JPH0821255B2 - Method for producing thin film solid electrolyte - Google Patents

Method for producing thin film solid electrolyte

Info

Publication number
JPH0821255B2
JPH0821255B2 JP9970390A JP9970390A JPH0821255B2 JP H0821255 B2 JPH0821255 B2 JP H0821255B2 JP 9970390 A JP9970390 A JP 9970390A JP 9970390 A JP9970390 A JP 9970390A JP H0821255 B2 JPH0821255 B2 JP H0821255B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
thin film
layer
deposited
film solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9970390A
Other languages
Japanese (ja)
Other versions
JPH03297005A (en
Inventor
康治 山村
和典 高田
繁雄 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9970390A priority Critical patent/JPH0821255B2/en
Publication of JPH03297005A publication Critical patent/JPH03297005A/en
Publication of JPH0821255B2 publication Critical patent/JPH0821255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E60/12

Abstract

PURPOSE:To easily manufacture thin film solid electrolyte of intended composition by depositing several kinds of raw material in the layers of predetermined thickness and then heating the entire deposited layer. CONSTITUTION:After two or more kinds of raw material constituting solid electrolyte are deposited in layers, the deposited layers are heated thereby obtaining thin film solid electrolyte. For example, a tungstic acid silver layer (raw material layer) 5 and a silver iodide layer (raw material layer) 6 are sequentially deposited on a glass substrate 1 by means of electron beam heating deposition and resistor heating deposition. With respect to an obtained deposited layer 7, a plurality of heated parts 8 are heated by electron beams to have tungsten acid silver and silver iodide reacted with each other. Thus silver ion conductive solid electrolyte of AgI-Ag2WO4 is partially formed. Thus thin film solid electrolyte of intended composition consisting of a solid electrolytic material can be easily obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はイオニクス素子に使用される電解質に関する
ものであり、特に電池、コンデンサ、エレクトロクロミ
ックディスプレイ、イオニックメモリなど電気化学的現
象を利用した素子に利用される薄膜固体電解質の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte used in an ionics device, and more particularly to a battery, a capacitor, an electrochromic display, an ionic memory, and other devices utilizing an electrochemical phenomenon. The present invention relates to a method for producing a thin film solid electrolyte.

従来の技術 固体電解質は従来の液体の電解液に比べイオン伝導性
が非常に低く、高容量の電池やコンデンサに用いるため
には薄くて大面積である必要がある。このために下記の
ような製造方法が提案されている。すなわち従来の薄膜
固体電解質の製造方法としては、既に合成した目的組成
の固体電解質を用いて蒸着やスパッタなどにより形成し
た薄膜状の堆積物を加熱する方法や、固体電解質の粉末
を溶媒に分散してスラリー状にしこれを塗布乾燥させた
薄膜状の堆積物を加熱する方法などがある。
2. Description of the Related Art Solid electrolytes have much lower ionic conductivity than conventional liquid electrolytes, and they must be thin and have a large area for use in high-capacity batteries and capacitors. Therefore, the following manufacturing method has been proposed. That is, as a conventional method for producing a thin film solid electrolyte, a method of heating a thin film-like deposit formed by vapor deposition or sputtering using a solid electrolyte having a target composition that has already been synthesized, or a solid electrolyte powder dispersed in a solvent. There is a method of heating a thin film-shaped deposit obtained by applying the slurry into a slurry and drying it.

一方、電気化学的現象を利用した素子は、電解質を介
して一対の電極を配することにより構成されるが、この
ような電気化学素子に上記薄膜固体電解質を用いること
により、電気化学素子の薄膜化及び超小型化が可能とな
る。超小型化した電気化学素子は、それらの素子を集積
化したイオニックメモリ(超小型電池の集積化)や画像
表示素子(エレクトロクロミック素子の集積化)として
応用することができる。
On the other hand, an element utilizing an electrochemical phenomenon is constructed by disposing a pair of electrodes through an electrolyte. By using the above thin film solid electrolyte for such an electrochemical element, a thin film of the electrochemical element is formed. It is possible to achieve miniaturization and miniaturization. The miniaturized electrochemical device can be applied as an ionic memory (integration of a micro battery) or an image display device (integration of an electrochromic device) in which those devices are integrated.

このように電気化学素子を集積化するには、夫々の対
をなす電極間のみでイオンの流れを起こし、他の電極に
印加された電圧の影響を受けないようにしないとその駆
動回路が複雑になる。例えば単一の電解質層を介してそ
の上下両面に多数の電極対を設けた電気化学素子では、
各電極対間に夫々の電圧が印加された際、電解質層内の
イオンの流れは夫々の電極対間(電解質層の厚み方向)
のみならず、他の電極(電解質層の面方向)との間にも
イオンが流れるという共通電解質効果を生じる。
In order to integrate the electrochemical device in this way, the drive circuit is complicated unless the flow of ions is caused only between the electrodes forming each pair and the influence of the voltage applied to the other electrodes is not exerted. become. For example, in an electrochemical device provided with a large number of electrode pairs on both upper and lower surfaces through a single electrolyte layer,
When each voltage is applied between each electrode pair, the flow of ions in the electrolyte layer is between each electrode pair (in the thickness direction of the electrolyte layer).
In addition to the common electrolyte effect, ions flow not only to other electrodes (in the plane direction of the electrolyte layer).

この共通電解質効果を避けるには、単一素子を電極対
毎に分離する方法と、固体電解質におけるイオン伝導を
その厚み方向のみに与える(以下、イオン伝導の異方性
と称す)方法とがあるが、イオン伝導の異方性について
は、以下の2つの方法が知られている。
In order to avoid this common electrolyte effect, there are a method of separating a single element for each electrode pair and a method of giving ionic conduction in a solid electrolyte only in its thickness direction (hereinafter referred to as anisotropy of ionic conduction). However, the following two methods are known for the anisotropy of ionic conduction.

絶縁性物質からなるシートにその厚さと略等しい粒径
を持つ固体電解質粒子を分散することにより、固体電解
質粒子が前記シートを貫通する部分においてシートの厚
み方向にイオン伝導を生じ、他の方向には固体電解質粒
子間に介在する絶縁性物質がイオンの動きを妨げるた
め、それによりシートの厚み方向にのみイオン伝導を発
現する。
By dispersing the solid electrolyte particles having a particle diameter substantially equal to the thickness of the sheet made of an insulating material, the solid electrolyte particles cause ionic conduction in the thickness direction of the sheet at the portion penetrating the sheet, and in other directions. The insulating substance intervening between the solid electrolyte particles hinders the movement of ions, so that ionic conduction is exhibited only in the thickness direction of the sheet.

固体電解質シートと絶縁性シートとを交互に積層して
これを厚さ方向にスライスすることにより、イオン伝導
性部分と絶縁性部分とをストライプ状に配し、イオン伝
導の異方性を付与する。
By alternately laminating the solid electrolyte sheet and the insulating sheet and slicing this in the thickness direction, the ion conductive portion and the insulating portion are arranged in a stripe shape, and anisotropy of ion conduction is imparted. .

発明が解決しようとする課題 しかし既に合成した目的組成の固体電解質をそのまま
蒸着やスパッタして薄膜に形成すると、前記固体電解質
が一部分解を起こして堆積物の組成が変化し易いのみな
らず、形成条件(例えば、真空度、加熱温度、加熱速
度)によって分解の程度が異なり易いため、目的組成の
薄膜固体電解質を得ることが困難であるという問題があ
る。
However, when the solid electrolyte of the target composition that has already been synthesized is directly deposited or sputtered to form a thin film, not only the composition of the solid electrolyte is liable to be partially decomposed but also the composition of the deposit is easily changed. There is a problem that it is difficult to obtain a thin film solid electrolyte having a target composition because the degree of decomposition easily changes depending on the conditions (for example, degree of vacuum, heating temperature, heating rate).

一方、イオン伝導の異方性については、次のような問
題がある。
On the other hand, the anisotropy of ionic conduction has the following problems.

の方法では、固体電解質粒子が互いに電気的な接触
を持たないように絶縁性物質中に分散された状態にしな
ければならない。このような分散状態を実現するために
は固体電解質粒子の濃度をかなり低いものとしなければ
ならないため、イオン伝導性部分の分布が疎なものとな
り、素子の集積密度を上げることが困難である。又この
方法では、固体電解質粒子の粒径をシートの厚みと略等
しくなるよう揃える必要がある。
In the method (1), the solid electrolyte particles must be dispersed in an insulating material so that they do not make electrical contact with each other. In order to realize such a dispersed state, the concentration of the solid electrolyte particles must be made considerably low, so that the distribution of the ion conductive portion becomes sparse, and it is difficult to increase the integration density of the device. Moreover, in this method, it is necessary to make the particle diameters of the solid electrolyte particles substantially equal to the thickness of the sheet.

の方法では、イオン伝導性部分を数十から数百μm
の厚みとなるようにスライスすることは技術的に困難で
ある。又大面積の薄膜固体電解質を得ようとすれば、固
体電解質シートと絶縁性シートとを幾重にも積層しなけ
ればならない。
In the method of (1), the ion conductive portion is tens to hundreds of μm.
It is technically difficult to slice it to a thickness of. Further, in order to obtain a large area thin film solid electrolyte, the solid electrolyte sheet and the insulating sheet must be laminated in multiple layers.

本発明の第1の目的は、大面積の目的組成の薄膜固体
電解質を容易に製造することができる薄膜固体電解質の
製造方法を提供することにある。
A first object of the present invention is to provide a method for producing a thin film solid electrolyte capable of easily producing a large area thin film solid electrolyte having a desired composition.

本発明の第2の目的は、イオン伝導の異方性を容易に
付与することができる薄膜固体電解質の製造方法を提供
することにある。
A second object of the present invention is to provide a method for producing a thin film solid electrolyte capable of easily imparting anisotropy of ionic conduction.

課題を解決するための手段 第1発明は第1の目的を達成するため、固体電解質を
構成する二種以上の原材料を、それぞれ気化させて気体
状態にし基板上に堆積させた後、この堆積層を加熱する
ことによって薄膜固体電解質を得ることを特徴とする。
尚、前記堆積層を加熱後に急冷することにより、非晶質
の薄膜固体電解質を得ることができる。
Means for Solving the Problems In order to achieve the first object of the first invention, two or more kinds of raw materials constituting a solid electrolyte are vaporized into a gas state to be deposited on a substrate, and then the deposited layer is formed. It is characterized in that a thin film solid electrolyte is obtained by heating.
An amorphous thin film solid electrolyte can be obtained by rapidly cooling the deposited layer after heating.

第2発明は第2の目的を達成するため、固体電解質材
料の堆積層を部分的に加熱することを特徴とする。
In order to achieve the second object, the second invention is characterized in that the deposited layer of the solid electrolyte material is partially heated.

作用 固体電解質の原材料としてタングステン酸銀(Ag2W
O4)とヨウ化銀(AgI)とを用いたAgI-Ag2WO4系の薄膜
固体電解質を例に説明する。
Action As a raw material for solid electrolyte, silver tungstate (Ag 2 W
An AgI-Ag 2 WO 4 based thin film solid electrolyte using O 4 ) and silver iodide (AgI) will be described as an example.

既に合成されたAgI-Ag2WO4系の固体電解質を直接蒸着
やスパッタにより薄膜化しようとすると、ヨウ化銀が一
部分解してヨウ素が飛散したりヨウ化銀とタングステン
酸銀の蒸気圧が大きく異なるため、目的組成の薄膜を得
ることが困難である。これに対して第1発明によれば、
所定厚みのヨウ化銀層とタングステン酸銀層とをそれぞ
れ気化させて気体状態にし基板上に堆積させ、その後、
この堆積層を加熱することによって容易に目的組成の薄
膜固体電解質を得ることができる。
When attempting to thin the AgI-Ag 2 WO 4 solid electrolyte that has already been synthesized by direct vapor deposition or sputtering, silver iodide is partially decomposed and iodine is scattered, and the vapor pressure of silver iodide and silver tungstate increases. Because of the large difference, it is difficult to obtain a thin film having a target composition. On the other hand, according to the first invention,
Each of the silver iodide layer and the silver tungstate layer having a predetermined thickness is vaporized to be in a gas state and deposited on the substrate, and thereafter,
By heating the deposited layer, the thin film solid electrolyte having the target composition can be easily obtained.

一方、ヨウ化銀及びタングステン酸銀のイオン伝導度
は各々室温において〜10-5S/cm及び〜10-9S/cmである。
従ってこれら固体電解質材料の堆積層のイオン伝導度は
〜10-5S/cmを超えることはない。この堆積層を加熱して
溶融反応もしくは固相反応させた場合のイオン伝導度
は、ヨウ化銀とタングステン酸銀の比にもよるが、ヨウ
化銀が80mol%の場合〜10-2S/cmとなり、イオン伝導度
が約3桁向上する。このことによりこれら固体電解質材
料を積層してなる薄膜を部分的に加熱することで、加熱
部分のみが他の部分に比べ103倍のイオン伝導度を有す
ることとなる。このような加熱部分を多数設けることに
より、厚み方向のみにイオン伝導がある薄膜固体電解質
を得ることができる。尚、堆積層を部分的に加熱するに
は、加熱部分を狭い範囲に絞込む必要があることから、
電子ビームの照射又はレーザ光の照射などによって行う
ことが好ましい。
On the other hand, the ionic conductivities of silver iodide and silver tungstate are -10 -5 S / cm and -10 -9 S / cm, respectively at room temperature.
Therefore, the ionic conductivity of the deposited layer of these solid electrolyte materials does not exceed -10 -5 S / cm. The ionic conductivity when the deposited layer is heated to cause a melting reaction or a solid-phase reaction depends on the ratio of silver iodide to silver tungstate, but when silver iodide is 80 mol%, the ion conductivity is ~ 10 -2 S /. cm, which improves the ionic conductivity by about 3 orders of magnitude. As a result, by partially heating the thin film formed by stacking these solid electrolyte materials, only the heated portion has an ion conductivity 10 3 times that of the other portions. By providing a large number of such heating portions, it is possible to obtain a thin film solid electrolyte having ion conduction only in the thickness direction. In addition, in order to partially heat the deposited layer, it is necessary to narrow the heated portion to a narrow range,
It is preferably performed by irradiation with an electron beam or irradiation with a laser beam.

ここで面に沿った方向のイオン伝導については先に述
べたようにイオン伝導度の点からは1/103であるが、薄
膜の厚みが厚み方向のイオン伝導経路の距離に相当し、
また同時に面に沿ったイオン伝導経路の断面積に相当す
ることを考えると、薄膜を薄くすることで厚み方向のイ
オン伝導経路の距離を短くし、面に沿った方向の伝導経
路の断面積を小さなものにすることが同時にできる。こ
のように、薄膜固体電解質の厚みを薄くすることで、更
に厚み方向に対する面に沿った方向のイオン伝導を小さ
なものとすることができる。
The ionic conduction in the direction along the plane is 1/10 3 from the viewpoint of ionic conductivity as described above, but the thickness of the thin film corresponds to the distance of the ionic conduction path in the thickness direction,
At the same time, considering that it corresponds to the cross-sectional area of the ionic conduction path along the surface, the thin film is made thin to shorten the distance of the ionic conduction path in the thickness direction, and the cross-sectional area of the conduction path along the surface is reduced. You can make small things at the same time. By thus reducing the thickness of the thin film solid electrolyte, it is possible to further reduce the ionic conduction in the direction along the plane with respect to the thickness direction.

以上、固体電解質を構成する原材料としてタングステ
ン酸銀とヨウ化銀とを用いたAgI-Ag2WO4系の薄膜固体電
解質を例に説明したが、このような銀イオン導電性の固
体電解質は他にヨウ化銀(AgI)、酸化銀(Ag2O)とXOn
(X=Cr、Mo、P、V、Te、Se、As、B、Si、I、Ge)
で表される酸化物を原材料としたものなどがある。これ
らの原材料よりなる固体電解質は、急冷による非晶質状
態で高いイオン伝導度を示す。従ってその堆積層を加熱
反応の終了後、急冷することにより非晶質の薄膜固体電
解質を得ることができる。尚、このように非晶質状態で
高い伝導度を示すものとしてはLiI-Li2S-SiS2などのリ
チウムイオン導電性のものなどもあり、これらについて
も同様に加熱後に急冷することにより、薄膜固体電解質
を得ることができる。
As described above, the AgI-Ag 2 WO 4 thin film solid electrolyte using silver tungstate and silver iodide as the raw materials constituting the solid electrolyte has been described as an example. Silver iodide (AgI), silver oxide (Ag 2 O) and XO n
(X = Cr, Mo, P, V, Te, Se, As, B, Si, I, Ge)
There is a thing made from the oxide represented by. The solid electrolyte made of these raw materials exhibits high ionic conductivity in an amorphous state by quenching. Therefore, an amorphous thin film solid electrolyte can be obtained by quenching the deposited layer after the heating reaction. It should be noted that there are lithium ion conductive materials such as LiI-Li 2 S-SiS 2 that show high conductivity in the amorphous state in this way, and these are also similarly heated by rapidly cooling, A thin film solid electrolyte can be obtained.

尚、固体電解質の原材料を順次積層してなる堆積物に
ついて説明を行ったが、第2発明は固体電解質原材料の
混合物の堆積物でも同様の効果を得ることができる。
Although the deposit formed by sequentially stacking the solid electrolyte raw materials has been described, the second invention can also obtain the same effect with the deposit of the mixture of the solid electrolyte raw materials.

実施例 以下、本発明の実施例を詳細に説明する。Examples Hereinafter, examples of the present invention will be described in detail.

(実施例1) 固体電解質の原材料として、タングステン酸銀(Ag2W
O4)とヨウ化銀(AgI)とを用い、第3図に示されるよ
うなAgI-Ag2WO4系の銀イオン導電性薄膜固体電解質を以
下の方法により形成した。
(Example 1) As a raw material of a solid electrolyte, silver tungstate (Ag 2 W
O 4 ) and silver iodide (AgI) were used to form an AgI-Ag 2 WO 4 based silver ion conductive thin film solid electrolyte as shown in FIG. 3 by the following method.

ガラス基板1の上に、第1図に示すように、ITO透明
電極2を高周波スパッタ法により形成した後、薄膜固体
電解質の電気伝導度を測定するため銀の可逆性電極とし
て金属銀の薄膜からなる銀電極3、4を抵抗加熱蒸着法
で形成した。続いて、タングステン酸銀層(原材料層)
5とヨウ化銀層(原材料層)6とを順次、電子ビーム加
熱蒸着法及び抵抗加熱蒸着法によりガラス基板1上に堆
積した。
As shown in FIG. 1, an ITO transparent electrode 2 was formed on a glass substrate 1 by a high frequency sputtering method, and a thin film of metallic silver was used as a reversible electrode of silver for measuring the electric conductivity of a thin film solid electrolyte. The silver electrodes 3 and 4 were formed by a resistance heating vapor deposition method. Next, silver tungstate layer (raw material layer)
5 and a silver iodide layer (raw material layer) 6 were sequentially deposited on the glass substrate 1 by an electron beam heating vapor deposition method and a resistance heating vapor deposition method.

以上のようにして得られた堆積層7に対し、第2図に
示すように、50μm間隔で設定された複数の加熱部分8
(直径約10μmの範囲)を電子ビームにより加熱してタ
ングステン酸銀とヨウ化銀とを反応させ、AgI-Ag2WO4
の銀イオン導電性固体電解質を部分的に形成した。
With respect to the deposited layer 7 obtained as described above, as shown in FIG. 2, a plurality of heating portions 8 set at intervals of 50 μm.
(A diameter range of about 10 μm) was heated by an electron beam to react silver tungstate and silver iodide to partially form an AgI—Ag 2 WO 4 system silver ion conductive solid electrolyte.

最後に電気伝導度を測定するための電極として銀電極
9を加熱蒸着法により形成し、第3図に示すように、本
実施例の薄膜固体電解質を得た。
Finally, a silver electrode 9 as an electrode for measuring electric conductivity was formed by a heating vapor deposition method to obtain a thin film solid electrolyte of this example as shown in FIG.

この薄膜固体電解質のイオン伝導性を、20℃における
電気伝導度を薄膜の厚み方向(銀電極3、9間)と面に
沿った方向(銀電極3、4間)とで電気化学インピーダ
ンス測定法により測定することで評価した。その結果、
厚み方向の電気伝導度は1×10-2S/cmであったのに対
し、面に沿った方向の伝導度は、4×10-6S/cmであり、
イオンの伝導に異方性を有する薄膜固体電解質が得られ
てたことが判る。
The ionic conductivity of this thin film solid electrolyte was measured by measuring the electrical conductivity at 20 ° C. in the thickness direction of the thin film (between silver electrodes 3 and 9) and the direction along the surface (between silver electrodes 3 and 4). It evaluated by measuring by. as a result,
The electrical conductivity in the thickness direction was 1 × 10 −2 S / cm, while the electrical conductivity in the direction along the plane was 4 × 10 −6 S / cm,
It can be seen that a thin film solid electrolyte having anisotropy in ion conduction was obtained.

(実施例2) 先ず、金属リチウムとメタノールとを還流管付きフラ
スコ中で反応させLiOCH3を得た。これとSi(OC2H5)4とを
エタノール中でモル比3:2の割合で混合し、固体電解質
の原材料を得た。一方、薄膜固体電解質を形成する基板
として無アルカリガラス基板を用い、伝導度測定用の電
極として白金薄膜を電子ビーム加熱蒸着法により基板上
に実施例1と同様の電極を形成した。
Example 2 First, metallic lithium and methanol were reacted in a flask equipped with a reflux tube to obtain LiOCH 3 . This and Si (OC 2 H 5 ) 4 were mixed in ethanol at a molar ratio of 3: 2 to obtain a raw material for the solid electrolyte. On the other hand, an alkali-free glass substrate was used as a substrate for forming the thin film solid electrolyte, and a platinum thin film was formed as an electrode for conductivity measurement on the substrate by the electron beam heating vapor deposition method to form an electrode similar to that in Example 1.

この基板を前記原材料のエタノール溶液中に浸漬して
一定速度で引上げ、アルゴン気流中で乾燥させて前記原
材料の堆積層であるゲル薄膜を得た。このゲル薄膜が形
成された基板を銅の冷却用ホルダー上に取付け、CO2
ーザのレーザ光により実施例1と同様に50μm間隔の複
数箇所(直径約10μmの範囲)を加熱し、Li2O-SiO2
のリチウムイオン導電性固体電解質を部分的に形成し
た。
This substrate was immersed in an ethanol solution of the raw material, pulled up at a constant rate, and dried in an argon stream to obtain a gel thin film as a deposited layer of the raw material. The substrate on which this gel thin film was formed was mounted on a copper cooling holder, and a plurality of locations (within a diameter of about 10 μm) at intervals of 50 μm were heated by laser light of a CO 2 laser in the same manner as in Example 1 to obtain Li 2 O. A partially formed SiO 2 -based lithium ion conductive solid electrolyte was formed.

最後に電気伝導度を測定するための電極として白金の
薄膜を実施例1と同様に電子ビーム加熱蒸着法により形
成し、本実施例の薄膜固体電解質を得た。
Finally, a platinum thin film was formed as an electrode for measuring electric conductivity by the electron beam heating vapor deposition method in the same manner as in Example 1 to obtain a thin film solid electrolyte of this example.

以上のようにして得られた本実施例の薄膜固体電解質
の電気伝導度を20℃において実施例1と同様に、薄膜の
厚み方向と面に沿った方向とに分けて測定した。その結
果、厚み方向の電気伝導度は5×10-5S/cmであったのに
対し、面に沿った方向の伝導度は2×10-9S/cmであり、
イオンの伝導に異方性を有する薄膜固体電解質が得られ
たことが判る。
The electric conductivity of the thin film solid electrolyte of the present example obtained as described above was measured at 20 ° C. in the same manner as in Example 1 by dividing it into the thickness direction of the thin film and the direction along the surface. As a result, the electric conductivity in the thickness direction was 5 × 10 −5 S / cm, whereas the electric conductivity in the direction along the plane was 2 × 10 −9 S / cm,
It can be seen that a thin film solid electrolyte having anisotropy in ion conduction was obtained.

(実施例3) 固体電解質の原材料として硫化リチウム(Li2S)、硫化
珪素(SiS2)、ヨウ化リチウム(LiI)を用い、LiI-Li2S-
SiS2系のリチウムイオン導電性薄膜固体電解質を以下の
方法により形成した。
(Example 3) Lithium sulfide as a raw material of the solid electrolyte (Li 2 S), silicon sulfide (SiS 2), with lithium iodide (LiI), LiI-Li 2 S-
A SiS 2 based lithium ion conductive thin film solid electrolyte was formed by the following method.

薄膜固体電解質を形成する基板として石英ガラス基板
を用い、伝導度測定用の電極として電子ビーム加熱蒸着
法により基板上に実施例1と同様の電極を白金薄膜によ
り形成した。
A quartz glass substrate was used as a substrate for forming the thin film solid electrolyte, and an electrode similar to that of Example 1 was formed as a platinum thin film on the substrate by an electron beam heating vapor deposition method as an electrode for measuring conductivity.

続いて、硫化珪素層、硫化リチウム層、ヨウ化リチウ
ム層を順次加熱蒸着法により堆積した。
Then, a silicon sulfide layer, a lithium sulfide layer, and a lithium iodide layer were sequentially deposited by the heating vapor deposition method.

以上のようにして得られた堆積層を、実施例2と同様
に冷却用ホルダー上に取付け、CO2レーザのレーザ光に
より加熱し、LiI-Li2S-SiS2系のリチウムイオン導電性
固体電解質を得た。
The deposited layer obtained as described above was mounted on a cooling holder in the same manner as in Example 2 and heated by a laser beam of a CO 2 laser to obtain a LiI-Li 2 S-SiS 2 system lithium ion conductive solid. An electrolyte was obtained.

最後に電気伝導度を測定するための電極として白金の
薄膜を実施例1と同様に電子ビーム加熱蒸着法により形
成し、本実施例の薄膜固体電解質を得た。
Finally, a platinum thin film was formed as an electrode for measuring electric conductivity by the electron beam heating vapor deposition method in the same manner as in Example 1 to obtain a thin film solid electrolyte of this example.

以上のようにして得られた薄膜固体電解質の電気伝導
度を20℃において実施例1と同様に、薄膜の厚み方向と
面に沿った方向とに分けて測定した。その結果、厚み方
向の電気伝導度は6×10-4S/cmであったのに対し、面に
沿った方向の伝導度は3×10-7S/cmであり、イオンの伝
導に異方性を有する薄膜固体電解質が得られたことが判
る。
The electrical conductivity of the thin film solid electrolyte obtained as described above was measured at 20 ° C. in the same manner as in Example 1 by dividing it into the thickness direction of the thin film and the direction along the plane. As a result, the electric conductivity in the thickness direction was 6 × 10 -4 S / cm, while the conductivity in the direction along the plane was 3 × 10 -7 S / cm, which is different from the ionic conduction. It can be seen that a thin film solid electrolyte having a directionality was obtained.

(実施例4) プロトン導電性固体薄膜電解質を以下の方法によって
得た。本実施例においては、第一段階で先ずカリウムイ
オン導電性固体電解質薄膜を得、第二段階で化学処理に
よってカリウムイオンをプロトンに置換する。
Example 4 A proton conductive solid thin film electrolyte was obtained by the following method. In this example, first, a potassium ion conductive solid electrolyte thin film is obtained in the first step, and potassium ions are replaced with protons by a chemical treatment in the second step.

先ず第一段階として、カリウムイオン導電性固体電解
質薄膜(K2ZrSi3O9)を以下の方法によって得た。固体電
解質の原材料としては、水酸化カリウム(KOH)、酸化
ジルコニウム(ZrO2)、酸化ケイ素(SiO2)を用い、これら
をモル比で2:1:3で混合した。この混合物と有機バイン
ダーとしてスチレン−ブタジエン系の合成ゴムとをトル
エン中で混合し、固体電解質原材料のスラリーを得た。
このスラリーを、伝導度測定用の電極として白金薄膜を
電子ビーム加熱蒸着法により基板上に実施例1と同様の
電極を形成した石英ガラス基板上にドクターブレード法
により塗布し、トルエンを減圧下で蒸発させ、固体電解
質の原材料の堆積層を得た。
First, as a first step, a potassium ion conductive solid electrolyte thin film (K 2 ZrSi 3 O 9 ) was obtained by the following method. Potassium hydroxide (KOH), zirconium oxide (ZrO 2 ), and silicon oxide (SiO 2 ) were used as raw materials for the solid electrolyte, and these were mixed at a molar ratio of 2: 1: 3. This mixture was mixed with a styrene-butadiene-based synthetic rubber as an organic binder in toluene to obtain a slurry of a solid electrolyte raw material.
A platinum thin film as an electrode for conductivity measurement was applied to this slurry by a doctor blade method on a quartz glass substrate on which the same electrode as in Example 1 was formed on the substrate by an electron beam heating vapor deposition method, and toluene was applied under reduced pressure. Evaporation gave a deposited layer of raw material for the solid electrolyte.

以上のようにして得られた堆積層を、実施例1と同様
に電子ビームにより部分的に加熱反応させた後、未反応
のスラリーをトルエンで洗い流し、カリウムイオン導電
性固体電解質薄膜を得た。
The deposited layer obtained as described above was partially heated and reacted by an electron beam in the same manner as in Example 1, and then the unreacted slurry was washed away with toluene to obtain a potassium ion conductive solid electrolyte thin film.

以上のようにして得たカリウムイオン導電性薄膜固体
電解質を硫酸中に浸し、カリウムをプロトンで置換し、
プロトン導電性固体電解質薄膜を得た。
The potassium ion conductive thin film solid electrolyte obtained as described above is immersed in sulfuric acid, and potassium is replaced with a proton.
A proton conductive solid electrolyte thin film was obtained.

最後に電気伝導度を測定するための電極として白金の
薄膜を実施例1と同様に電子ビーム加熱蒸着法により形
成し、本実施例の固体薄膜電解質を得た。
Finally, a platinum thin film was formed as an electrode for measuring electric conductivity by the electron beam heating vapor deposition method in the same manner as in Example 1 to obtain a solid thin film electrolyte of this example.

以上のようにして得られた固体電解質薄膜の電気伝導
度を20℃、相対湿度70%の雰囲気中で実施例1と同様
に、薄膜の厚み方向と面に沿った方向とに分けて測定し
た。その結果、厚み方向の電気伝導度は1×10-3S/cmで
あったのに対し、面に沿った方向の伝導度は2×10-6S/
cmであり、イオンの伝導に異方性を有する薄膜固体電解
質が得られたことが判る。
The electrical conductivity of the solid electrolyte thin film obtained as described above was measured in an atmosphere of 20 ° C. and a relative humidity of 70% separately in the thickness direction of the thin film and the direction along the surface, as in Example 1. . As a result, the electric conductivity in the thickness direction was 1 × 10 −3 S / cm, whereas the electric conductivity in the direction along the plane was 2 × 10 −6 S / cm.
It can be seen that a thin film solid electrolyte having anisotropy in ion conduction was obtained.

本発明は上記実施例に示すほか、種々の態様に構成す
ることができる。例えば、固体電解質の原材料とは、実
施例にも挙げたように、化合物単独であるかあるいは複
数の化合物の混合物であるかいずれにかかわらず同様の
効果が得られることはいうまでもない。
The present invention can be constructed in various modes in addition to the above-mentioned embodiments. For example, it goes without saying that the same effect can be obtained regardless of whether the raw material of the solid electrolyte is a compound alone or a mixture of a plurality of compounds, as mentioned in the examples.

発明の効果 第1発明によれば、固体電解質を構成する二種以上の
原材料を、それぞれ気化させて気体状態にし基板上に堆
積させた後、この堆積層を加熱することにより、前記固
体電解質原材料からなる目的組成の薄膜固体電解質を容
易に得ることができる。
EFFECTS OF THE INVENTION According to the first invention, two or more kinds of raw materials constituting the solid electrolyte are vaporized to be in a gas state and deposited on the substrate, and then the deposited layer is heated to thereby produce the solid electrolyte raw material. It is possible to easily obtain a thin film solid electrolyte having a target composition of.

又第2発明によれば、固体電解質材料からなる薄膜状
の堆積物を部分的に加熱してその部分のみに厚さ方向の
イオン導電性を付与することにより、イオン伝導に異方
性を有する薄膜固体電解質を容易に得ることができる。
According to the second aspect of the invention, the thin film-like deposit made of the solid electrolyte material is partially heated to impart ionic conductivity in the thickness direction only to that part, so that the ionic conduction has anisotropy. A thin film solid electrolyte can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第3図は本発明の実施例の製造工程を示す
縦断面図であり、第1図は堆積物形成時の縦断面図、第
2図は部分加熱時の縦断面図、第3図は薄膜固体電解質
の縦断面図である。 5、6……原材料層 7……堆積層 8……加熱部分
1 to 3 are vertical cross-sectional views showing a manufacturing process of an embodiment of the present invention. FIG. 1 is a vertical cross-sectional view during deposit formation, FIG. 2 is a vertical cross-sectional view during partial heating, and FIG. FIG. 3 is a vertical cross-sectional view of the thin film solid electrolyte. 5, 6 ... Raw material layer 7 ... Deposited layer 8 ... Heated part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】固体電解質を構成する二種以上の原材料
を、それぞれ気化させて気体状態にし基板上に堆積させ
た後、この堆積層を加熱することによって薄膜固体電解
質を得ることを特徴とする薄膜固体電解質の製造方法。
1. A thin film solid electrolyte is obtained by vaporizing two or more kinds of raw materials constituting a solid electrolyte to form a gas state and depositing them on a substrate, and then heating the deposited layer. Method for producing thin film solid electrolyte.
【請求項2】固体電解質材料を堆積した後、この堆積層
を部分的に加熱することによって、この加熱部分にイオ
ン伝導性を有する薄膜固体電解質を得ることを特徴とす
る薄膜固体電解質の製造方法。
2. A method for producing a thin film solid electrolyte, which comprises depositing a solid electrolyte material and then partially heating the deposited layer to obtain a thin film solid electrolyte having ion conductivity in the heated portion. .
【請求項3】加熱を、電子ビームの照射又はレーザ光の
照射によって行うことを特徴とする請求項1又は2記載
の薄膜固体電解質の製造方法。
3. The method for producing a thin film solid electrolyte according to claim 1, wherein the heating is performed by irradiation with an electron beam or laser light.
JP9970390A 1990-04-16 1990-04-16 Method for producing thin film solid electrolyte Expired - Fee Related JPH0821255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9970390A JPH0821255B2 (en) 1990-04-16 1990-04-16 Method for producing thin film solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9970390A JPH0821255B2 (en) 1990-04-16 1990-04-16 Method for producing thin film solid electrolyte

Publications (2)

Publication Number Publication Date
JPH03297005A JPH03297005A (en) 1991-12-27
JPH0821255B2 true JPH0821255B2 (en) 1996-03-04

Family

ID=14254422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9970390A Expired - Fee Related JPH0821255B2 (en) 1990-04-16 1990-04-16 Method for producing thin film solid electrolyte

Country Status (1)

Country Link
JP (1) JPH0821255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748866B1 (en) * 2000-12-13 2007-08-13 스미토모덴키고교가부시키가이샤 Method of forming thin film of inogranic solid electrolyte

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2715638B2 (en) * 1990-07-31 1998-02-18 松下電器産業株式会社 Manufacturing method of silver ion conductive solid electrolyte thin film
JPH0495352A (en) * 1990-07-31 1992-03-27 Matsushita Electric Ind Co Ltd Manufacture of thin anisotropic ion conductor film solid electrolyte
CA2487859A1 (en) * 2002-05-29 2004-05-13 The Board Of Trustees Of The Leland Stanford Junior Unversity Solid oxide electrolyte with ion conductivity enhancement by dislocation
JP4201035B2 (en) 2006-09-05 2008-12-24 セイコーエプソン株式会社 Battery element and electronic device
CN109963406B (en) * 2017-12-25 2021-10-19 宏启胜精密电子(秦皇岛)有限公司 Flexible circuit board with embedded resistor and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100748866B1 (en) * 2000-12-13 2007-08-13 스미토모덴키고교가부시키가이샤 Method of forming thin film of inogranic solid electrolyte

Also Published As

Publication number Publication date
JPH03297005A (en) 1991-12-27

Similar Documents

Publication Publication Date Title
Liu et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
Yu et al. A stable thin‐film lithium electrolyte: lithium phosphorus oxynitride
JP2946467B2 (en) Composite device with chalcogenated or oxychalcogenated titanium, particularly suitable for use as a positive electrode in thin film electrochemical cells
US4977007A (en) Solid electrochemical element and production process therefor
Seki et al. Fabrication of high-voltage, high-capacity all-solid-state lithium polymer secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept
JP3917126B2 (en) Solid electrolyte and battery using the same
US4105807A (en) Production of thin, stable, solid electrolyte films of high ionic conductivity
US4731705A (en) Cell for electric double layer capacitors and process for manufacturing such a cell
Mohamedi et al. ESD Fabricated Thin Films of Spinel LiMn2 O 4 for Lithium Microbatteries: I. Effects of Thickness
Asbani et al. Reflow soldering-resistant solid-state 3D micro-supercapacitors based on ionogel electrolyte for powering the internet of things
WO2005103329A2 (en) Manufacturing method
Karajic et al. Bottom-up generation of miniaturized coaxial double electrodes with tunable porosity
JPH0821255B2 (en) Method for producing thin film solid electrolyte
US4211475A (en) Electro-optic display device using a vitreous solid ion-conductive material
Trevisanello et al. Influence of the Polymer Structure and its Crystallization on the Interface Resistance in Polymer-LATP and Polymer-LLZO Hybrid Electrolytes
US10317356B2 (en) Copper(II) oxide and cellulose acetate composite resistance-based humidity sensor
JP4191260B2 (en) Material for anode based on titanium oxysulfide for electrochemical generator and method for producing the same
Uchiyama et al. Vanadium‐Molybdenum Oxides and Their P 2 O 5 Glasses as Intercalation Cathodes for Rechargeable Lithium Cells
Nayak et al. Structural and electrochemical kinetics of Na–Fe–Mn–O thin-film cathode: a synergistic effect of deposition conditions
Kuwabara et al. All-solid-state electrochromic device. 1. Electrophoretic deposition film of proton conductive solid electrolyte
Ramya et al. Proton-conducting membranes: poly (N-vinyl pyrrolidone) complexes with various ammonium salts
Özen et al. An investigation on the half-cell production for transparent secondary type solid-state batteries
Zotti et al. Anodic dissolution of titanium in acetonitrile to Ti (IV) perchlorate and subsequent reductive electrodeposition of amorphous TiO2 films
JPH0495352A (en) Manufacture of thin anisotropic ion conductor film solid electrolyte
US8216741B2 (en) Method for generating an electric power with use of a fuel cell and a fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees