JPH08201675A - Device and method for focusing - Google Patents

Device and method for focusing

Info

Publication number
JPH08201675A
JPH08201675A JP7013618A JP1361895A JPH08201675A JP H08201675 A JPH08201675 A JP H08201675A JP 7013618 A JP7013618 A JP 7013618A JP 1361895 A JP1361895 A JP 1361895A JP H08201675 A JPH08201675 A JP H08201675A
Authority
JP
Japan
Prior art keywords
semiconductor element
collimator lens
eccentric cam
cam shaft
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7013618A
Other languages
Japanese (ja)
Inventor
Katsuya Shinobu
克也 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP7013618A priority Critical patent/JPH08201675A/en
Publication of JPH08201675A publication Critical patent/JPH08201675A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lens Barrels (AREA)

Abstract

PURPOSE: To provide a focusing device capable of easily performing the focusing of a semiconductor element and a collimating lens. CONSTITUTION: An autocollimator 1 constituting a microscope system having the collimating lenses 7 and 8 attached to an optical part 6 as an objective lens is set facing to it, and also an image pickup camera 13 is attached at the eyepiece part of the autocollimator 1. The optical part 6 penetrates holders 4 and 5 inserted to the optical part 6 while observing the enlarged image of the semiconductor elements 2 and 3 by a monitor 14, and an eccentric cam shaft inserted is rotated, so that the holders 4 and 5 are slid back and forth at the inside of the optical part 6 and the focusing is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばレーザ距離測定
装置における半導体素子(半導体レーザや半導体受光素
子)とコリメートレンズとの焦点調整のための位置合わ
せを行うために用いる焦点調整技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focus adjustment technique used for performing alignment for focus adjustment of a semiconductor element (semiconductor laser or semiconductor light receiving element) and a collimator lens in a laser distance measuring device.

【0002】[0002]

【従来の技術】レーザ距離測定装置における従来の焦点
調整装置の概要を図6を参照して説明する。すなわち、
この焦点調整装置は、例えば市販のオートコリメータ1
と、コリメートレンズ40を備えた光学部43とを備え
ている。そして、これらによってコリメートレンズ40
を対物レンズとする顕微鏡系を構成し、この顕微鏡系に
よって、光学部43においてスペーサ42を介して取り
付けた半導体素子41の拡大像を形成する。形成された
拡大像は、オートコリメータ1を介して目視あるいは撮
像カメラを通して観察され、この拡大像を観察しなが
ら、スペーサ42の厚さを変えることで半導体素子41
の位置を調整し、半導体素子41とコリメートレンズ4
0との間の焦点調整のための位置合わせを行っている。
2. Description of the Related Art An outline of a conventional focus adjusting device in a laser distance measuring device will be described with reference to FIG. That is,
This focus adjusting device is, for example, a commercially available auto collimator 1
And an optical unit 43 having a collimator lens 40. Then, the collimating lens 40
Is used as an objective lens to form an enlarged image of the semiconductor element 41 mounted via the spacer 42 in the optical unit 43. The formed enlarged image is visually observed through the auto-collimator 1 or observed through an imaging camera, and the thickness of the spacer 42 is changed while observing the enlarged image to change the thickness of the semiconductor element 41.
Position of the semiconductor element 41 and the collimator lens 4
Positioning for zero focus adjustment is performed.

【0003】また、例えば特開昭60−142318号
公報に記載されたように、外周にねじ部を設けたコリメ
ートレンズを用い、このねじ部によりコリメートレンズ
を回転させながら光軸方向に移動させることで、上記焦
点距離を調整する構成も知られている。
Further, as described in, for example, Japanese Patent Application Laid-Open No. 60-142318, a collimator lens having a threaded portion on its outer periphery is used, and the collimator lens is moved in the optical axis direction while being rotated by this threaded portion. Therefore, a configuration for adjusting the focal length is also known.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記従来の
焦点調整装置には次のような問題があった。まず、スペ
ーサ42を用いて調整する装置の場合、相対的な焦点位
置の変化がこのスペーサ42の厚さの違いに対応した不
連続なものとなる。このため、適切な厚さのスペーサ4
2を選定する作業が繁雑となり、焦点距離の調整に多大
な時間を要する。
However, the conventional focus adjusting device described above has the following problems. First, in the case of an apparatus that adjusts using the spacer 42, the change in the relative focus position becomes discontinuous corresponding to the difference in the thickness of the spacer 42. Therefore, the spacer 4 having an appropriate thickness
The work of selecting 2 becomes complicated, and it takes a lot of time to adjust the focal length.

【0005】また、ねじ部を設けたコリメートレンズを
用いる焦点調整装置の場合、例えば上記の公報に開示さ
れたように、このねじ部と螺合させるためのねじを外面
に設けた筒にコリメートレンズを入れる必要がある。こ
のため、装置が大きくなりがちで、例えば送光側と受光
側の一対の半導体素子を併設させる構成の場合には、こ
れらの半導体素子間における送光軸と受光軸との間隔が
離れてしまい、この結果、性能低下を招く。
Further, in the case of a focus adjusting device using a collimator lens provided with a screw portion, for example, as disclosed in the above-mentioned publication, a collimator lens is attached to a cylinder provided with an screw on the outer surface for screwing with the screw portion. Need to put. Therefore, the device tends to be large, and for example, in the case of a configuration in which a pair of semiconductor elements on the light-transmitting side and the light-receiving side are provided side by side, the distance between the light-transmitting axis and the light-receiving axis between these semiconductor elements becomes large. As a result, performance is degraded.

【0006】本発明の課題は、上記問題点を解消し、半
導体素子とコリメートレンズとの焦点調整を容易に行う
ことができる焦点調整技術を提供することにある。
An object of the present invention is to solve the above problems and to provide a focus adjustment technique capable of easily adjusting the focus between the semiconductor element and the collimator lens.

【0007】[0007]

【課題を解決するための手段】本発明は、まず、コリメ
ートレンズおよび前記コリメートレンズと同じ光軸上で
離間して設けられた半導体素子を有する光学部におけ
る、前記半導体素子と前記コリメートレンズとの焦点調
整を行う焦点調整装置を提供する。この焦点調整装置
は、前記光学部に前記コリメートレンズと前記半導体素
子との距離方向に偏心した軸を有する偏心カム軸を前記
軸を中心として回動自在に、且つ、前記偏心カム軸の外
周面により前記半導体素子を前記距離方向に移動自在に
設けたことを主要な特徴とする。
According to the present invention, first of all, in an optical section having a collimator lens and a semiconductor element provided apart from each other on the same optical axis as the collimator lens, the semiconductor element and the collimator lens are separated from each other. A focus adjustment device for performing focus adjustment is provided. In this focus adjusting device, an eccentric cam shaft having an axis eccentric in the distance direction between the collimator lens and the semiconductor element in the optical section is rotatable about the axis, and the outer peripheral surface of the eccentric cam shaft is rotatable. The main feature is that the semiconductor element is provided so as to be movable in the distance direction.

【0008】本発明は、また、コリメートレンズおよび
前記コリメートレンズと同じ光軸上で離間して設けられ
た半導体素子を有する光学部に、前記コリメートレンズ
と前記半導体素子との距離方向に偏心した軸を有する偏
心カム軸を設けるとともに、前記コリメートレンズを対
物レンズとする顕微鏡系を構成して前記半導体素子の拡
大像を表示し、この拡大像を観察しつつ前記偏心カム軸
を回動させて該偏心カム軸の外周面により前記半導体素
子を前記距離方向に移動させて前記コリメートレンズと
の焦点調整を行うことを特徴とする焦点調整方法をも提
供する。
According to the present invention, an optical section having a collimator lens and a semiconductor element provided on the same optical axis as the collimator lens and spaced apart from each other is provided with an axis decentered in the distance direction between the collimator lens and the semiconductor element. Is provided with an eccentric cam shaft, and a microscope system using the collimator lens as an objective lens is configured to display an enlarged image of the semiconductor element, and the eccentric cam shaft is rotated by observing the enlarged image. There is also provided a focus adjustment method characterized in that the semiconductor element is moved in the distance direction by the outer peripheral surface of the eccentric cam shaft to adjust the focus with the collimator lens.

【0009】[0009]

【作用】本発明では、コリメートレンズを対物レンズと
する顕微鏡系を構成し、半導体素子の拡大像を形成し、
拡大像を目視や撮像カメラを通して観察しながら、偏心
カム軸により半導体素子を光軸方向に移動させる。半導
体素子とコリメートレンズとの距離は、偏心カム軸にお
ける偏心量だけ変化させることができる。
In the present invention, a microscope system having a collimating lens as an objective lens is constructed to form a magnified image of a semiconductor element,
The semiconductor element is moved in the optical axis direction by the eccentric cam shaft while observing the magnified image visually or through an imaging camera. The distance between the semiconductor element and the collimating lens can be changed by the amount of eccentricity on the eccentric cam shaft.

【0010】[0010]

【実施例】次に、図1〜5を参照して本発明の実施例を
説明する。図1は本発明の一実施例に係る焦点調整装置
の構成を示した図、図2は図1におけるA矢視図、図3
は図1におけるB−B線の断面図、図4は図3の光学部
のC−C線の断面における分解説明図、図5(a)は図
4における光学部のD矢視図、図5(b)は同じくE矢
視図である。これらの図から明らかなように、本実施例
の焦点調整装置は、オートコリメータ1と、光学部6と
から構成される。オートコリメータ1は、例えば市販の
ものを使用することができる。
EXAMPLES Examples of the present invention will be described below with reference to FIGS. FIG. 1 is a diagram showing a configuration of a focus adjusting device according to an embodiment of the present invention, FIG. 2 is a diagram viewed from an arrow A in FIG. 1, and FIG.
1 is a cross-sectional view taken along the line BB in FIG. 1, FIG. 4 is an exploded explanatory view taken along the line C-C of the optical unit in FIG. 3, and FIG. 5 (b) is a view from the arrow E in the same manner. As is clear from these figures, the focus adjustment apparatus of this embodiment is composed of the autocollimator 1 and the optical unit 6. As the autocollimator 1, for example, a commercially available one can be used.

【0011】光学部6の内側には、図3及び図4に示す
ように、送光側のコリメートレンズ7、受光側のコリメ
ートレンズ8が設けられている。そして、これらオート
コリメータ1と、これと正対させてセットされたコリメ
ートレンズ7、8とにより、コリメートレンズ7、8を
対物レンズとする顕微鏡系が構成されている。
As shown in FIGS. 3 and 4, a collimating lens 7 on the light transmitting side and a collimating lens 8 on the light receiving side are provided inside the optical section 6. Then, the auto-collimator 1 and the collimator lenses 7 and 8 which are set so as to face the auto-collimator 1 constitute a microscope system using the collimator lenses 7 and 8 as objective lenses.

【0012】オートコリメータ1の接眼部には、図1に
示すように撮像カメラ13が取り付けられており、また
撮像カメラ13の映像は、これに接続されたCRTやL
ED等のモニタ14上に表示される。この映像は、後述
するように、半導体素子2、3の拡大像である。
An image pickup camera 13 is attached to the eyepiece of the autocollimator 1 as shown in FIG. 1, and the image of the image pickup camera 13 is a CRT or L connected to the image pickup camera 13.
It is displayed on the monitor 14 such as an ED. This image is an enlarged image of the semiconductor elements 2 and 3, as will be described later.

【0013】光学部6は、また、上記コリメートレンズ
7、8の他に、送光側の円筒形のホルダ4と受光側の円
筒形のホルダ5、これらホルダ上に基板2a,3aを介
してそれぞれ取り付けられた半導体素子(半導体レー
ザ)2と半導体素子(受光素子)3、調整台11、並び
に固定ねじ15により光学部6に取り付けられたプレー
ト12等を備えて構成される。なお、図3において、符
号30はホルダ4の送光用の穴であり、31はホルダ5
の受光用の穴である。また、図4に示したように、例え
ばホルダ4は、光学部6の穴32に挿入されており、前
後に摺動する構成となっている。ホルダ5も同様の構成
である。
In addition to the collimating lenses 7 and 8, the optical unit 6 also has a cylindrical holder 4 on the light transmitting side and a cylindrical holder 5 on the light receiving side, and substrates 2a and 3a on these holders. A semiconductor element (semiconductor laser) 2 and a semiconductor element (light receiving element) 3, which are attached to each other, an adjustment stand 11, and a plate 12 attached to the optical unit 6 by a fixing screw 15 are configured. In FIG. 3, reference numeral 30 is a hole for light transmission of the holder 4, and 31 is the holder 5.
Is a hole for receiving light. Further, as shown in FIG. 4, for example, the holder 4 is inserted into the hole 32 of the optical unit 6 and configured to slide back and forth. The holder 5 has the same structure.

【0014】プレート12には、図2に示すように、一
対の長穴12a(送光用)、12b(受光用)が形成さ
れている。また、これらの長穴12a、12bには、偏
心カム軸9(送光側)、10(受光側)が取り付けられ
ている。より詳しくは、例えば送光側の偏心カム軸9の
場合を例に採れば、図4を参照して、ホルダ4が光学部
6に挿入された状態で、上方から偏心カム軸9を挿入す
る。偏心カム軸9は、光学部6の上面の長穴33と、ホ
ルダ4の穴30を通り、光学部6の下面の長穴34に挿
入される。
As shown in FIG. 2, the plate 12 is formed with a pair of elongated holes 12a (for transmitting light) and 12b (for receiving light). Further, eccentric cam shafts 9 (light transmitting side) and 10 (light receiving side) are attached to these elongated holes 12a and 12b. More specifically, taking the case of the eccentric cam shaft 9 on the light transmitting side as an example, referring to FIG. 4, the eccentric cam shaft 9 is inserted from above with the holder 4 inserted in the optical portion 6. . The eccentric cam shaft 9 passes through the elongated hole 33 on the upper surface of the optical unit 6 and the hole 30 of the holder 4, and is inserted into the elongated hole 34 on the lower surface of the optical unit 6.

【0015】ここで、偏心カム軸9の先端部9aは、中
心部9bよりもやや細く且つ少し偏心している。また、
光学部6の下面の長穴34の幅寸法は、偏心カム軸9の
先端部9aの径寸法と一致している。更に、ホルダ4の
穴30の径寸法と軸9の中央部9bの径寸法とは一致し
ている。また、光学部6の上面の長穴33の幅寸法は、
軸9の中央部9bの径と一致している。更に、偏心カム
軸9は中央部9bと頭部9dとの間にフランジ部9cを
有している。
Here, the tip portion 9a of the eccentric cam shaft 9 is slightly thinner than the center portion 9b and slightly eccentric. Also,
The width dimension of the elongated hole 34 on the lower surface of the optical portion 6 matches the diameter dimension of the tip portion 9a of the eccentric cam shaft 9. Further, the diameter dimension of the hole 30 of the holder 4 and the diameter dimension of the central portion 9b of the shaft 9 are the same. Further, the width dimension of the elongated hole 33 on the upper surface of the optical unit 6 is
It matches the diameter of the central portion 9b of the shaft 9. Further, the eccentric cam shaft 9 has a flange portion 9c between the central portion 9b and the head portion 9d.

【0016】また、本実施例の顕微鏡系においては、半
導体素子2、3の拡大像を得る際に、軸9、10が半導
体素子2、3を隠さないように、図3のように、コリメ
ートレンズ7、8の中心と、半導体素子2、3を結ぶ中
心軸と、ホルダ4、5の偏心カム軸9が通る穴30、3
1の中心軸は、偏心させている。
Further, in the microscope system of the present embodiment, when the magnified images of the semiconductor elements 2 and 3 are obtained, the collimating is performed as shown in FIG. 3 so that the axes 9 and 10 do not hide the semiconductor elements 2 and 3. Holes 30 and 3 through which the centers of the lenses 7 and 8 and the central axes connecting the semiconductor elements 2 and 3 and the eccentric cam shaft 9 of the holders 4 and 5 pass.
The central axis of 1 is eccentric.

【0017】以上の構成である本実施例の焦点調整装置
では、調整台11に光学部6を固定し、また光学部6の
下面の長穴34に同じ形状の長穴を有するプレート12
を上記したように取り付ける。すると、プレート12の
長穴12aが偏心カム軸9の頭部9dと嵌合し、偏心カ
ム軸9が長穴34および長穴12aで前後に規定される
結果、偏心カム軸9の安定した回転を得ることができ
る。
In the focus adjusting apparatus of the present embodiment having the above-mentioned structure, the optical unit 6 is fixed to the adjusting table 11, and the plate 12 having the same shape of the elongated hole 34 on the lower surface of the optical unit 6 is used.
Install as above. Then, the oblong hole 12a of the plate 12 is fitted with the head portion 9d of the eccentric cam shaft 9, and the eccentric cam shaft 9 is defined by the oblong hole 34 and the oblong hole 12a in the front-rear direction, resulting in stable rotation of the eccentric cam shaft 9. Can be obtained.

【0018】そして、偏心カム軸9のフランジ部9cを
持って回転させる。この場合、先端部9aは長穴34で
前後に動かないようになっているため、偏心カム軸9の
中央部9bと先端部9aの偏心量だけ、ホルダ4は前後
に、また先端部9aは左右に、それぞれ光学部6に対し
て摺動するようになる。そして、これによってコリメー
トレンズ8と半導体素子2、3との間の焦点調整が行わ
れる。調整後は、光学部6の側面のねじ15によってホ
ルダ4を固定する。また、この場合、光学部6の上面の
長穴33においてホルダ4が回転しないように規制され
る。
Then, the flange portion 9c of the eccentric cam shaft 9 is held and rotated. In this case, since the tip portion 9a does not move back and forth in the elongated hole 34, the holder 4 moves back and forth and the tip portion 9a moves by the eccentric amount of the central portion 9b of the eccentric cam shaft 9 and the tip portion 9a. It comes to slide to the left and right with respect to the optical unit 6, respectively. Then, by this, focus adjustment between the collimator lens 8 and the semiconductor elements 2 and 3 is performed. After the adjustment, the holder 4 is fixed by the screw 15 on the side surface of the optical unit 6. In this case, the holder 4 is restricted from rotating in the elongated hole 33 on the upper surface of the optical unit 6.

【0019】[0019]

【発明の効果】以上の説明から明らかなように、本発明
によれば、半導体素子とコリメートレンズとの焦点調整
を容易に行うことができ、焦点調整時間の短縮が図れ
る。このため、この種の半導体素子とコリメートレンズ
を用いた例えばレーザ距離測定装置を効率良く製造する
ことができる。
As is apparent from the above description, according to the present invention, the focus adjustment between the semiconductor element and the collimator lens can be easily performed, and the focus adjustment time can be shortened. Therefore, for example, a laser distance measuring device using this type of semiconductor element and a collimating lens can be efficiently manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の焦点調整装置の概略構成を
示した図。
FIG. 1 is a diagram showing a schematic configuration of a focus adjustment device according to an embodiment of the present invention.

【図2】図1におけるA矢視図。FIG. 2 is a view on arrow A in FIG.

【図3】図1におけるB−B線の断面図。3 is a cross-sectional view taken along the line BB in FIG.

【図4】図3の光学部のC−C線の断面における分解説
明図。
FIG. 4 is an exploded explanatory view of a cross section taken along line CC of the optical unit in FIG.

【図5】(a)は図4における光学部のD矢視図、
(b)はE矢視図。
5A is a view of the optical section in FIG.
(B) is a view on arrow E.

【図6】従来例の焦点調整装置の概略構成図。FIG. 6 is a schematic configuration diagram of a conventional focus adjustment device.

【符号の説明】[Explanation of symbols]

1 オートコリメート 2 半導体素子(半導体レーザ) 2a 基板(送光側) 3 半導体素子(受光素子) 3a 基板(受光側) 4 ホルダ(送光側) 5 ホルダ(受光側) 6 光学部 7 コリメートレンズ(送光側) 8 コリメートレンズ(受光側) 1 Auto-collimator 2 Semiconductor element (semiconductor laser) 2a Substrate (light-transmitting side) 3 Semiconductor element (light-receiving element) 3a Substrate (light-receiving side) 4 Holder (light-transmitting side) 5 Holder (light-receiving side) 6 Optical section 7 Collimating lens ( 8) Collimating lens (light receiving side)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コリメートレンズおよび前記コリメート
レンズと同じ光軸上で離間して設けられた半導体素子を
有する光学部における、前記半導体素子と前記コリメー
トレンズとの焦点調整をするための装置において、 前記光学部に前記コリメートレンズと前記半導体素子と
の距離方向に偏心した軸を有する偏心カム軸を前記軸を
中心として回動自在に、且つ、前記偏心カム軸の外周面
により前記半導体素子を前記距離方向に移動自在に設け
たことを特徴とする焦点調整装置。
1. An apparatus for performing focus adjustment between the semiconductor element and the collimator lens in an optical section having a collimator lens and a semiconductor element provided on the same optical axis as the collimator lens and spaced apart from each other, An eccentric cam shaft having an axis eccentric to the optical element in the distance direction between the collimator lens and the semiconductor element is rotatable about the axis, and the semiconductor element is separated by the outer peripheral surface of the eccentric cam shaft from the distance. A focus adjustment device characterized by being provided so as to be movable in any direction.
【請求項2】 コリメートレンズおよび前記コリメート
レンズと同じ光軸上で離間して設けられた半導体素子を
有する光学部に、前記コリメートレンズと前記半導体素
子との距離方向に偏心した軸を有する偏心カム軸を設け
るとともに、前記コリメートレンズを対物レンズとする
顕微鏡系を構成して前記半導体素子の拡大像を表示し、
この拡大像を観察しつつ前記偏心カム軸を回動させて該
偏心カム軸の外周面により前記半導体素子を前記距離方
向に移動させて前記コリメートレンズとの焦点調整を行
うことを特徴とする焦点調整方法。
2. An eccentric cam having an axis eccentric in a distance direction between the collimator lens and the semiconductor element in an optical section having a collimator lens and a semiconductor element provided on the same optical axis as the collimator lens and spaced apart from each other. An axis is provided, and a microscope system having the collimator lens as an objective lens is configured to display an enlarged image of the semiconductor element,
While observing this magnified image, the eccentric cam shaft is rotated, and the semiconductor element is moved in the distance direction by the outer peripheral surface of the eccentric cam shaft to perform focus adjustment with the collimator lens. Adjustment method.
JP7013618A 1995-01-31 1995-01-31 Device and method for focusing Pending JPH08201675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7013618A JPH08201675A (en) 1995-01-31 1995-01-31 Device and method for focusing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7013618A JPH08201675A (en) 1995-01-31 1995-01-31 Device and method for focusing

Publications (1)

Publication Number Publication Date
JPH08201675A true JPH08201675A (en) 1996-08-09

Family

ID=11838228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7013618A Pending JPH08201675A (en) 1995-01-31 1995-01-31 Device and method for focusing

Country Status (1)

Country Link
JP (1) JPH08201675A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170792A (en) * 1996-12-13 1998-06-26 Fuji Photo Optical Co Ltd Optical member coupling device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193114A (en) * 1987-02-05 1988-08-10 Asahi Optical Co Ltd Back-focal distance adjusting mechanism for zoom lens
JPH06229871A (en) * 1993-02-02 1994-08-19 Hitachi Cable Ltd Adjusting method for optical axis of optical component
JPH06311310A (en) * 1993-04-20 1994-11-04 Pfu Ltd Optical adjustment mechanism for picture reader

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63193114A (en) * 1987-02-05 1988-08-10 Asahi Optical Co Ltd Back-focal distance adjusting mechanism for zoom lens
JPH06229871A (en) * 1993-02-02 1994-08-19 Hitachi Cable Ltd Adjusting method for optical axis of optical component
JPH06311310A (en) * 1993-04-20 1994-11-04 Pfu Ltd Optical adjustment mechanism for picture reader

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170792A (en) * 1996-12-13 1998-06-26 Fuji Photo Optical Co Ltd Optical member coupling device

Similar Documents

Publication Publication Date Title
EP2466355B1 (en) Adjustment device, lens barrel, and optical apparatus
JP2009086567A (en) Lens barrel
JPH08201675A (en) Device and method for focusing
JP5227963B2 (en) binoculars
JP2006030256A (en) Focusing adjustment method and focusing adjustment device for imaging apparatus
JPH03129307A (en) Optical axis adjusting method for infrared optical system
JP2010113081A (en) Lens barrel, image capturing apparatus, and method of manufacturing shaft guide mechanism
JP2010002856A (en) Lens barrel, method of manufacturing the lens barrel and optical equipment
JP4790588B2 (en) Lens barrel and method of adjusting eccentricity of lens barrel
JPH03155512A (en) Manufacture of lens
JPH05292379A (en) Fixed focus lens device for camera
JPH095602A (en) Lens mirror frame
JPH09274140A (en) Differential interference microscope
JP2706944B2 (en) Adjusting the parallax of an electronic camera
JP2004054108A (en) Optical path splitting element and microscope using same
JP2004094171A (en) Lens barrel
JPS63281003A (en) Interference objective lens device
JP3174318B2 (en) Lens eccentricity measuring device
JP3401964B2 (en) microscope
JP2003329911A5 (en)
JPS5837043Y2 (en) Focusing device in microscope
JPH05303040A (en) Differential interference microscope
JPS58161843A (en) Apparatus for measuring lens performance
JP3384081B2 (en) Optical path splitting device
US20060198035A1 (en) Optical system mount