JPH08203490A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH08203490A
JPH08203490A JP7008755A JP875595A JPH08203490A JP H08203490 A JPH08203490 A JP H08203490A JP 7008755 A JP7008755 A JP 7008755A JP 875595 A JP875595 A JP 875595A JP H08203490 A JPH08203490 A JP H08203490A
Authority
JP
Japan
Prior art keywords
electrode plate
electrolytic solution
density
sealed lead
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7008755A
Other languages
Japanese (ja)
Inventor
Ichiro Mukoya
一郎 向谷
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP7008755A priority Critical patent/JPH08203490A/en
Publication of JPH08203490A publication Critical patent/JPH08203490A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: To lengthen the cycle life of a sealed lead-acid battery without sacrifice of discharge capacity, and in addition lengthen the cycle life and increase the discharge capacity. CONSTITUTION: The side, coming in contact with a positive plate, of an electrolyte retainer is formed with fibers having single diameter whose average fiber diameter is 1.4μm or less, preferably 1μm or less. The density under pressure of 20 kgf/dm<2> is made 0.12 (preferably 0.13)-0.18g/cm<3> . The electrolyte retainer is formed in double structure, and the side coming in contact with a negative plate is preferable to be formed in lower density than the side coming in contact with the positive plate. The side coming in contact with the negative plate is formed with a mixture of glass fibers and polyolefin fibers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、正極板と負極板との間
に電解液保持体を介在させ構成した極板群を備えた密閉
型鉛蓄電池の改良に関し、殊に、電解液保持体の構成に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a sealed lead-acid battery provided with an electrode plate group in which an electrolytic solution holder is interposed between a positive electrode plate and a negative electrode plate, and more particularly to an electrolytic solution holder. Related to the configuration of.

【0002】[0002]

【従来の技術】密閉型鉛蓄電池には、ペースト状活物質
を鉛合金鋳造格子体やエクスパンド格子体等に塗着し、
必要に応じてペースト紙を表面に当接し、熟成及び乾燥
を行なって製造したペースト式極板が多く用いられてい
る。ペースト状活物質は、一般に、鉛の一部が酸化され
た鉛粉と水と硫酸を主成分とし、これに必要に応じて樹
脂製等の単繊維や炭素微粉末、有機添加剤等を添加し、
これらを混練して調製したものである。製造した正・負
極板は、セパレータ兼電解液保持体を間に挟んで極板群
とする。極板群を電槽に組み込んだ後に希硫酸を加えて
化成充電する。又は、予め化成充電した極板で構成した
極板群を電槽に組み込む。
2. Description of the Related Art For sealed lead-acid batteries, a paste-like active material is coated on a lead alloy cast lattice or expanded lattice,
A paste-type electrode plate produced by bringing a paste paper into contact with the surface as necessary, aging and drying is often used. In general, the paste-like active material is mainly composed of lead powder in which a part of lead is oxidized, water and sulfuric acid, and if necessary, monofilaments made of resin or the like, carbon fine powder, organic additives, etc. are added. Then
It is prepared by kneading these. The manufactured positive and negative electrode plates are used as an electrode plate group with a separator / electrolyte holding body interposed therebetween. After assembling the electrode group into the battery case, dilute sulfuric acid is added to carry out chemical charge. Alternatively, an electrode plate group composed of electrode plates that have been preformed and charged is incorporated into the battery case.

【0003】[0003]

【発明が解決しようとする課題】上記密閉型鉛蓄電池に
おいては、セパレータを兼ねる電解液保持体として、主
にガラス繊維で構成された不織布が用いられていた。こ
の電解液保持体は、使用中に極板面に圧接させる目的
で、細いガラス繊維と太いガラス繊維を混抄して構成
し、圧縮に対する高い復元力をもたせていた。このよう
な電解液保持体は、極板群の加圧を維持するには都合が
良いが、復元力がバラツキやすいこと、平均孔経が大き
く電解液が移動しやすいために電解液の成層化が起こり
やすいことによってサイクル寿命が劣化する問題が生じ
る。ガラス不織布からなる電解液保持体ではなく、ケイ
酸ゲルにより電解液を非流動化した密閉型鉛蓄電池も知
られているが、電槽化成に不向きなことや、放電特性が
悪い欠点あり普及していない。本発明が解決しようとす
る課題は、セパレータを兼ねる電解液保持体を用いた密
閉型鉛蓄電池において、放電容量を犠牲にすることなく
サイクル寿命の延長を図ることである。さらには、サイ
クル寿命の延長と放電容量の増大を図ることである。
In the above sealed lead-acid battery, a non-woven fabric mainly made of glass fiber has been used as an electrolyte holding body which also serves as a separator. This electrolyte solution holder was constructed by mixing thin glass fibers and thick glass fibers together for the purpose of bringing them into pressure contact with the electrode plate surface during use, and had a high restoring force against compression. Such an electrolyte solution holder is convenient for maintaining the pressure applied to the electrode plate group, but because the restoring force is likely to vary and the average pore size is large and the electrolyte solution is easily moved, the electrolyte solution is stratified. The problem that the cycle life is deteriorated occurs due to the tendency to occur. Sealed lead-acid batteries in which the electrolyte solution is made non-fluidized by silica gel are also known, instead of the electrolyte solution holder made of glass nonwoven fabric, but it is not suitable for battery case formation and has the disadvantage of poor discharge characteristics and has become popular. Not not. The problem to be solved by the present invention is to extend the cycle life without sacrificing the discharge capacity in a sealed lead-acid battery using an electrolytic solution holder that also serves as a separator. Furthermore, it is intended to extend the cycle life and the discharge capacity.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る密閉型鉛蓄電池は、正極板と負極板と
の間に電解液保持体を介在させ構成した極板群を備えた
ものにおいて、前記電解液保持体の正極板に当接する側
が、次の(1)及び(2)の構成を有することを特徴と
する。 (1)平均繊維径1.4μm以下(好ましくは1μm以
下)の単一径の繊維で構成される。 (2)20kgf/dm2で加圧時の密度が0.12(好まし
くは0.13)〜0.18g/cm3である。 上記電解液保持体は2層構造を有しており、負極板に当
接する側が正極板に当接する側よりも低密度であること
が好ましい。負極板に当接する側はガラス繊維とポリオ
レフィン繊維の混抄体で構成することができる。
In order to solve the above-mentioned problems, a sealed lead-acid battery according to the present invention comprises an electrode plate group in which an electrolyte holding body is interposed between a positive electrode plate and a negative electrode plate. According to another aspect of the invention, the side of the electrolytic solution holder that comes into contact with the positive electrode plate has the following configurations (1) and (2). (1) A single diameter fiber having an average fiber diameter of 1.4 μm or less (preferably 1 μm or less). (2) The density when pressed at 20 kgf / dm 2 is 0.12 (preferably 0.13) to 0.18 g / cm 3 . The electrolytic solution holder has a two-layer structure, and it is preferable that the side contacting the negative electrode plate has a lower density than the side contacting the positive electrode plate. The side in contact with the negative electrode plate can be made of a mixed paper body of glass fiber and polyolefin fiber.

【0005】[0005]

【作用】放電容量低下させずに、電解液の成層化を防ぎ
サイクル寿命の延長を図るためには、次の3つがポイン
トになる。1つめは、極板群を電槽に挿入するときに電
解液保持体がへたり、電解液注入後に極板群への加圧力
が低下しないようにすることである。2つめは、電解液
保持体と電解液との相互作用をもたせ、放電時には電解
液保持体から正極板側へ、充電時には正極板側よりバル
ク全体へ硫酸イオンを送る電気浸透作用を付与すること
である。3つめは、充放電により生じた電解液比重の不
均一を電解液の濃度勾配を利用して解消する拡散作用を
十分にすることである。これらのうち、電気浸透作用と
拡散作用は相反する場合がある。前者は、主に電解液保
持体を構成する繊維と電解液の接触面積を大きくするこ
とにより得られる。後者は、電解液が電解液保持体中を
拡散する経路を大きくし経路の数を多くすることにより
得らる。すなわち、電解液保持体を構成する繊維の径と
電解液保持体の密度に着目すると、電気浸透作用は、同
じ繊維径であれば密度が大きいほど、同じ密度であれば
繊維径が小さいほど大きくなる。一方、拡散作用は、同
じ繊維径であれば密度が小さいほど、同じ密度であれば
繊維径が大きいほど大きくなる。放電容量を維持しなが
ら、電解液の成層化に起因するサイクル寿命の劣化を起
こさないようにするには、上記の事柄に対する配慮をバ
ランス良く行なわなければならない。本発明では、電解
液成層化の主因となる正極板と電解液保持体の関係に注
目している。電解液保持体の正極板に当接する側の繊維
径を単一にすることで、極板群を電槽に挿入したときに
圧縮された電解液保持体の厚さが一定になり、極板群の
加圧が均一になる。極板群の加圧力が部分的に低下する
ことがない分けである。そして、繊維径を単一にするこ
とによって、さらに平均繊維径と電解液保持体密度を適
正範囲にすることで、電池容量を確保し電解液の成層化
を抑制している。上記のようにしてサイクル寿命特性を
確保し、さらに放電能力を高めるためには、負極板側の
電解液の拡散を速やかにする必要がある。換言すれば、
電解液保持体の負極板へ当接する側は、正極板へ当接す
る側より電解液の移動抵抗を少なくすることである。請
求項3に係る発明の構成は、前記のような作用を実現す
る。正極板側の作用を損なわないままに負極板側の放電
(陽)分極を小さくし、向上したサイクル寿命特性を維
持したまま放電特性をさらに向上させることができる。
In order to prevent stratification of the electrolytic solution and extend the cycle life without lowering the discharge capacity, the following three points are important. The first is to prevent the electrolytic solution holder from sagging when the electrode plate group is inserted into the battery case, and the pressure applied to the electrode plate group from dropping after the electrolytic solution is injected. The second is to make the electrolytic solution holder and the electrolytic solution interact with each other, and to provide an electroosmotic effect of sending sulfate ions from the electrolytic solution holder to the positive electrode plate side during discharge and from the positive electrode plate side to the entire bulk during charging. Is. Thirdly, it is necessary to make the diffusion action sufficient to eliminate the non-uniformity of the specific gravity of the electrolytic solution caused by charging and discharging by utilizing the concentration gradient of the electrolytic solution. Among these, the electroosmotic action and the diffusing action may be opposite to each other. The former is mainly obtained by increasing the contact area between the fibers constituting the electrolytic solution holder and the electrolytic solution. The latter can be obtained by enlarging the path through which the electrolytic solution diffuses in the electrolytic solution holder and increasing the number of paths. That is, paying attention to the diameter of the fibers constituting the electrolytic solution holder and the density of the electrolytic solution holder, the electroosmosis action is larger as the density is the same if the fiber diameter is the same, and as the fiber diameter is smaller if it is the same density. Become. On the other hand, the diffusing action becomes greater as the fiber diameter is the same and the density is smaller, and when the fiber density is the same, the fiber action is larger. In order to maintain the discharge capacity and prevent the deterioration of the cycle life due to the stratification of the electrolytic solution, the above matters must be taken into consideration in a well-balanced manner. In the present invention, attention is paid to the relationship between the positive electrode plate and the electrolytic solution holder, which is the main cause of stratification of the electrolytic solution. By making the fiber diameter of the side of the electrolyte holder that contacts the positive electrode plate uniform, the thickness of the electrolyte holder compressed when the electrode group is inserted into the battery case becomes constant, The pressurization of the group becomes uniform. This is a classification in which the pressing force of the electrode plate group does not partially decrease. Then, by making the fiber diameter single and further setting the average fiber diameter and the electrolyte solution holder density within appropriate ranges, the battery capacity is secured and the stratification of the electrolyte solution is suppressed. As described above, in order to secure the cycle life characteristics and further improve the discharge capacity, it is necessary to accelerate the diffusion of the electrolytic solution on the negative electrode plate side. In other words,
The side of the electrolytic solution holder that comes into contact with the negative electrode plate is to reduce the migration resistance of the electrolytic solution as compared with the side that comes into contact with the positive electrode plate. The configuration of the invention according to claim 3 realizes the above operation. The discharge (positive) polarization on the negative electrode plate side can be reduced without impairing the action on the positive electrode plate side, and the discharge characteristic can be further improved while maintaining the improved cycle life characteristic.

【0006】[0006]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれに制限されるものではない。以下に
使用するペースト式正極板には、鉛−錫−カルシウム合
金からなる格子体を用いた。正極板(寸法86×56×
2.4mm)と負極板(寸法85×56×1.6mm)の間
に、表1に示す各種厚さ構成・繊維組成・密度の電解液
保持体(ガラス繊維を主体とする不織布)を介在させて
試料極板群を構成し、密閉型鉛蓄電池を組み立てた。
尚、表1に示した正極板当接側及び負極板当接側の電解
液保持体の厚さは、30kgf/dm2で加圧した状態の厚さ
(電槽挿入後の厚さ)を測定したものである。ポリエチ
レン繊維(20μm)はコロナ放電により処理したもの
を使用した。電解液保持体の密度は、20kgf/dm2で加
圧した状態の密度を測定したものである。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited thereto. A grid body made of a lead-tin-calcium alloy was used for the paste-type positive electrode plate used below. Positive plate (Dimension 86 x 56 x
2.4mm) and the negative electrode plate (dimensions 85 × 56 × 1.6mm), interposing electrolytic solution holder (nonwoven fabric mainly consisting of glass fiber) of various thickness constitution, fiber composition and density shown in Table 1. Then, a sample electrode plate group was constituted, and a sealed lead acid battery was assembled.
The thickness of the electrolyte holding bodies on the positive electrode plate contacting side and the negative electrode plate contacting side shown in Table 1 is the thickness when pressed at 30 kgf / dm 2 (thickness after insertion into the battery case). It was measured. The polyethylene fiber (20 μm) used was treated by corona discharge. The density of the electrolytic solution holder is a density measured under a pressure of 20 kgf / dm 2 .

【0007】[0007]

【表1】 [Table 1]

【0008】上記実施例、従来例の各密閉型鉛蓄電池に
ついて、容量試験、サイクル寿命試験を行なった。容量
試験は、1Aの電流で終止電圧1.7Vまで放電する条
件で行なった。サイクル寿命試験は、1/3CA(1.
4A)で終止電圧1.7Vまで放電した後、2.45V
の定電圧(制限電流1.2A)で4時間充電するサイク
ルを繰り返し、放電容量が従来例の密閉型鉛蓄電池の初
期容量の50%になるまでのサイクル数で評価した。図
1に、従来例の初期容量を100として各電池の初期容
量の比較を示した。また、図2に、従来例のサイクル数
を100として各電池のサイクル数の比較を示した。本
発明の実施例に係る密閉型鉛蓄電池は、従来例と同等以
上に電池容量を維持しながらサイクル寿命が長くなって
いることを理解できる。また、電解液保持体の負極板に
当接する側の密度を正極板に当接する側の密度より低く
することにより、電池容量を大きくできることも理解で
きる(実施例2以下)。さらに、負極板に当接する側に
ポリエチレン繊維を混抄することにより、サイクル寿命
を一層長くできることを理解できる。
A capacity test and a cycle life test were carried out on each of the sealed lead-acid batteries of the above-mentioned examples and conventional examples. The capacity test was carried out under the condition of discharging at a final voltage of 1.7 V with a current of 1 A. The cycle life test is 1/3 CA (1.
4A), after discharging to a final voltage of 1.7V, 2.45V
The cycle of charging for 4 hours at a constant voltage (limited current of 1.2 A) was repeated, and the number of cycles until the discharge capacity reached 50% of the initial capacity of the sealed lead-acid battery of the conventional example was evaluated. FIG. 1 shows a comparison of the initial capacities of the batteries with the initial capacity of the conventional example being 100. Further, FIG. 2 shows a comparison of the cycle numbers of the respective batteries with the cycle number of the conventional example being 100. It can be understood that the sealed lead-acid battery according to the example of the present invention has a long cycle life while maintaining the battery capacity equal to or higher than that of the conventional example. It can also be understood that the battery capacity can be increased by lowering the density of the side of the electrolytic solution holder that contacts the negative electrode plate than the density of the side that contacts the positive electrode plate (Example 2 and below). Further, it can be understood that the cycle life can be further extended by mixing the polyethylene fibers on the side contacting the negative electrode plate.

【0009】図3は、正極板に当接する側の電解液保持
体の平均繊維径と初期容量の関係を従来例の初期容量を
100として示している。また、図4は、正極板に当接
する側の電解液保持体の平均繊維径とサイクル寿命の関
係を従来例のサイクル寿命を100として示している。
但し、いずれの場合も、電解液保持体は、全体を均質に
し、20kgf/dm2で加圧した状態の密度を0.16g/
cm3、30kgf/dm2で加圧した状態の全体厚さを2.3m
mとした。これらから、正極板に当接する側の電解液保
持体の平均繊維径を1.4μm以下にすることにより、
電池容量を従来例と同等以上に維持しながら、サイクル
寿命を10%以上延長できることを理解できる。平均繊
維径を1μm以下にすることにより、その効果は一層顕
著になることも理解できる。
FIG. 3 shows the relationship between the average fiber diameter of the electrolytic solution holder on the side contacting the positive electrode plate and the initial capacity, where the initial capacity of the conventional example is 100. Further, FIG. 4 shows the relationship between the average fiber diameter of the electrolytic solution holder on the side in contact with the positive electrode plate and the cycle life, where the cycle life of the conventional example is 100.
However, in any case, the electrolyte holder should be made homogeneous and the density under pressure of 20 kgf / dm 2 should be 0.16 g /
The total thickness is 2.3 m when pressurized with cm 3 and 30 kgf / dm 2.
It was m. From these, by setting the average fiber diameter of the electrolytic solution holder on the side in contact with the positive electrode plate to 1.4 μm or less,
It can be understood that the cycle life can be extended by 10% or more while maintaining the battery capacity equal to or higher than that of the conventional example. It can also be understood that the effect becomes more remarkable by setting the average fiber diameter to 1 μm or less.

【0010】図5は、正極板に当接する側の電解液保持
体の密度(20kgf/dm2で加圧時)と初期容量の関係を
従来例の初期容量を100として示している。また、図
6は、正極板に当接する側の電解液保持体の密度(20
kgf/dm2で加圧時)とサイクル寿命の関係を従来例のサ
イクル寿命を100として示している。いずれの場合
も、電解液保持体は0.9μmのガラス繊維を使用した
ものであり、全体を均質にし、30kgf/dm2で加圧した
状態の全体厚さを2.3mmとした。これらから、20kg
f/dm2で加圧時の電解液保持体の密度を0.12〜0.
18g/cm3の範囲とすることにより、電池容量を従来
例と同等以上に維持しながら、サイクル寿命を10%以
上延長できることを理解できる。20kgf/dm2で加圧時
の電解液保持体の密度の下限を0.13g/cm3以上に
することにより、その効果は一層顕著になることも理解
できる。
FIG. 5 shows the relationship between the density (when pressurized at 20 kgf / dm 2 ) of the electrolytic solution holder on the side contacting the positive electrode plate and the initial capacity, with the initial capacity of the conventional example being 100. In addition, FIG. 6 shows the density (20
The relationship between the cycle life (when pressurized at kgf / dm 2 ) and the cycle life is shown with the cycle life of the conventional example being 100. In each case, the electrolytic solution holder was made of glass fiber of 0.9 μm, and the whole was made homogeneous and the total thickness was 2.3 mm when pressed at 30 kgf / dm 2 . From these, 20kg
The density of the electrolytic solution holder when pressurized at f / dm 2 is 0.12 to 0.
It can be understood that by setting the range to 18 g / cm 3 , the cycle life can be extended by 10% or more while the battery capacity is maintained at the same level as that of the conventional example or more. It can also be understood that the effect becomes more remarkable by setting the lower limit of the density of the electrolytic solution holder at a pressure of 20 kgf / dm 2 to 0.13 g / cm 3 or more.

【0011】[0011]

【発明の効果】上述したように、本発明に係る密閉型鉛
蓄電池は、電解液保持体の正極板に当接する側の繊維径
を単一にしかつ繊維径と密度を特定することにより、電
池容量を維持しながらサイクル寿命特性を向上させるこ
とができる。電解液保持体の負極板に当接する側の密度
を正極板に当接する側の密度より低くすることにより、
電池容量の増大とサイクル寿命特性の向上の両方を達成
することができる。
As described above, the sealed lead-acid battery according to the present invention is a battery that has a single fiber diameter on the side of the electrolyte holding body that contacts the positive electrode plate and specifies the fiber diameter and density. The cycle life characteristics can be improved while maintaining the capacity. By lowering the density of the side of the electrolyte holder that contacts the negative electrode plate than the density of the side that contacts the positive electrode plate,
Both increased battery capacity and improved cycle life characteristics can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来例の初期容量を100として実施例の各電
池の初期容量を比較した図である。
FIG. 1 is a diagram comparing the initial capacities of the batteries of Examples with the initial capacity of the conventional example being 100.

【図2】従来例の充放電サイクル数を100として実施
例の各電池のサイクル数を比較した図である。
FIG. 2 is a diagram comparing the number of cycles of each battery of the example with the number of charge / discharge cycles of the conventional example being 100.

【図3】正極板に当接する側の電解液保持体の平均繊維
径と初期容量の関係を従来例の初期容量を100として
示した図である。
FIG. 3 is a diagram showing the relationship between the average fiber diameter of the electrolyte holding body on the side in contact with the positive electrode plate and the initial capacity, where the initial capacity of the conventional example is 100.

【図4】正極板に当接する側の電解液保持体の平均繊維
径とサイクル寿命の関係を従来例のサイクル寿命を10
0として示した図である。
FIG. 4 shows the relationship between the average fiber diameter of the electrolyte holding body on the side in contact with the positive electrode plate and the cycle life as compared with that of the conventional example.
It is the figure shown as 0.

【図5】正極板に当接する側の電解液保持体の密度(2
0kgf/dm2で加圧時)と初期容量の関係を従来例の初期
容量を100として示した図である。
FIG. 5 shows the density (2) of the electrolyte holder on the side in contact with the positive electrode plate.
FIG. 8 is a diagram showing the relationship between the initial capacity and the initial capacity when the pressure is 0 kgf / dm 2 ).

【図6】正極板に当接する側の電解液保持体の密度(2
0kgf/dm2で加圧時)とサイクル寿命の関係を従来例の
サイクル寿命を100として示した図である。
FIG. 6 shows the density (2) of the electrolytic solution holder on the side in contact with the positive electrode plate.
It is a figure showing the relationship between the cycle life (when pressurized at 0 kgf / dm 2 ) and the cycle life when the cycle life of the conventional example is 100.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極板と負極板との間に電解液保持体を介
在させ構成した極板群を備えた密閉型鉛蓄電池におい
て、 前記電解液保持体は正極板に当接する側が、(1)平均
繊維径1.4μm以下の単一径の繊維で構成され(2)
20kgf/dm2で加圧時の密度が0.12〜0.18g/
cm3であることを特徴とする密閉型鉛蓄電池。
1. A hermetically sealed lead-acid battery comprising an electrode plate group in which an electrolytic solution holder is interposed between a positive electrode plate and a negative electrode plate, wherein the electrolytic solution holder is in contact with the positive electrode plate at (1) ) Composed of single-diameter fibers with an average fiber diameter of 1.4 μm or less (2)
20 kgf / dm 2 at a density of pressurization is 0.12~0.18G /
A sealed lead acid battery characterized by having a size of cm 3 .
【請求項2】電解液保持体の正極板に当接する側が、平
均繊維径1μm以下、20kgf/dm2で加圧時の密度0.
13g/cm3以上であることを特徴とする請求項1記載
の密閉型鉛蓄電池。
2. The side of the electrolytic solution holder that comes into contact with the positive electrode plate has an average fiber diameter of 1 μm or less, a density of 20 kgf / dm 2 and a density of 0.
The sealed lead acid battery according to claim 1, wherein the sealed lead acid battery is 13 g / cm 3 or more.
【請求項3】電解液保持体が2層構造を有しており、負
極板に当接する側が正極板に当接する側よりも低密度で
あることを特徴とする請求項1又は2に記載の密閉型鉛
蓄電池。
3. The electrolytic solution holder has a two-layer structure, and the side contacting with the negative electrode plate has a lower density than the side contacting with the positive electrode plate. Sealed lead acid battery.
【請求項4】負極板に当接する側がガラス繊維とポリオ
レフィン繊維の混抄体で構成されていることを特徴とす
る請求項1〜3のいずれかに記載の密閉型鉛蓄電池。
4. The sealed lead acid battery according to claim 1, wherein the side in contact with the negative electrode plate is made of a mixed paper body of glass fiber and polyolefin fiber.
JP7008755A 1995-01-24 1995-01-24 Sealed lead-acid battery Pending JPH08203490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7008755A JPH08203490A (en) 1995-01-24 1995-01-24 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7008755A JPH08203490A (en) 1995-01-24 1995-01-24 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH08203490A true JPH08203490A (en) 1996-08-09

Family

ID=11701750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7008755A Pending JPH08203490A (en) 1995-01-24 1995-01-24 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH08203490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123205A (en) * 2005-10-31 2007-05-17 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
WO2015140902A1 (en) * 2014-03-17 2015-09-24 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123205A (en) * 2005-10-31 2007-05-17 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
WO2015140902A1 (en) * 2014-03-17 2015-09-24 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack
JPWO2015140902A1 (en) * 2014-03-17 2017-04-06 株式会社東芝 Nonaqueous electrolyte secondary battery and battery pack
US10283747B2 (en) 2014-03-17 2019-05-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack

Similar Documents

Publication Publication Date Title
US6492059B1 (en) Separator for sealed lead-acid battery
JP3056054B2 (en) Zinc secondary battery and zinc electrode
US3476601A (en) Battery including inorganic fibrous material
JP2003077445A (en) Lead acid storage battery
JPH08203490A (en) Sealed lead-acid battery
JP2004055323A (en) Control valve type lead-acid battery
US20220407083A1 (en) Active material having oxidized fiber additive &amp; electrode and battery having same
JP2855669B2 (en) Sealed lead-acid battery
JPH04206468A (en) Sealed alkali-zinc storage battery
Landfors Cycle life test of lead dioxide electrodes in compressed lead/acid cells
JP3555177B2 (en) Sealed lead-acid battery
JPH0658808B2 (en) Sealed lead acid battery
JP3511710B2 (en) Sealed lead-acid battery
Arias et al. Increasing the specific energy of deep-cycle VRLA batteries by improving material-utilization efficiencies
JP3261417B2 (en) Sealed lead-acid battery
JPH10255752A (en) Separator for sealed type lead storage battery
JP2768197B2 (en) Sealed storage battery
JP2982545B2 (en) Sealed storage battery
JP3395464B2 (en) Sealed lead-acid battery
JPH06140019A (en) Clad type sealed lead acid battery
JPH0536393A (en) Separator for lead-acid battery
JPS601757A (en) Manufacture of sealed lead storage battery
JP2855677B2 (en) Sealed lead-acid battery
JPS60148052A (en) Sealed lead storage battery
JPH06295739A (en) Sealed lead-acid battery