JPH08211429A - Generation of squeezed light and device therefor - Google Patents

Generation of squeezed light and device therefor

Info

Publication number
JPH08211429A
JPH08211429A JP1626095A JP1626095A JPH08211429A JP H08211429 A JPH08211429 A JP H08211429A JP 1626095 A JP1626095 A JP 1626095A JP 1626095 A JP1626095 A JP 1626095A JP H08211429 A JPH08211429 A JP H08211429A
Authority
JP
Japan
Prior art keywords
light
phase
phase conjugate
squeezed
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1626095A
Other languages
Japanese (ja)
Inventor
Noriyuki Hatanaka
憲之 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1626095A priority Critical patent/JPH08211429A/en
Publication of JPH08211429A publication Critical patent/JPH08211429A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE: To improve the controllability of a squeezed state by constituting a resonator of a reflection mirror and first and second phase conjugation mirrors and to obtain the squeezed light of the largely squeezed state even if these phase conjugation mirrors consisting of materials having a small nonlinear optical effect is used. CONSTITUTION: The composite resonator system of a squeezed light generator is composed of the perfect reflection mirror 10 and the phase conjugation mirrors 11, 12. The composite resonator system has mirrors 13 to 15 and beam splitters 16 to 20. Further, the resonator system has a deday line 21, a damper 22 for attenuating the prescribed quantity of the light intensity of an incident laser beam, a light source 23 and a homodyne detector 24. A phase delay circuit of a stationary type formed of optical fibers, etc., or a phase modulation circuit capable of controlling the phase of exit light by the voltage impressed from outside, etc., are usable as the delay line 21. As a result, the generation of the squeezed light of the largely squeezed state is made possible even if the phase conjugation mirrors consisting of the materials having the small nonlinear optical effect are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,スクイズド光の発生方
法および装置に関する。特に,スクイズド状態の制御性
が良く,非線形光学効果の小さい材料からなる位相共役
鏡を用いても,大きなスクイズド状態の光が得られるス
クイズド光の発生方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for generating squeezed light. In particular, the present invention relates to a squeezed light generation method and device that can obtain light in a large squeezed state even if a phase conjugate mirror made of a material having good squeezed state control and a small nonlinear optical effect is used.

【0002】[0002]

【従来の技術】通常,コヒーレント光と呼ばれる光は,
その共役な物理量(例えば,光波の二つの直交する偏波
面の振幅)の量子ゆらぎが対称でかつ最小不確定関係を
満足している光である。ところで,このようなコヒーレ
ント光の検出も量子限界に到達し,それを克服する必要
が生じてきた。一方,コヒーレント状態以外の光の状態
として光スクイズド状態がある。光スクイズド状態と
は,量子ゆらぎが対称ではなく,共役物理量のどちらか
一方のゆらぎが小さい状態であり,この性質を利用する
と,量子状態まで制御された雑音の小さな光量子通信や
各種測定が可能となる。したがって,上述の量子検出限
界の問題の解決を図り,高機能な通信あるいは測定を行
うためには,より大きな(一方の量子ゆらざがより小さ
な)光スクイズド状態の発生が求められている。
2. Description of the Related Art Usually, light called coherent light is
The quantum fluctuations of the conjugate physical quantity (for example, the amplitude of two orthogonal polarization planes of the light wave) are symmetric and satisfy the minimum uncertainty relationship. By the way, detection of such coherent light has reached the quantum limit, and it has become necessary to overcome it. On the other hand, there is an optical squeezed state as a light state other than the coherent state. The optical squeezed state is a state in which quantum fluctuations are not symmetric and fluctuations in either one of the conjugate physical quantities are small. By using this property, it is possible to perform optical quantum communication with small noise controlled to the quantum state and various measurements. Become. Therefore, in order to solve the above-mentioned problem of quantum detection limit and perform high-performance communication or measurement, it is required to generate a larger optical squeezed state (one quantum fluctuation is smaller).

【0003】これまでに,パラメトリック過程をはじめ
としていくつかのスクイズド状態の発生方法が提案され
てきた。その基本とするところは,電磁場の生成(また
は消滅)演算子をat(またはa)としたとき,次式の
ように定義した電磁場の演算子bが,
Up to now, several methods of generating squeezed states have been proposed including the parametric process. The basis is that when the electromagnetic field generation (or annihilation) operator is a t (or a), the electromagnetic field operator b defined as

【0004】[0004]

【数1】 [Equation 1]

【0005】その係数μ,ν間に|μ|2−|ν|2=1
を満足するとき,その一方の直交複素振幅χ2(χ2=i
b−ibt,ただし,iは複素単位)がコヒーレント状
態の真空ゆらぎより小さくなり,その大きさが,
Between the coefficients μ and ν, | μ | 2 − | ν | 2 = 1
If one of the two orthogonal complex amplitudes χ 22 = i
b-ib t , where i is a complex unit) is smaller than the vacuum fluctuation in the coherent state, and its magnitude is

【0006】[0006]

【数2】 [Equation 2]

【0007】で与えられることである。すなわち,この
式は,係数μが大きいほど量子ゆらぎが小さくなること
を示している。また,係数μは概ね非線形光学効果の大
きさに比例するので,大きなスクイズド状態を得るため
には,非線形光学効果の大きな材料が要求される。例え
ば,縮退4光波混合による光スクイズド状態の発生方法
では,図4に見られるように,プロープ光(a)と4光
波混合によって得られる位相共役光(at)を半透鏡で
合成することによってスクイズド状態が得られる(H.P.
Yuen and J.H.Shapiro,Opt. Lett. 4, 334(1979) 参
照)(以下,YSモデルと呼ぶ)。このとき上述の係数
μは
[0007] is given in. That is, this equation shows that the larger the coefficient μ, the smaller the quantum fluctuation. Further, since the coefficient μ is approximately proportional to the magnitude of the nonlinear optical effect, a material having a large nonlinear optical effect is required to obtain a large squeezed state. For example, in the method of generating light squeezed state by degenerate four-wave mixing, as seen in FIG. 4, by synthesizing Puropu light (a) and four-wave mixing by the obtained phase conjugate light (a t) with the semi-transparent mirror A squeezed state can be obtained (HP
See Yuen and JHShapiro, Opt. Lett. 4, 334 (1979)) (hereinafter referred to as YS model). At this time, the above coefficient μ is

【0008】[0008]

【数3】 (Equation 3)

【0009】で与えられる。ここで,LCは光非線形媒
質の長さであり,非線形光学効果の大きさを表す光と物
質の結合定数γ(以後,光結合定数と呼ぶ)は
[0009] Here, L C is the length of the optical nonlinear medium, and the coupling constant γ between the light and the substance, which represents the magnitude of the nonlinear optical effect (hereinafter referred to as the optical coupling constant), is

【0010】[0010]

【数4】 [Equation 4]

【0011】で表される。ここで,hはプランク定数,
cは光速,εは媒質の比誘電率,Ε1とΕ2は対向するポ
ンプ光の複素振幅,ωはポンプ光の周波数,χ(3)は3
次の非線形感受率,φは位相である。したがって,この
場合,大きなスクイズド状態のスクイズド光を得るため
には,非線形光学効果の大きな光材料が必要である。す
なわち,従来は,スクイズド状態の特性が,材料の特性
に支配されていた。
It is represented by Where h is Planck's constant,
c is the speed of light, ε is the relative permittivity of the medium, Ε 1 and Ε 2 are the complex amplitudes of the opposing pump light, ω is the frequency of the pump light, and χ (3) is 3
The following nonlinear susceptibility, φ is the phase. Therefore, in this case, an optical material having a large nonlinear optical effect is required to obtain squeezed light in a large squeezed state. That is, conventionally, the characteristics of the squeezed state are dominated by the characteristics of the material.

【0012】なお,図4において,符号100はYSモ
デルにおけるスクイズド状態の発生系,200はホモダ
イン検波系であり,それぞれ,対向するポンプ光が入射
される光非線形媒質101,ミラー102および10
3,ビームスプリッタ104および105ならびにディ
レイライン106と,ビームスプリッタ201および2
02,局所発振光の発振器203ならびにフォトダイオ
ード204および205によって構成されている。
In FIG. 4, reference numeral 100 is a squeezed state generation system in the YS model, and 200 is a homodyne detection system. The optical nonlinear medium 101, the mirrors 102 and 10 on which the opposing pump lights are incident, respectively.
3, beam splitters 104 and 105 and delay line 106, and beam splitters 201 and 2
02, an oscillator 203 for local oscillation light, and photodiodes 204 and 205.

【0013】また,その後,上述の材料の特性に関する
課題に対して,次に述べる方法によって,材料の種類に
よる影響を低減し,大きなスクイズド光を得るための改
良がなされた。それは,図5に示すように,完全反射鏡
300(通常の反射鏡)と位相共役鏡301で構成され
る共振器の効果を導入することによって,より大きなス
クイズド状態を発生する方法である(B.Yurke, Phys. R
ev. A29, 408 (1984)参照)(以下,Yurkeのモデ
ルと呼ぶ)。この図に示す位相共役鏡301は,それを
形成する光非線形媒質が対向レーザーによってポンプさ
れ,それにプローブ光(入射光)が照射されると,プロ
ーブ光に対する位相共役光(スクイズド光)を発生す
る。この方法では,一回当たりに生成されるスクイズド
状態は小さくても,完全反射鏡300で反射された光を
もう一度入力として非線形光学媒質に導入し,スクイー
ジングの度合い(一方の量子ゆらぎの大きさの変化の度
合い)を高めることができるので,非線形光学効果の比
較的小さな材料でも大きなスクイズド状態が得られる。
この場合,係数μは
Further, thereafter, with respect to the above-mentioned problems relating to the characteristics of the material, improvements were made by the following method to reduce the influence of the material type and obtain a large squeezed light. As shown in FIG. 5, it is a method of generating a larger squeezed state by introducing the effect of a resonator composed of a perfect reflection mirror 300 (normal reflection mirror) and a phase conjugate mirror 301 (B .Yurke, Phys. R
ev. A29, 408 (1984)) (hereinafter referred to as Yurke's model). A phase conjugate mirror 301 shown in this figure generates a phase conjugate light (squeezed light) with respect to the probe light when an optical nonlinear medium forming the same is pumped by an opposed laser and is irradiated with the probe light (incident light). . In this method, even if the squeezed state generated at one time is small, the light reflected by the perfect reflection mirror 300 is again input to the nonlinear optical medium as an input, and the degree of squeezing (one of the quantum fluctuation magnitudes is large). Since the degree of change) can be increased, a large squeezed state can be obtained even with a material having a relatively small nonlinear optical effect.
In this case, the coefficient μ is

【0014】[0014]

【数5】 (Equation 5)

【0015】で与えられる。また,共鳴効果は,2−se
c2(|χ|Lc)=0のとき最大となり,大きなスクイ
ズド状態を得ることができる。しかし,この共鳴効果を
最大とする条件を満足するためには,やはり,非線形光
学効果がある程度,大きい材料が必要であり,大きなス
クイズド状態を発生するにあたっては,現実には課題が
あり,更に,共鳴条件の制御性にも問題がある。
Is given by The resonance effect is 2-se
When c 2 (| χ | L c ) = 0, it becomes maximum, and a large squeezed state can be obtained. However, in order to satisfy the condition for maximizing the resonance effect, a material having a large nonlinear optical effect to some extent is necessary, and there is a problem in reality in generating a large squeezed state. There is also a problem with the controllability of resonance conditions.

【0016】[0016]

【発明が解決しようとする課題】このように従来技術で
は,大きなスクイズド状態を発生させるためには,
(4)式から明らかなように,非線形光学材料の非線形
光学定数によってスクイズド状態が規定されてしまうの
で,大きな非線形光学効果(つまり,大きな非線形感受
率χ(3))を有する非線形光学材料を必要とする,とい
う問題があった。また,スクイズド状態を特徴付ける係
数μが光結合定数γの絶対値のみに依存するため,非線
形光学材料が決まると物質定数は変えられないので,光
結合定数γを制御し得るパラメータは,式(4)から明
らかなように,ポンプ光の強度のみとなり,スクイズド
状態の制御性が悪い,という問題があった。
As described above, in the prior art, in order to generate a large squeezed state,
As is clear from equation (4), the squeezed state is defined by the nonlinear optical constants of the nonlinear optical material, so a nonlinear optical material with a large nonlinear optical effect (that is, a large nonlinear susceptibility χ (3) ) is required. There was a problem that Since the coefficient μ that characterizes the squeezed state depends only on the absolute value of the optical coupling constant γ, the material constant cannot be changed when the nonlinear optical material is determined. Therefore, the parameter that can control the optical coupling constant γ is ), There is a problem that the controllability of the squeezed state is poor because only the intensity of the pump light is present.

【0017】本発明は,スクイズド状態の制御性が良
く,非線形光学効果の小さい材料からなる位相共役鏡を
用いても,大きなスクイズド状態のスクイズド光が得ら
れるスクイズド光の発生方法および装置を提供すること
を目的とする。
The present invention provides a method and an apparatus for generating squeezed light that can obtain squeezed light in a large squeezed state even if a phase conjugate mirror made of a material having a good squeezed state controllability and a small nonlinear optical effect is used. The purpose is to

【0018】[0018]

【課題を解決するための手段】上記の問題点を解決する
ため,本発明のスクイズド光の発生装置は,反射鏡と,
第1の位相共役鏡と,第2の位相共役鏡と,前記第1の
位相共役鏡を励起するポンプ光と前記第2の位相共役鏡
を励起するポンプ光の位相差を制御する位相制御手段を
具備し,光軸上に前記反射鏡と前記第1の位相共役鏡お
よび前記第2の位相共役鏡をこの順に配置して複合共振
器を構成したことを特徴とする。
In order to solve the above problems, the squeezed light generator of the present invention comprises a reflecting mirror,
A first phase conjugate mirror, a second phase conjugate mirror, and phase control means for controlling the phase difference between the pump light that excites the first phase conjugate mirror and the pump light that excites the second phase conjugate mirror. The composite resonator is configured by arranging the reflecting mirror, the first phase conjugate mirror, and the second phase conjugate mirror in this order on the optical axis.

【0019】すなわち,従来の技術(例えば前述のYu
rkeのモデル)では,反射鏡と1つの位相共役鏡とで
共振器を構成していたが,本発明においては,反射鏡と
第1の位相共役鏡と第2の位相共役鏡とから共振器を構
成するところが異なっている。
That is, the conventional technique (for example, the above-mentioned Yu
In the Rke model), the resonator is composed of the reflecting mirror and one phase conjugate mirror, but in the present invention, the resonator is composed of the reflecting mirror, the first phase conjugate mirror and the second phase conjugate mirror. Is different.

【0020】また,本発明においては第2の位相共役鏡
を励起するポンプ光の位相を,第1の位相共役鏡を励起
するポンプ光の位相に対して変えることができるため,
スクイズド状態を特徴付ける係数μをこの位相差によっ
て大きく変化させることができる。そのため,小さい非
線形光学定数を持つ非線形光学材料を用いても,従来よ
りも大きな係数μを得ることができる点が異なってい
る。
Further, in the present invention, the phase of the pump light that excites the second phase conjugate mirror can be changed with respect to the phase of the pump light that excites the first phase conjugate mirror.
The coefficient μ characterizing the squeezed state can be greatly changed by this phase difference. Therefore, the difference is that even if a nonlinear optical material having a small nonlinear optical constant is used, a larger coefficient μ can be obtained than before.

【0021】また,本発明のスクイズド光の発生方法
は,反射鏡と,第1の位相共役鏡と,第2の位相共役鏡
を,この順に光軸上に配置した複合共振器を用い,前記
反射鏡と前記第1の位相共役鏡の間で共鳴を起し,前記
第1の位相共役鏡と前記第2の位相共役鏡の間で共鳴を
起し,前記第1の位相共役鏡を励起するポンプ光の位相
と,前記第2の位相共役鏡を励起するポンプ光の位相と
の位相差を制御してスクイズド光を発生させることを特
徴とする。
Further, the squeezed light generating method of the present invention uses a composite resonator in which a reflecting mirror, a first phase conjugate mirror, and a second phase conjugate mirror are arranged in this order on the optical axis, Resonance occurs between the reflecting mirror and the first phase conjugate mirror, resonance occurs between the first phase conjugate mirror and the second phase conjugate mirror, and the first phase conjugate mirror is excited. The squeezed light is generated by controlling the phase difference between the phase of the pump light to be excited and the phase of the pump light to excite the second phase conjugate mirror.

【0022】すなわち,従来の技術(例えば前述のYu
rkeのモデル)では,反射鏡と1つの位相共役鏡とで
構成される共振器を用いていたが,本発明においては,
反射鏡と第1の位相共役鏡と第2の位相共役鏡とから構
成される共振器を用いるところが異なっている。
That is, the conventional technique (for example, the above-mentioned Yu
In the Rke model), a resonator composed of a reflecting mirror and one phase conjugate mirror was used, but in the present invention,
The difference is that a resonator including a reflecting mirror, a first phase conjugate mirror, and a second phase conjugate mirror is used.

【0023】また,本発明においては第2の位相共役鏡
を励起するポンプ光の位相を,第1の位相共役鏡を励起
するポンプ光の位相に対して変えることができるため,
係数μをこの位相差によって制御することができる。そ
のため,スクイズド状態の制御性を従来に比べ改善する
ことができる。
Further, in the present invention, the phase of the pump light that excites the second phase conjugate mirror can be changed with respect to the phase of the pump light that excites the first phase conjugate mirror.
The coefficient μ can be controlled by this phase difference. Therefore, the controllability of the squeezed state can be improved compared to the conventional case.

【0024】[0024]

【作用】ここでは,図2を参照して,上記Yurkeの
モデルと同様の完全反射鏡30(完全反射鏡300に対
応)および位相共役鏡B32(位相共役鏡31に対応)
からなる光学的配置に,もう一枚の位相共役鏡A31を
付加することによって構成されている本発明による共振
器構造を用いた光スクイズド状態の発生方法について説
明する。上述したようにYurkeのモデルでは,係数
μが(5)式で与えられるように,光結合定数γの絶対
値に依存しているため,その制御性は究めて悪い。しか
し,本発明による構造では,この係数μが
Here, referring to FIG. 2, the perfect reflecting mirror 30 (corresponding to the perfect reflecting mirror 300) and the phase conjugate mirror B32 (corresponding to the phase conjugate mirror 31) similar to the Yurke's model are used.
A method of generating an optical squeezed state using the resonator structure according to the present invention, which is configured by adding another phase conjugate mirror A31 to the optical arrangement consisting of, will be described. As described above, in the Yurke's model, the coefficient μ depends on the absolute value of the optical coupling constant γ as given by the equation (5), and therefore its controllability is extremely poor. However, in the structure according to the present invention, this coefficient μ is

【0025】[0025]

【数6】 (Equation 6)

【0026】[0026]

【数7】 (Equation 7)

【0027】[0027]

【数8】 (Equation 8)

【0028】で与えられる。つまり,図5に示したYu
rkeのモデルと異なり,この場合,係数μが二つの位
相共役鏡A31と位相共役鏡B32の位相差に依存して
いる。したがって,この場合,位相共役鏡A31および
位相共役鏡B32をポンプするレーザーのポンプ光位相
差(φA−φB)を制御することによって,スクイズド状
態の大きさを制御することが可能となる。また,(6)
式は,非線形感受率χ(3)が小さい物質であっても,図
3に示すように,位相差(φA−φB)が小さい領域で
は,大きな係数μを得ることができ,ひいては,大きな
光スクイズド状態を得ることができる,ということを示
している。
Is given by That is, Yu shown in FIG.
Unlike the Rke model, in this case, the coefficient μ depends on the phase difference between the two phase conjugate mirrors A31 and B32. Therefore, in this case, the size of the squeezed state can be controlled by controlling the pump light phase difference (φ A −φ B ) of the laser that pumps the phase conjugate mirror A31 and the phase conjugate mirror B32. Also, (6)
As shown in FIG. 3, even if the material has a small nonlinear susceptibility χ (3) , a large coefficient μ can be obtained in the region where the phase difference (φ A −φ B ) is small, and as a result, It shows that a large optical squeezed state can be obtained.

【0029】[0029]

【実施例】以下,図面を参照して,本発明の一実施例に
ついて説明する。図1は,本発明の一実施例によるスク
イズド光の発生装置の光学系の配層を示すブロック図で
ある。この図において,10は図5に示す完全反射鏡3
00と同様の完全反射鏡,11および12はそれぞれ図
5に示す位相共役鏡301と同様の位相共役鏡であり,
これらによってスクイズド光の発生装置の複合共振器系
が構成されている。13,14および15はミラーであ
り,16,17,18,19および20はビームスプリ
ッタである。また,21はディレイライン,22は入射
されたレーザーの光強度を所定量減衰させるダンパー,
23は光源,24はホモダイン検波器である。なお,デ
ィレイライン21としては,光ファイバ等によって形成
される固定式の位相遅延回路,あるいは,外部から印加
される電圧によって出射光の位相を制御可能な位相変調
回路等を用いることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a layer arrangement of an optical system of a squeezed light generator according to an embodiment of the present invention. In this figure, 10 is the perfect reflecting mirror 3 shown in FIG.
00 is a perfect reflection mirror, 11 and 12 are phase conjugate mirrors similar to the phase conjugate mirror 301 shown in FIG.
These constitute a composite resonator system of the squeezed light generator. Reference numerals 13, 14 and 15 are mirrors, and reference numerals 16, 17, 18, 19, and 20 are beam splitters. Further, 21 is a delay line, 22 is a damper for attenuating the light intensity of the incident laser by a predetermined amount,
Reference numeral 23 is a light source, and 24 is a homodyne detector. As the delay line 21, a fixed phase delay circuit formed of an optical fiber or the like, or a phase modulation circuit capable of controlling the phase of emitted light by a voltage applied from the outside can be used.

【0030】このような構成によって,光源23から出
射されたレーザーは,ビームスプリッタ16で分波さ
れ,分波されたレーザーの一方はビームスプリッタ17
へ進み,他方はビームスプリッタ19へ進む。そして,
ビームスプリッタ17へ到達したレーザーは,再び分波
されて一方はダンパー22へ進み,さらにビームスプリ
ッタ20を透過して,位相共役鏡11へプローブ光とし
て入射され,他方はミラー13へ進み,そこで反射され
て,ビームスプリッタ18へ進む。ビームスプリッタ1
8では,ミラー13から入射されたレーザーが分波さ
れ,一方は位相共役鏡11へ,ポンプ光(ここでは,例
えば前進ポンプ光とする)として入射され,他方は,ミ
ラー14で反射されて,位相共役鏡12へ,この場合,
同様に前進ポンプ光として入射される。
With this structure, the laser emitted from the light source 23 is demultiplexed by the beam splitter 16, and one of the demultiplexed lasers is beam splitter 17.
To the beam splitter 19. And
The laser that has reached the beam splitter 17 is demultiplexed again, one of which advances to the damper 22, further passes through the beam splitter 20, enters the phase conjugate mirror 11 as probe light, and the other advances to the mirror 13 and is reflected there. Then, the process proceeds to the beam splitter 18. Beam splitter 1
In 8, the laser incident from the mirror 13 is demultiplexed, one is incident on the phase conjugate mirror 11 as pump light (here, for example, forward pump light), and the other is reflected by the mirror 14, To the phase conjugate mirror 12, in this case,
Similarly, it is incident as forward pump light.

【0031】また,ビームスプリッタ16を透過して,
ビームスプリッタ19へ達したレーザーは,分波され,
一方はディレイライン21を介して,位相共役鏡11
へ,この場合,後進ポンプ光として入射され,他方はミ
ラー15で反射され,位相共役鏡12へ,この場合,後
進ポンプ光として入射される。
Further, after passing through the beam splitter 16,
The laser reaching the beam splitter 19 is demultiplexed,
One is via the delay line 21 and the phase conjugate mirror 11
In this case, the backward pump light is incident, and the other is reflected by the mirror 15 and is incident on the phase conjugate mirror 12 in this case as the backward pump light.

【0032】また,位相共役鏡11を透過した透過プロ
ーブ光は,プローブ光として位相共役鏡12へ入射さ
れ,そして位相共役鏡12を透過した透過プローブ光
は,完全反射鏡10へ向けて出射される。そして,完全
反射鏡10で反射されたレーザーは,再び位相共役鏡1
2へ入射される。また,位相共役鏡12から出射された
位相共役光は,位相共役鏡11へ入射され,そして,位
相共役鏡11から出射された位相共役光,すなわちスク
イズド光は,ビームスプリッタ20で反射されて,ホモ
ダイン検波器24へ入射される。
The transmitted probe light transmitted through the phase conjugate mirror 11 is incident on the phase conjugate mirror 12 as probe light, and the transmitted probe light transmitted through the phase conjugate mirror 12 is emitted toward the perfect reflection mirror 10. It Then, the laser reflected by the perfect reflection mirror 10 is again reflected by the phase conjugate mirror 1
2. Further, the phase conjugate light emitted from the phase conjugate mirror 12 is incident on the phase conjugate mirror 11, and the phase conjugate light emitted from the phase conjugate mirror 11, that is, the squeezed light is reflected by the beam splitter 20, It is incident on the homodyne detector 24.

【0033】この実施例では,位相共役鏡11および1
2を形成する光非線形媒質として媒質長Lc=1cmの
二硫化炭素(CS2)を用いるものとする。この場合,
非線形感受率はχ(3)=7.2×10-212/V2である。こ
れらを光源23から出射された波長694nmのレーザー
で対向ポンプすると,各光非線形媒質は位相共役鏡とし
て機能する。また,これらに,同じ光源23から導かれ
るプローブ光を照射すると,縮退四光波混合によって,
プローブ光に対する位相共役光が得られる。ただし,プ
ローブ光は位相共役鏡に対して垂直に入射するが,対向
ポンプ光はプローブ光とkc=kb+kf−kp=0の関係
を満たすように配置されている。ここで,kc,kf,k
b,kpはそれぞれ,位相共役光,前進ポンプ光,後進ポ
ンプ光,プローブ光の波数ベクトルである。この関係
は,縮退四光波混合による位相共役光発生のための条件
である。
In this embodiment, the phase conjugate mirrors 11 and 1 are
It is assumed that carbon disulfide (CS 2 ) having a medium length L c = 1 cm is used as an optical nonlinear medium forming 2. in this case,
The nonlinear susceptibility is χ (3) = 7.2 × 10 -21 m 2 / V 2 . When these are opposed-pumped by a laser having a wavelength of 694 nm emitted from the light source 23, each optical nonlinear medium functions as a phase conjugate mirror. When these are irradiated with probe light guided from the same light source 23, degenerate four-wave mixing causes
Phase conjugate light for the probe light is obtained. However, the probe light is incident perpendicularly to the phase conjugate mirror, but the opposed pump light is arranged so as to satisfy the relationship of k c = k b + k f −k p = 0 with the probe light. Where k c , k f , k
b and k p are wave number vectors of the phase conjugate light, the forward pump light, the backward pump light, and the probe light, respectively. This relationship is a condition for generating phase conjugate light by degenerate four-wave mixing.

【0034】以上の条件が満足されると,各位相共役鏡
11,12で発生する位相共投光と透過プローブ光が,
共振器系によって,混合され,スクイズド光となり,更
に共鳴効果によって,スクイージングの度合いが高めら
れる。共鳴条件は,この図にあるように例えば一つのポ
ンプ光にデレイライン21を設け,位相共役鏡(この場
合,位相共役鏡11)に照射されるポンプ光の位相を変
えることによって制御することができる。また,この図
に示す共振器系から出射した光は,大さな光スクイズド
状態となっていて,通常スクイズド光の検出に用いられ
ているホモダイン検波器24によって検出することがで
きる。
When the above conditions are satisfied, the phase co-projection light and the transmitted probe light generated by the phase conjugate mirrors 11 and 12 are
The resonator system mixes the light into squeezed light, and the resonance effect further enhances the degree of squeezing. The resonance condition can be controlled, for example, by providing one pump light with a delay line 21 and changing the phase of the pump light applied to the phase conjugate mirror (in this case, the phase conjugate mirror 11) as shown in this figure. . Further, the light emitted from the resonator system shown in this figure is in a large optical squeezed state and can be detected by the homodyne detector 24 which is usually used for detecting squeezed light.

【0035】次に,以上の状況下で発生するスクイズド
光の大きさを評価してみる。ポンプ光強度を2×1010
/m2とすると,二硫化炭素CS2の光結合定数γは3.92
-1であり,光結合定数γの絶対値と媒質長Lcとの積
は,|γ|Lc=0.392と,非常に小さい値となる。そし
て,この|γ|Lcの値に基づく係数μの値は,図4に
示すYSモデルではμ=1.08であり,図5に示すYur
keのモデルでも,μ=1.41にしかならない。しかし,
本実施例の構造では,図3に示すように,ポンプ光の位
相差が零に近い領域で係数μの値は大きく,したがっ
て,両者に比較して大きな光スクイズド状態を得ること
ができる。
Next, the magnitude of the squeezed light generated under the above conditions will be evaluated. Pump light intensity 2 × 10 10 W
/ M 2 , the photocoupling constant γ of carbon disulfide CS 2 is 3.92.
m −1 , and the product of the absolute value of the optical coupling constant γ and the medium length L c is | γ | L c = 0.392, which is a very small value. The value of the coefficient μ based on the value of | γ | L c is μ = 1.08 in the YS model shown in FIG. 4, and Yur shown in FIG.
Even with the ke model, μ is only 1.41. However,
In the structure of the present embodiment, as shown in FIG. 3, the value of the coefficient μ is large in the region where the phase difference of the pump light is close to zero, so that a larger optical squeezed state can be obtained compared to both.

【0036】[0036]

【発明の効果】以上説明したように,本発明のスクイズ
ド光の発生方法および装置を用いれば,非線形光学効果
の小さな材料からなる位相共役鏡を用いても,大きなス
クイズド状態のスクイズド光の発生が初めて実現可能と
なる。また2つの位相共役鏡を励起するポンプ光の位相
差によりスクイズド光のスクイズド状態を制御性よく制
御することができる。
As described above, by using the squeezed light generating method and apparatus of the present invention, even if a phase conjugate mirror made of a material having a small nonlinear optical effect is used, a large squeezed light is generated. It will be possible for the first time. Further, the squeezed state of the squeezed light can be controlled with good controllability by the phase difference between the pump lights that excite the two phase conjugate mirrors.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるスクイズド光の発生
装置の光学系の配置を示すブロック図である。
FIG. 1 is a block diagram showing the arrangement of an optical system of a squeezed light generator according to an embodiment of the present invention.

【図2】本発明による二つの位相共役鏡と通常鏡によっ
て構成された共振器系に入射した光が,光スクイズド状
態として出射する様子を示した模式図である。
FIG. 2 is a schematic diagram showing a state in which light incident on a resonator system composed of two phase conjugate mirrors and a normal mirror according to the present invention is emitted in an optical squeezed state.

【図3】係数μのポンプ光位相差(rad)依存性を示
す図である。
FIG. 3 is a diagram showing a pump light phase difference (rad) dependency of a coefficient μ.

【図4】従来の技術によるプローブ光と4光波混合によ
って得られる位相共役光を半透鏡で合成することによっ
て得られる光スクイズド状態の発生方法(縮退4光波混
合)を示す図である。
FIG. 4 is a diagram showing a method of generating an optical squeezed state (degenerate four-wave mixing) obtained by combining a probe light and a phase conjugate light obtained by four-wave mixing according to a conventional technique with a semi-transparent mirror.

【図5】従来の技術による完全反射鏡と位相共役鏡によ
る共鳴効果を用いた光スクイズド状態の発生方法を示す
図である。
FIG. 5 is a diagram showing a method of generating an optical squeezed state using a resonance effect of a perfect reflection mirror and a phase conjugate mirror according to a conventional technique.

【符号の説明】[Explanation of symbols]

10 完全反射鏡 11,12 位相共役鏡 21 ディレイライン 10 Perfect Reflector 11, 12 Phase Conjugate Mirror 21 Delay Line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反射鏡と,第1の位相共役鏡と,第2の
位相共役鏡と,前記第1の位相共役鏡を励起するポンプ
光と前記第2の位相共役鏡を励起するポンプ光の位相差
を制御する位相制御手段を具備し,光軸上に前記反射鏡
と前記第1の位相共役鏡および前記第2の位相共役鏡を
この順に配置して複合共振器を構成したことを特徴とす
るスクイズド光の発生装置。
1. A reflecting mirror, a first phase conjugate mirror, a second phase conjugate mirror, pump light for exciting the first phase conjugate mirror, and pump light for exciting the second phase conjugate mirror. And a phase control means for controlling the phase difference between the reflection mirror, the first phase conjugate mirror, and the second phase conjugate mirror are arranged in this order on the optical axis to form a composite resonator. Characteristic squeezed light generator.
【請求項2】 反射鏡と,第1の位相共役鏡と,第2の
位相共役鏡を,この順に光軸上に配置した複合共振器を
用い,前記反射鏡と前記第1の位相共役鏡の間で共鳴を
起し,前記第1の位相共役鏡と前記第2の位相共役鏡の
間で共鳴を起し,前記第1の位相共役鏡を励起するポン
プ光の位相と,前記第2の位相共役鏡を励起するポンプ
光の位相との位相差を制御してスクイズド光を発生させ
ることを特徴とするスクイズド光の発生方法。
2. A reflection mirror, a first phase conjugate mirror, and a second phase conjugate mirror are used, and a complex resonator in which the reflection mirror, the first phase conjugate mirror, and the second phase conjugate mirror are arranged in this order on the optical axis is used. Between the first phase conjugate mirror and the second phase conjugate mirror, and a phase of the pump light that excites the first phase conjugate mirror; A method for generating squeezed light, which comprises generating a squeezed light by controlling a phase difference from the phase of pump light that excites the phase conjugate mirror.
JP1626095A 1995-02-02 1995-02-02 Generation of squeezed light and device therefor Pending JPH08211429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1626095A JPH08211429A (en) 1995-02-02 1995-02-02 Generation of squeezed light and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1626095A JPH08211429A (en) 1995-02-02 1995-02-02 Generation of squeezed light and device therefor

Publications (1)

Publication Number Publication Date
JPH08211429A true JPH08211429A (en) 1996-08-20

Family

ID=11911598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1626095A Pending JPH08211429A (en) 1995-02-02 1995-02-02 Generation of squeezed light and device therefor

Country Status (1)

Country Link
JP (1) JPH08211429A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191410A (en) * 2005-01-07 2006-07-20 Hitachi Ltd Quantum optical transmission apparatus, and quantum light generator therefor
US7738793B2 (en) * 2005-11-02 2010-06-15 Hitachi, Ltd. Secure optical communication system
CN106679943A (en) * 2017-01-10 2017-05-17 山西大学 Method for measuring escape efficiency of optical parametric oscillation chamber
CN113994552A (en) * 2019-07-09 2022-01-28 株式会社金门光波 Laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006191410A (en) * 2005-01-07 2006-07-20 Hitachi Ltd Quantum optical transmission apparatus, and quantum light generator therefor
US7738793B2 (en) * 2005-11-02 2010-06-15 Hitachi, Ltd. Secure optical communication system
CN106679943A (en) * 2017-01-10 2017-05-17 山西大学 Method for measuring escape efficiency of optical parametric oscillation chamber
CN106679943B (en) * 2017-01-10 2019-01-29 山西大学 A method of measurement optics parametric oscillator (opo) escape efficiency
CN113994552A (en) * 2019-07-09 2022-01-28 株式会社金门光波 Laser device
CN113994552B (en) * 2019-07-09 2024-05-24 株式会社金门光波 Laser device

Similar Documents

Publication Publication Date Title
Polzik et al. Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit
US6388799B1 (en) Optical device and imaging system
CA1215767A (en) Brillouin ring laser
Ma et al. Optical heterodyne spectroscopy enhanced by an external optical cavity: toward improved working standards
Shepherd et al. Wavelength dependence of coherently induced transparency in a Doppler-broadened cascade medium
JP2000338037A (en) Cavity ringdown system for detecting light heterodyne
US20020171912A1 (en) Laser light generating apparatus and method
JPH09505148A (en) Reduction of Kerr effect error in resonator fiber optic gyroscope
US4778261A (en) Method and apparatus for non-frequency-shifted, phase conjugation of optical waves by brillouin-enhanced four-wave mixing
Nicati et al. Frequency stability of a Brillouin fiber ring laser
US4364014A (en) Optical modulator
JPS63279115A (en) Measuring device with laser and annular resonator
JPH08211429A (en) Generation of squeezed light and device therefor
Camy et al. Recent developments in high resolution saturation spectroscopy obtained by means of acousto-optic modulators
Henningsen Determination of dipole moments in vibrationally excited CH3OH by combined far infrared laser Stark effect and transferred Lamb dip spectroscopy
US4765740A (en) Optical apparatus based on measurement of phase or frequency shift of an oscillating beam, particularly useful as an optical gyro
JPH03145777A (en) Harmonic generating laser device
Vallet et al. Phase-conjugation and self-oscillation with copropagating cross-polarized beams
Chickarmane et al. Squeezed light in a frontal-phase-modulated signal-recycled interferometer
Shaddock et al. Experimental demonstration of resonant sideband extraction in a Sagnac interferometer
JP3880791B2 (en) High-precision optical frequency marker generation method and apparatus
JPH0792434B2 (en) A method for measuring the nonlinear refractive index coefficient of a bistable resonant cavity optical device.
US4951286A (en) Device and method for squeezed state generation by a coupled system
JP3199836B2 (en) Wavelength conversion laser device
Xia et al. Phase shifts and intensity dependence in frequency-modulation spectroscopy