
【請求項5】 前記燃料整流部材は、前記流入口に対向
する部分を他の部分より燃料の流れ方向に厚く形成して
なる請求項1または2記載の燃料電池。
5. The fuel cell according to claim 1, wherein the fuel rectifying member is formed such that a portion facing the inflow port is thicker than other portions in a fuel flow direction.
【請求項6】 複数の単電池を積層してなり、ガスの排
出口を有し前記複数の単電池の各々から排出されるガス
を収集して該排出口から排出する排出流路を備えた燃料
電池であって、 前記排出流路内に前記排出口との間に隙間を設けて配置
され、ガスを透過する多孔質体により所定の厚みに形成
されたガス整流部材を備えた燃料電池。
6. A stack of a plurality of unit cells, which has a gas discharge port, and is provided with a discharge channel for collecting gas discharged from each of the plurality of unit cells and discharging the gas from the discharge port. A fuel cell, comprising a gas rectifying member formed in a predetermined thickness by a porous body that is permeable to gas, the fuel rectifying member being disposed in the discharge flow path with a gap between the discharge port and the discharge port.
【請求項7】 前記ガス整流部材の上流側に隙間を設け
て配置され、ガスを透過する多孔質体により所定の厚み
に形成された第2のガス整流部材を備えた請求項6記載
の燃料電池。
7. The fuel according to claim 6, further comprising a second gas rectifying member which is arranged upstream of the gas rectifying member with a gap and which is formed to have a predetermined thickness by a gas-permeable porous body. battery.
【請求項8】 複数の単電池を積層してなり、燃料の流
入口を有し該流入口から流入した燃料を前記複数の単電
池の各々に分配する分配流路と、ガスの排出口を有し前
記複数の単電池の各々から排出されるガスを収集して該
排出口から排出する排出流路とを備えた燃料電池であっ
て、 請求項1ないし5いずれか記載の燃料整流部材と、請求
項6または7記載のガス整流部材とを備えた燃料電池。
8. A plurality of unit cells are stacked, a distribution flow path having a fuel inlet port for distributing fuel flowing from the inlet port to each of the plurality of unit cells, and a gas outlet port. A fuel cell having a discharge flow path for collecting gas discharged from each of the plurality of unit cells and discharging the collected gas from the discharge port, the fuel rectifying member according to claim 1. A fuel cell comprising the gas rectifying member according to claim 6 or 7.
JP7039028A 1995-02-03 1995-02-03 Fuel cell Pending JPH08213044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7039028A JPH08213044A (en) 1995-02-03 1995-02-03 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7039028A JPH08213044A (en) 1995-02-03 1995-02-03 Fuel cell

Publications (1)

Publication Number Publication Date
JPH08213044A true JPH08213044A (en) 1996-08-20

Family

ID=12541664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7039028A Pending JPH08213044A (en) 1995-02-03 1995-02-03 Fuel cell

Country Status (1)

Country Link
JP (1) JPH08213044A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0999605A2 (en) * 1998-11-06 2000-05-10 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
WO2000039871A1 (en) * 1997-06-30 2000-07-06 Aisin Seiki Kabushiki Kaisha Fuel battery
GB2348737A (en) * 1997-06-30 2000-10-11 Aisin Seiki Fuel Battery
US6159629A (en) * 1998-12-17 2000-12-12 Ballard Power Systems Inc. Volume effecient layered manifold assembly for electrochemical fuel cell stacks
WO2002069432A1 (en) * 2001-02-23 2002-09-06 Sanyo Electric Co., Ltd. Fuel cell
US6524735B1 (en) 1999-05-18 2003-02-25 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack with a curved flow guide section
JP2007115696A (en) * 2005-10-20 2007-05-10 Samsung Sdi Co Ltd Semi-passive type fuel cell system
DE19882977B4 (en) * 1998-12-25 2007-09-27 Aisin Seiki K.K., Kariya Fuel battery with laminated separator - has rib provided in circulation space to connect room inlet to main passage
JP2009094059A (en) * 2007-09-21 2009-04-30 Nishihara Koki:Kk Polymer fuel cell
US8211582B2 (en) 2007-09-13 2012-07-03 Samsung Sdi Co., Ltd. Fuel cell system
WO2012177255A1 (en) 2011-06-23 2012-12-27 Utc Power Corporation Flow field configuration for fuel cell plate
US8557462B2 (en) 2009-01-14 2013-10-15 Samsung Sdi Co., Ltd. Fuel cell stack and fuel cell system using the same
CN106410237A (en) * 2016-11-21 2017-02-15 清华大学 Flow distribution apparatus and fuel cell system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000039871A1 (en) * 1997-06-30 2000-07-06 Aisin Seiki Kabushiki Kaisha Fuel battery
US6103415A (en) * 1997-06-30 2000-08-15 Aisin Seki Kabushiki Kaisha Fuel cell with rectifying plates for uniform gas flow
GB2348737A (en) * 1997-06-30 2000-10-11 Aisin Seiki Fuel Battery
GB2348737B (en) * 1997-06-30 2003-09-17 Aisin Seiki A fuel cell array
EP0999605A2 (en) * 1998-11-06 2000-05-10 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
EP0999605A3 (en) * 1998-11-06 2001-03-14 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
US6416899B1 (en) 1998-11-06 2002-07-09 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack
US6159629A (en) * 1998-12-17 2000-12-12 Ballard Power Systems Inc. Volume effecient layered manifold assembly for electrochemical fuel cell stacks
DE19882977B4 (en) * 1998-12-25 2007-09-27 Aisin Seiki K.K., Kariya Fuel battery with laminated separator - has rib provided in circulation space to connect room inlet to main passage
US6524735B1 (en) 1999-05-18 2003-02-25 Honda Giken Kogyo Kabushiki Kaisha Fuel cell stack with a curved flow guide section
US7094491B2 (en) 2001-02-23 2006-08-22 Sanyo Elecrtric Co., Ltd. Fuel cell
WO2002069432A1 (en) * 2001-02-23 2002-09-06 Sanyo Electric Co., Ltd. Fuel cell
JP2007115696A (en) * 2005-10-20 2007-05-10 Samsung Sdi Co Ltd Semi-passive type fuel cell system
US8257878B2 (en) 2005-10-20 2012-09-04 Samsung Sdi Co., Ltd. Semi-passive type fuel cell system
US8211582B2 (en) 2007-09-13 2012-07-03 Samsung Sdi Co., Ltd. Fuel cell system
JP2009094059A (en) * 2007-09-21 2009-04-30 Nishihara Koki:Kk Polymer fuel cell
US8557462B2 (en) 2009-01-14 2013-10-15 Samsung Sdi Co., Ltd. Fuel cell stack and fuel cell system using the same
WO2012177255A1 (en) 2011-06-23 2012-12-27 Utc Power Corporation Flow field configuration for fuel cell plate
EP2724410A1 (en) * 2011-06-23 2014-04-30 United Technologies Corporation Flow field configuration for fuel cell plate
EP2724410A4 (en) * 2011-06-23 2015-04-22 United Technologies Corp Flow field configuration for fuel cell plate
US10446860B2 (en) 2011-06-23 2019-10-15 Audi Ag Flow field configuration for fuel cell plate
CN106410237A (en) * 2016-11-21 2017-02-15 清华大学 Flow distribution apparatus and fuel cell system

Similar Documents

Publication Publication Date Title
US7592089B2 (en) Fuel cell with variable porosity gas distribution layers
JP3926124B2 (en) Fuel cell with variable porosity gas distribution layer
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US6214486B1 (en) Fuel cell and method of controlling same
TW552737B (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP4598287B2 (en) FUEL CELL STACK AND METHOD OF OPERATING FUEL CELL STACK
US20040157103A1 (en) Fuel cell, separator plate for a fuel cell, and method of operation of a fuel cell
WO2003041204A1 (en) Combination of fuel cell and water electrolyzer with bidirectional heat exchange
JPH08213044A (en) Fuel cell
JPWO2005053072A1 (en) Fuel cell
JP2004039525A (en) Fuel cell
US20040265675A1 (en) Fuel Cell Flow Field Design
JPH0950819A (en) Solid polymer electrolyte fuel cell
US20040157111A1 (en) Fuel cell
JP2002151098A (en) Fuel cell
JP5242146B2 (en) Fuel cell and distribution manifold used therefor
WO2006090621A1 (en) Solid oxide fuel cell
TW201036239A (en) A flow field plate of fuel cell with airflow guiding gastets
JP4516630B2 (en) Solid polymer cell assembly
JP4340417B2 (en) Polymer electrolyte fuel cell
JP4572252B2 (en) Fuel cell stack
JP2002100380A (en) Fuel cell and fuel cell stack
JP4886128B2 (en) Fuel cell stack
JP4899387B2 (en) Solid oxide fuel cell
JP4595282B2 (en) Polymer electrolyte fuel cell