JPH08210718A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH08210718A
JPH08210718A JP22054895A JP22054895A JPH08210718A JP H08210718 A JPH08210718 A JP H08210718A JP 22054895 A JP22054895 A JP 22054895A JP 22054895 A JP22054895 A JP 22054895A JP H08210718 A JPH08210718 A JP H08210718A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
air conditioner
outdoor heat
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22054895A
Other languages
Japanese (ja)
Inventor
Atsuyumi Ishikawa
敦弓 石川
Yasutomo Akutsu
保朋 阿久津
Norio Abukawa
則男 虻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22054895A priority Critical patent/JPH08210718A/en
Publication of JPH08210718A publication Critical patent/JPH08210718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To provide an air conditioner in which both the efficiencies at the times of cooling and heating can be improved. CONSTITUTION: In an air conditioner in which mixed refrigerant is circulated to an outdoor heat exchanger 1 which is operated as a condenser at the time of cooling and operated as an evaporator at the time of heating, a controller 10 so reverses the rotation of the motor 8 of a blower 7 at the times of cooling and heating that the directions C2 and W2 of an air flow by the blower 7 for supplying heat exchange atmosphere in the direction C1, W1 of feeding refrigerant in the exchanger 1. Thus, since the flow of the atmosphere becomes in response to the temperature glide of the mixed refrigerant, the heat exchanging efficiency of the outdoor exchanger at the times of cooling and heating is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、室内熱交換器及び室外
熱交換器を有する冷媒回路に冷媒を循環させて冷房及び
暖房運転を行う空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner which performs cooling and heating operations by circulating a refrigerant in a refrigerant circuit having an indoor heat exchanger and an outdoor heat exchanger.

【0002】[0002]

【従来の技術】圧縮機、室内熱交換器、減圧装置、室外
熱交換器を有する冷媒回路に混合冷媒を循環させて冷房
運転及び暖房運転を行う空気調和機(冷暖房装置)とし
て、実開昭63−194221号公報に開示されている
技術が公知である。この公報に開示されている冷暖房装
置には冷房時と暖房時とで室外熱交換器を通過する空気
の流れ方向を逆転するようにその回転方向が正逆転可能
な構成が開示されている。
2. Description of the Related Art As an air conditioner (cooling and heating device) which performs a cooling operation and a heating operation by circulating a mixed refrigerant in a refrigerant circuit having a compressor, an indoor heat exchanger, a pressure reducing device, and an outdoor heat exchanger, it is practically used. The technique disclosed in Japanese Patent Laid-Open No. 63-194221 is known. The air conditioner disclosed in this publication discloses a configuration in which the direction of rotation of the air can be reversed so as to reverse the flow direction of air passing through the outdoor heat exchanger during cooling and during heating.

【0003】[0003]

【発明が解決しようとする課題】ところが、この上述の
従来の空気調和機では、室外熱交換器における冷媒の流
れ方向との関係において冷媒と熱交換する空気の流れ方
向を冷房運転時、暖房運転時共に冷媒の流れ方向に対し
て、対向流にするものでない。
However, in the above-described conventional air conditioner, the flow direction of the air that exchanges heat with the refrigerant in the relationship with the flow direction of the refrigerant in the outdoor heat exchanger is the cooling operation or the heating operation. At any given time, the flow does not face the flow direction of the refrigerant.

【0004】また、別の従来の空気調和機では、室外熱
交換器に外気を送風する送風機は一方向にのみ回転する
ものであり冷房時には冷媒の流れと空気の流れは対向流
になるものの、暖房時には冷媒の流れと空気の流れは平
行流(同一方向への流れ)になる。
In another conventional air conditioner, the blower for blowing the outside air to the outdoor heat exchanger rotates only in one direction, and the refrigerant flow and the air flow are counterflows during cooling. During heating, the flow of the refrigerant and the flow of the air are parallel flows (flows in the same direction).

【0005】ところで、近年においては、オゾン層の破
壊を防止する目的等から、特開昭54ー2561号公報
に開示されているように、問題となる塩素を含む冷媒を
用いず、問題のない冷媒を混ぜ合わせて同等の能力が得
られるようにした混合冷媒(冷媒R32、R125、R
134aを23:25:52の重量比で混ぜた非共沸混
合冷媒、または冷媒R32、R125を50:50の重
量比で混ぜた疑似共沸混合冷媒、さらにはこれらと同等
の重量比で混ぜた混合冷媒など)を用いたものが知られ
ている。
By the way, in recent years, for the purpose of preventing the destruction of the ozone layer and the like, as disclosed in Japanese Patent Application Laid-Open No. 54-2561, there is no problem because a refrigerant containing chlorine, which is a problem, is not used. Mixed refrigerants (refrigerants R32, R125, R
134a is a non-azeotropic mixed refrigerant in which it is mixed in a weight ratio of 23:25:52, or a pseudo-azeotropic mixed refrigerant in which refrigerants R32 and R125 are mixed in a weight ratio of 50:50, and is also mixed in a weight ratio equivalent to these. Mixed refrigerants, etc.) are known.

【0006】かかる混合冷媒は、図5に示すように、混
ぜ合わせる冷媒の特性の違いからその凝縮過程及び蒸発
過程では、圧力一定でも温度が変化する(温度グライ
ド)。したがって、例えば上記したような非共沸混合冷
媒を用い室外熱交換器が凝縮器として作用する場合に
は、冷媒の入口温度の方が高く、出口側温度の方が低く
なり、入口と出口とでは例えば約6度の温度差が生じる
場合もある。尚、この温度差は混ぜ合わせる冷媒によっ
て異なる。
As shown in FIG. 5, the temperature of the mixed refrigerant changes in the condensation process and the evaporation process even if the pressure is constant (temperature glide) due to the difference in the characteristics of the mixed refrigerant. Therefore, for example, when the outdoor heat exchanger using a non-azeotropic mixed refrigerant as described above acts as a condenser, the inlet temperature of the refrigerant is higher, the outlet side temperature is lower, the inlet and the outlet Then, for example, a temperature difference of about 6 degrees may occur. It should be noted that this temperature difference differs depending on the mixed refrigerant.

【0007】このような混合冷媒を用いた空冷の室外熱
交換器において、冷媒の流れに対して平行(同一方向
に)熱交換用の空気を流したのでは、空気の温度変化と
冷媒の温度変化とが相反する方向になり、冷房運転時に
は室外熱交換器における熱交換量の増加が望めない。同
時に暖房運転時には室外熱交換器は蒸発器として作用す
るが、この場合に冷媒の流れ方向に対して平行に熱交換
用の空気を流したのでは、冷媒の入口側が出口側より低
い温度になるために着霜しやすく過冷却度を大きくする
ことができない。
In the air-cooled outdoor heat exchanger using such mixed refrigerant, if air for heat exchange is made to flow in parallel (in the same direction) to the flow of the refrigerant, the temperature change of the air and the temperature of the refrigerant The change is in the opposite direction, and an increase in the amount of heat exchange in the outdoor heat exchanger cannot be expected during the cooling operation. At the same time, during the heating operation, the outdoor heat exchanger acts as an evaporator, but in this case, if the air for heat exchange is made to flow in parallel to the flow direction of the refrigerant, the inlet side of the refrigerant will have a lower temperature than the outlet side. Therefore, frost is easily formed and the degree of supercooling cannot be increased.

【0008】従って、上述した従来の空気調和機におい
ては、冷房の効率と暖房の効率を共に上げることができ
ないという問題がある。
Therefore, in the above-mentioned conventional air conditioner, there is a problem that both cooling efficiency and heating efficiency cannot be improved.

【0009】そこで、本発明は上記課題を解消するため
に、冷房運転時の効率と暖房運転時の効率を共に向上で
きる空気調和機を提供することを目的としている。
Therefore, in order to solve the above problems, an object of the present invention is to provide an air conditioner capable of improving both the efficiency during cooling operation and the efficiency during heating operation.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の発明
は、冷房運転時に凝縮器として作用し、暖房運転時に蒸
発器として作用するように冷媒の流れ方向が切り換えら
れる室外熱交換器に複数の冷媒を混ぜた混合冷媒を循環
させて空気調和運転を可能に成した空気調和機におい
て、室外熱交換器内を流れる冷媒と熱交換される外気の
送風方向が冷媒の流れ方向と対向するように、冷房運転
時と暖房運転時とにおける外気の送風方向を変える制御
部を備えることを特徴とする。
According to a first aspect of the present invention, a plurality of outdoor heat exchangers are provided in which the flow direction of the refrigerant is switched so that the refrigerant acts as a condenser during cooling operation and acts as an evaporator during heating operation. In an air conditioner that circulates a mixed refrigerant mixed with the refrigerant described above to enable an air conditioning operation, the blowing direction of the outside air that is heat-exchanged with the refrigerant flowing in the outdoor heat exchanger is opposite to the flowing direction of the refrigerant. In addition, a control unit that changes the blowing direction of the outside air during the cooling operation and the heating operation is provided.

【0011】請求項1に記載の発明では、制御部は冷房
運転又は暖房運転を検知すると送風用のファンが正転又
は逆転するように送風機に対して指令を与えて、冷房時
には室外熱交換器における冷媒の流れ方向に対して送風
機による空気の流れ方向を対向流とする。暖房時にも室
外熱交換器における冷媒の流れ方向に対し、送風機によ
る空気の流れの方向を対向流とする。これにより、冷房
運転時及び暖房運転時の双方において室外熱交換器での
熱交換量の増加を図って、冷房運転の効率及び暖房運転
の効率を共に向上することができる。
According to the first aspect of the present invention, when the control section detects the cooling operation or the heating operation, the control section gives a command to the blower so that the fan for the blower may rotate normally or reversely, and the outdoor heat exchanger at the time of cooling. The flow direction of the air by the blower is the counter flow with respect to the flow direction of the refrigerant in. Even during heating, the flow direction of the air by the blower is set to be the counter flow with respect to the flow direction of the refrigerant in the outdoor heat exchanger. As a result, the amount of heat exchange in the outdoor heat exchanger can be increased during both the cooling operation and the heating operation, and both the cooling operation efficiency and the heating operation efficiency can be improved.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施例図1乃至図
5を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS.

【0013】図1に示すように、空気調和機は、室外熱
交換器1と室内熱交換器2を備える分離型の空気調和機
であり、室外熱交換器1、圧縮機6、四方弁5、室内熱
交換器2、バルブ4の順序で冷媒管により接続されて冷
媒回路を構成している。
As shown in FIG. 1, the air conditioner is a separate type air conditioner having an outdoor heat exchanger 1 and an indoor heat exchanger 2, and includes an outdoor heat exchanger 1, a compressor 6, and a four-way valve 5. The indoor heat exchanger 2 and the valve 4 are connected in this order by a refrigerant pipe to form a refrigerant circuit.

【0014】室外熱交換器1は送風機7を備えており、
この送風機7は、DCモータ8と、このDCモータ8の
回転とともに回転されるファン9を備えている。DCモ
ータ8は制御部10によって印加される電圧の極性に応
じて正回転又は逆回転されるようになっており、リモコ
ン11のモード切り換えスイッチが押されると、制御部
10に、暖房運転又は冷房運転の信号が発せられるよう
になっている。
The outdoor heat exchanger 1 is equipped with a blower 7,
The blower 7 includes a DC motor 8 and a fan 9 that rotates with the rotation of the DC motor 8. The DC motor 8 is configured to rotate normally or reversely depending on the polarity of the voltage applied by the control unit 10. When the mode changeover switch of the remote controller 11 is pressed, the control unit 10 is instructed to perform heating operation or cooling operation. A driving signal is emitted.

【0015】この制御部10は、冷房運転又は暖房運転
を検知し、各運転モードの場合に室外熱交換器を流れる
冷媒の流れに対して、ここに熱交換のために送風される
外気の流れを常に対向流となるように送風機7のファン
の回転方向を正転又は反転させるように、DCモータ8
を駆動するものである。
The control unit 10 detects a cooling operation or a heating operation, and in contrast to the flow of the refrigerant flowing through the outdoor heat exchanger in each operation mode, the flow of the outside air blown for heat exchange there. The DC motor 8 so that the direction of rotation of the fan of the blower 7 is normally or reversely rotated so that the air flows in the opposite direction.
Is to drive.

【0016】空気調和機の冷媒回路を循環する冷媒とし
ては、高沸点冷媒と低沸点冷媒とからなる非共沸混合冷
媒が用いられる。非共沸混合冷媒としては、たとえばR
134aを52Wt%、R125を25Wt%、R32
を23Wt%で混合した3種混合冷媒が用いられる。一
般に、R134aの沸点は−26度、R125の沸点は
−48度、R32の沸点は−52度である。このような
組成比の3種混合冷媒では、一般的に、蒸発時には沸点
の低いR32やR125から先に蒸発しやすく、凝縮時
には沸点の低いR32やR125から凝縮しやすいため
に、熱交換器内で組成比が変化して、図5に示すよう
に、温度グライドTが生じる。すなわち、冷媒温度は、
凝縮器として作用する室外熱交換器の入口側が最も温度
が高く、出口側ほど温度が低くなる。
As the refrigerant circulating in the refrigerant circuit of the air conditioner, a non-azeotropic mixed refrigerant composed of a high boiling point refrigerant and a low boiling point refrigerant is used. As the non-azeotropic mixed refrigerant, for example, R
52wt% for 134a, 25wt% for R125, R32
Is used at a rate of 23 Wt%. Generally, R134a has a boiling point of -26 degrees, R125 has a boiling point of -48 degrees, and R32 has a boiling point of -52 degrees. In the three-type mixed refrigerant having such a composition ratio, generally, R32 and R125 having a low boiling point are easily vaporized first during evaporation, and R32 and R125 having a low boiling point are easily condensed at the time of condensation. The composition ratio is changed by, and a temperature glide T is generated as shown in FIG. That is, the refrigerant temperature is
The inlet side of the outdoor heat exchanger acting as a condenser has the highest temperature, and the outlet side has a lower temperature.

【0017】また、室外熱交換器が蒸発器として作用す
る場合には、入口側温度が最も低くなり、出口側ほど温
度が高くなる。
When the outdoor heat exchanger acts as an evaporator, the temperature on the inlet side becomes the lowest and the temperature becomes higher on the outlet side.

【0018】同様にR125を50Wt %、R32を5
0Wt %で混合した混合冷媒を用いた場合には、前記し
たようにR125の沸点は摂氏−48度、R32の沸点
は摂氏−52度である。このような組成の混合冷媒でも
沸点の低いR32がR125より気化しやすく、同様に
凝縮時には沸点の低いR32から凝縮しやすいために、
熱交換器内で組成比が変化して、図5に示すように、温
度グライドTが生じる。すなわち、冷媒温度は、凝縮器
として作用する室外熱交換器の入口側が最も温度が高
く、出口側ほど温度が低くなる。
Similarly, R125 is 50 Wt% and R32 is 5
When the mixed refrigerant mixed at 0 wt% is used, the boiling point of R125 is -48 degrees Celsius and the boiling point of R32 is -52 degrees Celsius as described above. Even with a mixed refrigerant having such a composition, R32 having a low boiling point is more easily vaporized than R125, and similarly, R32 having a low boiling point is easily condensed at the time of condensation.
The composition ratio changes in the heat exchanger, resulting in a temperature glide T as shown in FIG. In other words, the refrigerant temperature is highest on the inlet side of the outdoor heat exchanger acting as a condenser, and lower on the outlet side.

【0019】また、室外熱交換器が蒸発器として作用す
る場合にも、同様に入口側温度が最も低くなり、出口側
ほど温度が高くなる。
Also, when the outdoor heat exchanger acts as an evaporator, the temperature on the inlet side becomes the lowest and the temperature becomes higher on the outlet side.

【0020】従って、特性の異なる冷媒を混ぜている以
上その特性の違いによって、熱交換器内にはいずれかの
冷媒が液冷媒として残りやすくなり熱交換器の入り口側
と出口側との間に温度差が生じる。
Therefore, as long as the refrigerants having different characteristics are mixed, due to the difference in the characteristics, one of the refrigerants is likely to remain as a liquid refrigerant in the heat exchanger, so that it is between the inlet side and the outlet side of the heat exchanger. There is a temperature difference.

【0021】室外熱交換器1は、図2に示すように3層
構造になっていて、熱交換部A,B,Cが重ねて構成さ
れており、図1に示すように熱交換部A、B、Cの順に
冷媒管Rが直列に通っている。
The outdoor heat exchanger 1 has a three-layer structure as shown in FIG. 2 and is constructed by stacking heat exchange parts A, B and C. As shown in FIG. , B, and C, the refrigerant pipe R passes in series.

【0022】室外熱交換器1は図3に示すように、3つ
の熱交換部A,B,Cには、複数の冷媒管Rに分配され
ており、熱交換効率の向上が更に図られている。
As shown in FIG. 3, the outdoor heat exchanger 1 is divided into a plurality of refrigerant pipes R in the three heat exchange parts A, B and C to further improve the heat exchange efficiency. There is.

【0023】次に、本実施例の作用を説明する。 冷房運転時 図1に示すように、空気調和機の冷媒回路においては、
冷房運転時には、四方弁5が実線で示すように位置し、
冷媒が圧縮機6、四方弁5、室外熱交換器1、減圧手段
である電磁バルブ4、室内熱交換器2、四方弁5の順で
循環される。
Next, the operation of this embodiment will be described. During cooling operation As shown in FIG. 1, in the refrigerant circuit of the air conditioner,
During cooling operation, the four-way valve 5 is located as shown by the solid line,
The refrigerant is circulated in the order of the compressor 6, the four-way valve 5, the outdoor heat exchanger 1, the electromagnetic valve 4 as the pressure reducing means, the indoor heat exchanger 2, and the four-way valve 5.

【0024】冷房運転時においては、図1に示すように
室外熱交換器1では全体的に冷媒が熱交換部A,B,C
の順で流れ、実線矢印C1で示す方向の流れを生じる。
この冷房運転時において、制御部10は、室内ユニット
に設けられたリモコン11からの冷房運転の指令を受け
ると、同時にモータ8に駆動信号を発し、モータ8を正
回転させ、外気を図1中に実線矢印C2で示す方向に送
風し、図4に示すように空気の流れ方向は熱交換部C,
B,A室外のの順で流れる。つまり、熱交換部A、B、
Cの順序で流れる冷媒の流れ方向C1に対して、送風機
により熱交換器1に送風される空気の流れ方向C2は対
向流(カウンターフロー)である。
During the cooling operation, as shown in FIG. 1, in the outdoor heat exchanger 1, the refrigerant is wholly the heat exchange parts A, B and C.
, And the flow in the direction indicated by the solid arrow C1 occurs.
During the cooling operation, when the control unit 10 receives a command for the cooling operation from the remote controller 11 provided in the indoor unit, at the same time, it issues a drive signal to the motor 8 to rotate the motor 8 in the normal direction to remove outside air in FIG. To the heat exchange section C, as shown in FIG.
Flows in the order of B and A outdoors. That is, the heat exchange parts A, B,
With respect to the flow direction C1 of the refrigerant flowing in the order of C, the flow direction C2 of the air blown to the heat exchanger 1 by the blower is a counter flow.

【0025】このように、冷房運転時における室外熱交
換器の冷媒流れ方向と熱交換用の外気流れ方向を対向流
とすることにより、冷媒の温度勾配を略平行にすること
ができるので、全体としての熱交換効率を向上させるこ
とができる。
As described above, by making the refrigerant flow direction of the outdoor heat exchanger and the outdoor air flow direction for heat exchange counterflow during the cooling operation, the temperature gradient of the refrigerant can be made substantially parallel. The heat exchange efficiency can be improved.

【0026】暖房運転時 一方、暖房時には、図1に示すように四方弁5が破線で
示すように位置し、冷媒が圧縮機6、四方弁5、室内熱
交換器2、電磁バルブ4、室外熱交換器1、そして四方
弁5の順序で循環される。
During heating operation On the other hand, during heating, the four-way valve 5 is positioned as shown by the broken line as shown in FIG. 1, and the refrigerant is the compressor 6, the four-way valve 5, the indoor heat exchanger 2, the electromagnetic valve 4, and the outdoor. The heat exchanger 1 and the four-way valve 5 are circulated in this order.

【0027】暖房運転時においては、図1及び図4に示
すように、室外熱交換器1では全体的に冷媒が熱交換部
C、B、Aの順序で実線矢印W1で示す方向に流れ、熱
交換用の外気は熱交換部A、B、Cの順序で流れる。こ
の暖房運転時において、制御部10は、モータ8を正回
転させ熱交換用の外気を破線矢印W2で示す方向に送風
する。図4に示すように、外気風は、熱交換器A,B,
Cの順で流れ冷媒の流れ移動方向W1と空気の流れ方向
W2は対向流(カウンターフロー)となる。
During the heating operation, as shown in FIGS. 1 and 4, in the outdoor heat exchanger 1, the refrigerant generally flows in the order of the heat exchange parts C, B and A in the direction indicated by the solid arrow W1, The outside air for heat exchange flows in the order of the heat exchange parts A, B, and C. During this heating operation, the control unit 10 rotates the motor 8 in the forward direction to blow the outside air for heat exchange in the direction indicated by the broken line arrow W2. As shown in FIG. 4, the outside air is heated by the heat exchangers A, B,
In the order of C, the flow direction W1 of the refrigerant and the flow direction W2 of the air are counter flows.

【0028】このように、暖房運転時における室外熱交
換器の冷媒流れ方向と熱交換用の外気流れ方向を対向流
とすることにより、冷媒の温度勾配が平行にすることが
できるので全体として熱交換効率を向上させることがで
きる。
In this way, by making the flow direction of the refrigerant in the outdoor heat exchanger and the flow direction of the outside air for heat exchange in the heating operation counter-current, the temperature gradient of the refrigerant can be made parallel, so that the heat as a whole can be reduced. The exchange efficiency can be improved.

【0029】上述のように、冷房運転時と暖房運転時の
いずれにおいても冷媒の流れ方向と空気の流れ方向は対
向流であるため、冷媒の流れ方向と空気の流れ方向が並
流となる場合に比べて、室外熱交換器1における熱交換
量を向上させることができる。
As described above, in both the cooling operation and the heating operation, the refrigerant flow direction and the air flow direction are counter flows, so that the refrigerant flow direction and the air flow direction are co-current. The heat exchange amount in the outdoor heat exchanger 1 can be improved as compared with.

【0030】また、図5における圧縮機入力QGで示す
ように、室外熱交換器1における熱交換効率を高めるこ
とによって圧縮機6の負荷を軽減させることができる。
Further, as shown by the compressor input QG in FIG. 5, the load on the compressor 6 can be reduced by increasing the heat exchange efficiency in the outdoor heat exchanger 1.

【0031】ところで、本発明は、上述した実施例に限
らず本発明の要旨を逸脱しない範囲で種々の変形をする
ことができる。例えば、送風機7ののモータは、モータ
のファンを逆転可能な構成であればDCモータに限らず
三相モータや単相モータ等を用いても同様な効果を得る
ことができる。
By the way, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. For example, the motor of the blower 7 is not limited to the DC motor as long as the fan of the motor can be rotated in the reverse direction, and a similar effect can be obtained by using a three-phase motor or a single-phase motor.

【0032】[0032]

【発明の効果】以上説明したように、請求項1に記載の
発明では、制御部が冷房運転又は暖房運転を検知すると
ファンが正転又は逆転するように送風機を制御し、冷媒
の流れ方向と送風機による熱交換用の空気の流れ方向を
対向流にする。これにより、冷房時及び暖房時の両方に
おける室外熱交換器での熱交換効率の向上を図って、冷
房の効率と暖房の効率を向上させることができる。
As described above, according to the first aspect of the invention, when the control unit detects the cooling operation or the heating operation, the fan is controlled so that the fan rotates in the normal direction or the reverse direction, and the flow direction of the refrigerant is changed. The direction of flow of air for heat exchange by the blower is set to counterflow. As a result, the efficiency of heat exchange in the outdoor heat exchanger can be improved both during cooling and during heating, and the efficiency of cooling and the efficiency of heating can be improved.

【0033】[0033]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる空気調和機の冷媒回路
図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.

【図2】図1に示す空気調和機の室外機の断面図であ
る。
FIG. 2 is a cross-sectional view of an outdoor unit of the air conditioner shown in FIG.

【図3】図2の熱交換器の冷媒管の配管状態を示す側面
図である。
FIG. 3 is a side view showing a piping state of a refrigerant pipe of the heat exchanger of FIG.

【図4】冷房時と暖房時における冷媒の流れと空気の流
れを示す図である。
FIG. 4 is a diagram showing a refrigerant flow and an air flow during cooling and heating.

【図5】非共沸混合冷媒のモリエル線図である。FIG. 5 is a Mollier diagram of a non-azeotropic mixed refrigerant.

【符号の説明】[Explanation of symbols]

1 室外熱交換器 7 送風機 8 モータ 10 制御部 C1 冷房時の冷媒の流れ方向 C2 冷房時の空気の流れ方向 W1 暖房時の冷媒の流れ方向 W2 暖房時の空気の流れ方向 1 outdoor heat exchanger 7 blower 8 motor 10 control unit C1 refrigerant flow direction during cooling C2 air flow direction during cooling W1 refrigerant flow direction during heating W2 air flow direction during heating

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷房運転時に凝縮器として作用し、暖房
運転時に蒸発器として作用するように冷媒の流れ方向が
切り換えられる室外熱交換器に複数の冷媒を混ぜた混合
冷媒を循環させて空気調和運転を可能に成した空気調和
機において、 室外熱交換器内を流れる冷媒と熱交換される外気の送風
方向が冷媒の流れ方向と対向するように、冷房運転時と
暖房運転時とにおける外気の送風方向を変える制御部を
備えることを特徴とする空気調和機。
1. An air conditioner in which a mixed refrigerant mixed with a plurality of refrigerants is circulated in an outdoor heat exchanger whose flow direction is switched so as to act as a condenser during cooling operation and as an evaporator during heating operation. In an air conditioner that can be operated, the outside air in the cooling operation and the heating operation is controlled so that the blowing direction of the outside air that is heat-exchanged with the refrigerant flowing in the outdoor heat exchanger is opposite to the flowing direction of the refrigerant. An air conditioner comprising a control unit that changes a blowing direction.
JP22054895A 1994-11-28 1995-08-29 Air conditioner Pending JPH08210718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22054895A JPH08210718A (en) 1994-11-28 1995-08-29 Air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-293417 1994-11-28
JP29341794 1994-11-28
JP22054895A JPH08210718A (en) 1994-11-28 1995-08-29 Air conditioner

Publications (1)

Publication Number Publication Date
JPH08210718A true JPH08210718A (en) 1996-08-20

Family

ID=26523776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22054895A Pending JPH08210718A (en) 1994-11-28 1995-08-29 Air conditioner

Country Status (1)

Country Link
JP (1) JPH08210718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112333A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Air conditioner and operation method of the air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112333A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Air conditioner and operation method of the air conditioner

Similar Documents

Publication Publication Date Title
JP3540530B2 (en) Air conditioner
EP0685693B1 (en) Refrigeration cycle using six-way change-over valve
WO2012070192A1 (en) Air conditioner
JP2008209075A (en) Air conditioner
JP2007322024A (en) Large temperature difference air conditioning system
JPH09196489A (en) Refrigeration cycle for air conditioner
JP5312681B2 (en) Air conditioner
JP2007192442A (en) Heat exchanger
JP3969381B2 (en) Multi-room air conditioner
JP2002228187A (en) Outdoor-air treating air-conditioner of air-cooled heat- pump type
JPH08210718A (en) Air conditioner
JPH0886527A (en) Air conditioner
JPH0894205A (en) Air conditioner
JP2001066006A (en) Refrigerant circuit for air conditioner
JP2000320917A (en) Heat pump cold/hot water machine
WO2022215108A1 (en) Refrigeration cycle device
JP2008082609A (en) Air conditioner
JPH07269971A (en) Air conditioner
WO2024111663A1 (en) Refrigeration cycle system
WO2024069970A1 (en) Heat pump apparatus
JP7357137B1 (en) air conditioner
JP7356057B2 (en) Refrigeration cycle equipment
JPH11264629A (en) Cross fin coil type heat exchanger
JP2015141006A (en) Air conditioner
JPH08145490A (en) Heat exchanger for heat pump air conditioner