JPH08201589A - X-ray spectroscopic element - Google Patents

X-ray spectroscopic element

Info

Publication number
JPH08201589A
JPH08201589A JP7010454A JP1045495A JPH08201589A JP H08201589 A JPH08201589 A JP H08201589A JP 7010454 A JP7010454 A JP 7010454A JP 1045495 A JP1045495 A JP 1045495A JP H08201589 A JPH08201589 A JP H08201589A
Authority
JP
Japan
Prior art keywords
ray
spectroscopic element
dispersion structure
substrate
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7010454A
Other languages
Japanese (ja)
Inventor
Motohide Kageyama
元英 影山
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP7010454A priority Critical patent/JPH08201589A/en
Publication of JPH08201589A publication Critical patent/JPH08201589A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain an X-ray spectroscopic element using bent X-ray dispersing structure having an incidence plane on the surface like sphere surface which is hard to form, by contacting an X-ray dispersing structure on the curved surface of base plate with curved surface by an anodic junction method. CONSTITUTION: A slab X-ray dispersing structure (for example, silicon wafer) 2a and a base plate 1 having a curved surface 6 are prepared. On the curved surface 6 of the base plate 1, the slab X-ray dispersing structure 2a is contacted with anodic junction method to complete an X-ray spectroscopic element. By polishing the X-ray incidence plane of the X-ray spectroscopic element, an incidence plane of arbitrary shape can be easily formed. To avoid formation of air space at the junction, a hole 5 for venting air is desirably provided in the base plate 1 or the slab X-ray dispersing structure 2a or in both. As spectrum separation and condensation can be done with a single element of the X-ray spectroscopic element using a bent X-ray structure, increase of light intensity and simplification of the optical system are possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湾曲X線分散構造体を
用いたX線分光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray spectroscopic element using a curved X-ray dispersion structure.

【0002】[0002]

【従来の技術】X線は短波長、高エネルギーの電磁波で
あり、紫外領域、可視領域、及び赤外領域の電磁波では
不可能な多方面の分析を行うことができる。即ち、X線
は、吸収、発光、散乱の各特性を有するので、この特性
を用いた多方面のX線分析が可能である。
2. Description of the Related Art X-rays are short-wavelength, high-energy electromagnetic waves, and can be used for various fields of analysis that are impossible with electromagnetic waves in the ultraviolet region, visible region, and infrared region. That is, since X-rays have the characteristics of absorption, emission, and scattering, it is possible to perform multi-directional X-ray analysis using these characteristics.

【0003】X線分析を行うX線分析装置には、例え
ば、試料に単色X線を照射したときの回折X線を測定
することで、試料の結晶構造を解析するX線回折装置
試料にX線を照射したときに、試料に含まれる元素から
発生する固有X線(蛍光X線)の波長分布から定性分析
を強度から定量分析をそれぞれ行う蛍光X線分析装置
試料に電子線を照射したときに発生する特性X線を測定
することで、試料物質の微小領域を非破壊で元素分析す
るX線マイクロアナライザー試料にX線を照射したと
きに吸収されるX線の割合を測定することで、その吸収
端の位置や形状から試料物質の状態を分析するX線吸収
分析装置、等があるが、各装置とも著しい進歩をみせて
おり、新分野への応用の可能性も増大している。
An X-ray analyzer for performing X-ray analysis is, for example, an X-ray diffractometer for analyzing a crystal structure of a sample by measuring diffracted X-rays when the sample is irradiated with monochromatic X-rays. X-ray Fluorescence Analyzer, which performs qualitative analysis based on the wavelength distribution of intrinsic X-rays (fluorescent X-rays) generated from the elements contained in the sample, and quantitative analysis based on the intensity when the sample is irradiated with electron beams By measuring the characteristic X-rays generated in, the non-destructive elemental analysis of a minute region of the sample material is performed. By measuring the ratio of the X-rays absorbed when the sample is irradiated with X-rays, There is an X-ray absorption analyzer that analyzes the state of the sample substance from the position and shape of the absorption edge, but each device has made remarkable progress, and the possibility of application to new fields is also increasing.

【0004】前記各X線分析装置の光学系においては、
波長幅を有するX線から特定波長のX線のみを取り出す
単色化を、或いは各特定波長のX線に分ける分光を行っ
ている。これらは、各特定波長のX線に対する各種分析
の感度を増大する目的でなされている。X線の単色化
は、X線分光素子を用いて行う。X線分光素子には、吸
収端を利用するX線フィルターや、単結晶又は多層膜
(X線分散構造体)によるブラッグ反射を利用する分光
素子等がある。
In the optical system of each X-ray analyzer,
Monochromaticization is performed to extract only X-rays of a specific wavelength from X-rays having a wavelength width, or spectroscopy is performed to divide each X-ray of a specific wavelength. These are done for the purpose of increasing the sensitivity of various analyzes to X-rays of each specific wavelength. The X-ray monochromatization is performed using an X-ray spectroscopic element. Examples of the X-ray spectroscopic element include an X-ray filter that uses an absorption edge and a spectroscopic element that uses Bragg reflection by a single crystal or a multilayer film (X-ray dispersion structure).

【0005】X線フィルターによる単色化は最も簡単で
あるが、単色化した後でも所望波長以外のX線が僅かに
含まれるので、完全な単色化はできない。また、単結晶
又は多層膜を用いた分光素子による単色化では、ブラッ
グの式(2d・sinθ=mλ)の関係を満たす必要が
あるが、ほぼ完全な単色化が可能である。なお、dは格
子面間隔、θは格子面へのX線入射角(斜入射角)、λ
は入射X線の波長、mは次数である。
Although the simplest monochromaticization by the X-ray filter is possible, even after the monochromatic conversion, since the X-rays other than the desired wavelength are slightly contained, the complete monochromatic conversion cannot be performed. Further, in monochromatization by a spectroscopic element using a single crystal or a multilayer film, it is necessary to satisfy the relationship of Bragg's equation (2d · sin θ = mλ), but almost complete monochromatization is possible. Where d is the lattice plane spacing, θ is the X-ray incident angle (oblique incidence angle) on the lattice plane, and λ is
Is the wavelength of the incident X-ray, and m is the order.

【0006】単結晶又は多層膜(X線分散構造体)を用
いたX線分光素子による分光には2通りの方式がある。
一つは、平面状X線分散構造体の平面に平行又は略平行
なX線束を入射させる方式であり、回折分光されたX線
も略平行なX線束となる。もう一つは、湾曲したX線分
散構造体の湾曲面に発散X線を入射させる方式であり反
射型分光と透過型分光がある。図6に反射型分光におい
て最も採用されている光学系の配置であるJohansson 型
配置の一例を示す。
There are two methods for spectroscopy by an X-ray spectroscopic element using a single crystal or a multilayer film (X-ray dispersion structure).
One is a method in which an X-ray flux parallel or substantially parallel to the plane of the planar X-ray dispersion structure is made incident, and the X-rays diffracted and separated are also substantially parallel X-ray fluxes. The other is a method in which divergent X-rays are made incident on the curved surface of the curved X-ray dispersion structure, and there are reflection type spectroscopy and transmission type spectroscopy. FIG. 6 shows an example of the Johansson type arrangement which is the arrangement of the optical system most adopted in the reflection type spectroscopy.

【0007】Johansson 型配置では、例えば、格子面間
隔d(14)の単結晶体結晶面を曲率R(16)にて湾
曲させた上、湾曲させた単結晶体(湾曲X線分散構造体
の一例)13の表面を半径R/2の円(分光学的なロー
ランド円という)に外接させている。スリット系を用い
て形成した円周上の点光源10からのX線発散束を前記
単結晶体13に入射させると、L=(mλ/d)・(R
/2)なる関係で分光されたX線が同一円周上の焦点1
1に集光される。なお、Lは点光源10から湾曲単結晶
体13を経て焦点11に至る光路長である。
In the Johansson type arrangement, for example, a single crystal body crystal plane with a lattice spacing d (14) is curved with a curvature R (16), and then a curved single crystal body (of a curved X-ray dispersion structure is used). (Example) The surface of 13 is circumscribed by a circle of radius R / 2 (referred to as a spectroscopic Rowland circle). When the X-ray divergent flux from the point light source 10 on the circumference formed by using the slit system is incident on the single crystal body 13, L = (mλ / d) · (R
/ 2) X-rays dispersed by the relationship of 1 are focused on the same circle.
It is focused on 1. Note that L is an optical path length from the point light source 10 to the focal point 11 via the curved single crystal body 13.

【0008】かかるJohansson 型配置、即ち湾曲したX
線分散構造体の湾曲面に発散X線を入射させる方式で
は、平面状X線分散構造体の平面に平行又は略平行なX
線束をあてる方式と比較して、湾曲X線分散構造体が平
面状X線分散構造体の数倍以上の強度を有し、また適切
なスリット系との組み合わせにより分解能を向上させる
ことができる。
Such a Johansson type arrangement, ie a curved X
In the method in which the divergent X-rays are incident on the curved surface of the line dispersion structure, an X parallel or substantially parallel to the plane of the planar X-ray dispersion structure is used.
The curved X-ray dispersion structure has several times or more the strength of the planar X-ray dispersion structure as compared with the method of applying a ray bundle, and the resolution can be improved by combination with an appropriate slit system.

【0009】単結晶体の湾曲は、単結晶体を弾性変形又
は塑性変形させて行う。例えば、水晶又はSi単結晶か
らなる単結晶体を2枚の金属板間に挟持し、徐々に締め
つけて弾性変形させることにより、単結晶体を湾曲させ
る。また、例えば、LiF単結晶からなる単結晶体を高
温の油の中で一様に塑性変形させることにより、単結晶
体を湾曲させる。
The bending of the single crystal body is performed by elastically or plastically deforming the single crystal body. For example, a single crystal body made of quartz or Si single crystal is sandwiched between two metal plates, and the single crystal body is curved by being gradually tightened and elastically deformed. Further, for example, the single crystal body made of the LiF single crystal is uniformly plastically deformed in high temperature oil to bend the single crystal body.

【0010】[0010]

【発明が解決しようとする課題】湾曲X線分散構造体の
X線入射面は、球面であることが好ましいが、前記方法
による単結晶体の湾曲では、湾曲させた単結晶体の入射
面をさらに研磨したとしても、球面にすることは極めて
困難であるという問題点があった。そのため、単結晶体
を円筒状に曲げて、さらに入射面を研磨することで、近
似的に球面の代用としていた。なお、この場合には、ス
リット系が複雑になるという問題点があった。
It is preferable that the X-ray incident surface of the curved X-ray dispersion structure is a spherical surface. However, in the bending of the single crystal body by the above method, the incident surface of the curved single crystal body is Even if it is further polished, it is extremely difficult to make it spherical. Therefore, the single crystal body is bent into a cylindrical shape, and the incident surface is further polished to substitute for the spherical surface. In this case, there is a problem that the slit system becomes complicated.

【0011】このように、従来の湾曲X線分散構造体
(湾曲単結晶体)を用いたX線分光素子では、球面のよ
うに形成が困難な表面を入射面として設けることが極め
て困難であるという問題点があった。本発明はかかる問
題点に鑑みてなされたものであり、球面のように形成が
困難な表面を入射面として有する湾曲X線分散構造体を
用いたX線分光素子を提供することを目的とする。
As described above, in the X-ray spectroscopic element using the conventional curved X-ray dispersion structure (curved single crystal body), it is extremely difficult to provide a surface, which is difficult to form, such as a spherical surface, as the incident surface. There was a problem. The present invention has been made in view of the above problems, and an object of the present invention is to provide an X-ray spectroscopic element using a curved X-ray dispersion structure having a surface, which is difficult to form, such as a spherical surface, as an incident surface. .

【0012】[0012]

【課題を解決するための手段】そのため、本発明は第一
に「曲面を有する基板の該曲面に、X線分散構造体を陽
極接合法により接合してなるX線分光素子(請求項
1)」を提供する。また、本発明は第二に「単結晶体を
有することを特徴とする請求項1記載のX線分光素子
(請求項2)」を提供する。
Therefore, in the first aspect of the present invention, "an X-ray spectroscopic element formed by bonding an X-ray dispersion structure to the curved surface of a substrate having a curved surface by an anodic bonding method (claim 1). "I will provide a. Further, the present invention secondly provides an "X-ray spectroscopic element (claim 2) according to claim 1, which has a single crystal."

【0013】また、本発明は第三に「多層膜体を有する
ことを特徴とする請求項1または2記載のX線分光素子
(請求項3)」を提供する。
Thirdly, the present invention provides an "X-ray spectroscopic element (claim 3) according to claim 1 or 2, which has a multi-layer film body.

【0014】[0014]

【作用】球面のように形成が困難な表面を入射面として
有する湾曲X線分散構造体を用いたX線分光素子は、曲
面6を有する基板1の該曲面6に、X線分散構造体2を
陽極接合法により接合してなるX線分光素子(請求項
1)により提供することができる(図1 3.参照)。
An X-ray spectroscopic element using a curved X-ray dispersion structure having a surface, which is difficult to form, such as a spherical surface, as an incident surface is an X-ray dispersion structure 2 on the curved surface 6 of the substrate 1 having the curved surface 6. Can be provided by an X-ray spectroscopic element (claim 1) formed by anodic bonding (see FIG. 1 3.).

【0015】本発明のX線分光素子を製造する方法の一
例を示すと、先ず、平板状X線分散構造体(例えば、シ
リコンウェハ)2aと、曲面6を有する基板1を用意す
る(図1の1.参照)。次に、基板1の曲面6に、平板
状X線分散構造体2aを陽極接合法により接合して(図
1の2.参照)、X線分光素子が完成する(図1の3.
参照)。このX線分光素子のX線入射面を研磨すれば、
任意形状の入射面を容易に形成することができる(図2
の4.参照)。陽極接合法については、後で詳述する。
As an example of a method for manufacturing the X-ray spectroscopic element of the present invention, first, a flat plate X-ray dispersion structure (for example, a silicon wafer) 2a and a substrate 1 having a curved surface 6 are prepared (FIG. 1). 1)). Next, the flat plate X-ray dispersion structure 2a is bonded to the curved surface 6 of the substrate 1 by the anodic bonding method (see 2. in FIG. 1) to complete the X-ray spectroscopic element (3. in FIG. 1).
reference). If the X-ray incident surface of this X-ray spectroscopic element is polished,
An incident surface having an arbitrary shape can be easily formed (see FIG. 2).
4. reference). The anodic bonding method will be described in detail later.

【0016】なお、基板1の曲面6と平板状X線分散構
造体2aの接合を行うとき、特に、接合面である基板1
の曲面6が凹面の場合には、凹面に最近接した平板状X
線分散構造体2aの平面(接合面)部分から接合が行わ
れるので、接合部分に空気溜まりができやすい。そのた
め、空気溜まりができないように、空気抜きのための穴
を基板1又は平板状X線分散構造体2aに、或いは両方
に設けることが好ましい(図1、2参照基板1に空気抜
き穴5を設けた例)。
When the curved surface 6 of the substrate 1 and the flat plate-shaped X-ray dispersion structure 2a are joined, especially the substrate 1 which is the joining surface.
If the curved surface 6 is concave, the flat plate-like X closest to the concave
Since the bonding is performed from the flat surface (bonding surface) portion of the line dispersion structure 2a, air is likely to be accumulated in the bonding portion. Therefore, it is preferable to provide a hole for venting air in the substrate 1 or the flat plate X-ray dispersion structure 2a or in both of them so that air cannot be collected (the air vent hole 5 is provided in the reference substrate 1 in FIGS. 1 and 2). Example).

【0017】以上、本発明のX線分光素子を製造する方
法の一例を示した。本発明のX線分光素子にかかる基板
1の曲面6とX線分散構造体の接合により基板曲面6の
形状が接合後のX線分散構造体2に転写される。即ち、
X線分散構造体の接合面6’は接合後、基板曲面6にな
らって変形することで、基板曲面6の形状が接合後のX
線分散構造体2の格子面形状に転写される(図1の3.
参照)。
An example of the method of manufacturing the X-ray spectroscopic element of the present invention has been described above. By bonding the curved surface 6 of the substrate 1 and the X-ray dispersion structure according to the X-ray spectroscopic element of the present invention, the shape of the curved surface 6 of the substrate is transferred to the bonded X-ray dispersion structure 2. That is,
The joint surface 6 ′ of the X-ray dispersion structure is deformed following the curved surface 6 of the substrate after the joining, so that the shape of the curved surface 6 of the substrate becomes X after joining.
It is transferred to the lattice plane shape of the line dispersion structure 2 (3.
reference).

【0018】また、X線分散構造体のX線入射面を基板
曲面6の形状、即ち格子面形状とは異なる所望形状にし
たい場合には、前記接合後のX線分散構造体2の表面を
さらに研磨することで所望の形状にすることができる
(図2の4.参照)。例えば、X線分散構造体の格子面
の湾曲半径R(基板曲面6の曲率半径に等しいか、又は
略等しい)を直径とするローランド円に接するようにX
線分散構造体2の表面を研磨すれば、前記Johansson 型
配置(図6参照)にかかるX線分光素子とすることがで
きる。
When the X-ray incident surface of the X-ray dispersion structure is desired to have a desired shape different from the shape of the curved surface 6 of the substrate, that is, the shape of the lattice plane, the surface of the X-ray dispersion structure 2 after the bonding is A desired shape can be obtained by further polishing (see 4. in FIG. 2). For example, X may be in contact with a Roland circle having a radius of curvature R (equal to or substantially equal to the radius of curvature of the curved surface 6 of the substrate) of the lattice plane of the X-ray dispersion structure.
By polishing the surface of the line dispersion structure 2, the X-ray spectroscopic element according to the Johansson type arrangement (see FIG. 6) can be obtained.

【0019】曲面6を有する基板1の該曲面6に、X線
分散構造体を接合する方法としては有機系接着剤、ロウ
付又はハンダ付などで用いられる金属系接着剤、ガラス
系接着剤等の接着剤を用いる接合法と、レーザー溶接、
シーム溶接、超音波溶接等の溶接による接合法と、さら
に陽極接合法をあげることができる。なお、溶接による
接合法には、接合材を介して二つの部材を接合する方法
と接合材を介さないで直接二つの部材を接合する方法が
ある。
As a method of joining the X-ray dispersion structure to the curved surface 6 of the substrate 1 having the curved surface 6, an organic adhesive, a metal adhesive used by brazing or soldering, a glass adhesive, etc. Laser welding,
Welding methods such as seam welding and ultrasonic welding, and anodic bonding methods can be mentioned. The joining method by welding includes a method of joining two members through a joining material and a method of joining two members directly without a joining material.

【0020】かかる接合法のうち、接着剤又は接合材を
用いる接合法により、前記基板曲面6及びX線分散構造
体を接合した場合、基板曲面(基板の接合面)6とX線
分散構造体の接合面6’との間に接着剤層又は接合材層
が介在することになるが、この層の厚さが大きいと、基
板曲面6の形状を接合後のX線分散構造体2に転写する
ことが困難となる。
When the substrate curved surface 6 and the X-ray dispersion structure are joined by a joining method using an adhesive or a bonding material among the joining methods, the substrate curved surface (bonding surface of the substrate) 6 and the X-ray dispersion structure are joined. The adhesive layer or the bonding material layer is interposed between the bonding surface 6 ′ and the bonding surface 6 ′. However, if the thickness of this layer is large, the shape of the curved surface 6 of the substrate is transferred to the X-ray dispersion structure 2 after bonding. Will be difficult to do.

【0021】また、基板曲面(基板の接合面)6とX線
分散構造体の接合面6’との間に接着剤層又は接合材層
が介在すると、熱膨張率や塑性の相違による接合強度の
低下という問題や、経年変化による接合強度の劣化とい
う問題が起こりやすくなる。接合材を用いない溶接法に
より、基板1とX線分散構造体を接合する場合は、基板
1又はX線分散構造体をその融点又は軟化点以上に加熱
する必要があるので形状精度を保持したまま接合するこ
とが困難である。
Further, when an adhesive layer or a bonding material layer is interposed between the curved surface of the substrate (bonding surface of the substrate) 6 and the bonding surface 6'of the X-ray dispersion structure, the bonding strength due to the difference in thermal expansion coefficient and plasticity. Of the joint strength and deterioration of the joint strength due to aging. When the substrate 1 and the X-ray dispersion structure are joined by a welding method without using a joining material, it is necessary to heat the substrate 1 or the X-ray dispersion structure above its melting point or softening point, so that the shape accuracy is maintained. It is difficult to join them as they are.

【0022】従って、接合法としては、比較的低温での
接合が可能であり、しかも接合材を用いる必要がなく、
そのため、基板曲面6の形状を接合後のX線分散構造体
の格子面形状に正確に転写することができる陽極接合法
が好ましい。陽極接合法は、接合を行う2部材間に直流
電圧を印加することにより、本来(直流電圧を印加しな
い場合)の接合温度よりも低い温度での接合を可能とす
る接合法であり、誘電体(例えば、ガラスやセラミック
ス)と金属類(単位金属、合金、半導体)の接合に適用
できる。
Therefore, as the joining method, it is possible to join at a relatively low temperature, and it is not necessary to use a joining material.
Therefore, the anodic bonding method is preferable because it can accurately transfer the shape of the curved surface 6 of the substrate to the shape of the lattice plane of the X-ray dispersion structure after bonding. The anodic bonding method is a bonding method that enables bonding at a temperature lower than the original (when no DC voltage is applied) bonding temperature by applying a DC voltage between two members to be bonded. It can be applied to joining (for example, glass or ceramics) and metals (unit metal, alloy, semiconductor).

【0023】陽極接合を行う場合、先ず、接合される誘
電体及び金属類の各接合面を研磨して平滑化することが
好ましい。この平滑化により、接合強度増大の効果が得
られる。例えば、0.05μm以下の最大表面粗さにするこ
とが好ましい。陽極接合においては、両材料の接合面を
重ね合わせて、誘電体の軟化点及び金属類の融点よりも
低い温度で加熱し、比較的高い直流電圧を両材料間に印
加することで、両者の接合がなされる。このときの極性
は、金属類側を+、誘電体側を−にする。
When performing anodic bonding, it is preferable to first grind and smooth the respective bonding surfaces of the dielectric and metal to be bonded. This smoothing has the effect of increasing the bonding strength. For example, it is preferable that the maximum surface roughness is 0.05 μm or less. In anodic bonding, the bonding surfaces of both materials are superposed, heated at a temperature lower than the softening point of the dielectric and the melting point of the metal, and a relatively high DC voltage is applied between the two materials, Bonding is done. The polarity at this time is + on the metal side and − on the dielectric side.

【0024】加熱温度は、材料の組み合わせや接合面の
平滑度に依存するが、300〜600°Cの場合が多
い。接合面の平滑度が良い程、また誘電体の硬度が小さ
い程、より低い加熱温度での接合が可能となる。印加す
る電圧は直流電圧であり、交流電圧の場合には接合はな
されない。また極性は金属類側を必ず+にする。印加電
圧の大きさは、材料の組み合わせ、接合面の平滑度、加
熱温度に依存するが、200〜2000Vの場合が多
く、一般には1000V前後が適当である。上限値は、
スパークによる破壊を起こさない上限の値となる。
The heating temperature depends on the combination of materials and the smoothness of the joint surface, but is often 300 to 600 ° C. The better the smoothness of the joint surface and the smaller the hardness of the dielectric material, the lower the heating temperature the joint becomes possible. The applied voltage is a DC voltage, and in the case of an AC voltage, no junction is made. Also, the polarity must be + on the metal side. The magnitude of the applied voltage depends on the combination of materials, the smoothness of the joint surface, and the heating temperature, but it is often 200 to 2000 V, and about 1000 V is generally suitable. The upper limit is
It is the upper limit value that does not cause destruction by sparks.

【0025】電圧の印加時間(接合が完了する時間)
は、加熱温度及び印加電圧に依存するが、加熱温度が高
い程、印加電圧が高い程、短時間となり、一般には数分
程度である。陽極接合は、一般には空気中で行われる
が、酸素、スチーム、窒素、水素、アルゴン、真空、ホ
ーミングガスの雰囲気下でも行うことができる。
Voltage application time (bonding completion time)
Depends on the heating temperature and the applied voltage, but the higher the heating temperature and the higher the applied voltage, the shorter the time, and generally about several minutes. Anodic bonding is generally carried out in air, but it can also be carried out in an atmosphere of oxygen, steam, nitrogen, hydrogen, argon, vacuum or homing gas.

【0026】陽極接合による接合強度を増大するため
に、被接合材料である誘電体と金属類の熱膨張率の差が
小さい組み合わせを選択することが好ましい。例えば、
熱膨張率の差が50%以下の組み合わせが好ましい。陽
極接合に好適な誘電体としては、例えば、軟質ガラス
(例えば、ホウケイ酸ガラス)、硬質ガラス、光学ガラ
ス、セラミック(例えば、βアルミナセラミックス)、
溶融石英、サファイア、磁器類などがあり、またこれら
の誘電体それぞれとの組み合わせとして好適な金属類と
しては、例えば、コバール、クロム合金、タンタル、シ
リコン、ゲルマニウム、モリブデン、タングステン、G
aAsなどがある。
In order to increase the bonding strength by anodic bonding, it is preferable to select a combination in which the difference in the coefficient of thermal expansion between the material to be bonded and the metal is small. For example,
A combination in which the difference in coefficient of thermal expansion is 50% or less is preferable. Examples of dielectrics suitable for anodic bonding include soft glass (for example, borosilicate glass), hard glass, optical glass, ceramics (for example, β-alumina ceramics),
There are fused quartz, sapphire, porcelain, and the like, and examples of metals suitable for combination with each of these dielectrics include kovar, chromium alloy, tantalum, silicon, germanium, molybdenum, tungsten, and G.
aAs and the like.

【0027】前記好適な誘電体と、該誘電体との熱膨張
率の差が50%よりも大きい金属類との組み合わせの場
合でも、金属類を薄膜状にすれば、接合強度の増大が可
能である。このような金属類としては、例えば、銅、
鉄、ニッケル、鉄−ニッケル合金、クロム、アルミニウ
ム、マグネシウム、チタン、ベリリウムなどがある。以
上の材料の組み合わせのうち、陽極接合に特に好適なも
のは、汎用性と加工精度の点から、ホウケイ酸ガラスと
シリコンの組み合わせである。この組み合わせによる陽
極接合では、比較的低い接合温度で、しかも短時間で接
合を行うことができる。
Even in the case of a combination of the preferable dielectric material and a metal material having a difference in thermal expansion coefficient between the dielectric material and the dielectric material of more than 50%, the bonding strength can be increased by forming the metal material into a thin film. Is. Examples of such metals include copper,
Examples include iron, nickel, iron-nickel alloys, chromium, aluminum, magnesium, titanium and beryllium. Of the combinations of the above materials, the one particularly suitable for anodic bonding is a combination of borosilicate glass and silicon in terms of versatility and processing accuracy. In anodic bonding by this combination, bonding can be performed at a relatively low bonding temperature and in a short time.

【0028】本発明のX線分光素子にかかるX線分散構
造体(ブラッグ反射による分光機能を有する)として
は、単結晶体又は多層膜体があり、単独で或いは組み合
わせて用いることができる(請求項2、3)。単結晶と
しては、加工が容易でしかも不都合な歪みを残さないも
のが好ましく例えば、水晶、Si、Ge、LiF、PG
(パイロリティック・グラファイトなどが好ましい。
The X-ray dispersive structure (having a spectroscopic function by Bragg reflection) of the X-ray spectroscopic element of the present invention includes a single crystal body or a multilayer film body, which can be used alone or in combination. Items 2, 3). The single crystal is preferably one that is easy to process and does not leave any inconvenient strain, for example, quartz, Si, Ge, LiF, PG.
(Pyrolytic graphite and the like are preferable.

【0029】多層膜は、電子ビーム蒸着法、マグネトロ
ンスパッタリング法、イオンビームスパッタリング法、
分子エピタキシー法などにより成膜すると、任意の格子
間隔や単結晶よりも大きい格子間隔を得ることができ
る。そのため、多層膜を用いた分光素子は、単結晶を用
いた分光素子では分光できない長波長領域のX線(例え
ば軟X線)の分光が可能である。
The multilayer film is formed by electron beam evaporation method, magnetron sputtering method, ion beam sputtering method,
When a film is formed by a molecular epitaxy method or the like, an arbitrary lattice spacing or a lattice spacing larger than that of a single crystal can be obtained. Therefore, the dispersive element using the multilayer film can disperse X-rays (for example, soft X-rays) in a long wavelength region that cannot be dissipated by the dispersive element using the single crystal.

【0030】従って、単結晶と多層膜を組み合わせたX
線分散構造体(単結晶上に多層膜を成膜したX線分散構
造体)を用いたX線分光素子(図4参照)とすれば、単
結晶による短波長領域での分光に加えて、多層膜による
長波長領域での分光も行うことができる。長波長領域の
X線(例えば軟X線)用の分光素子に用いる多層膜は、
原子番号の大きい物質(例えば、W,Pt,Au,Au
Pd,ReW,Mo,Ru,Rh,Ni,Cr等)と小
さい物質(例えば、C,B4 C,Si,SiC,V2
5等)との任意の組み合わせで、交互に複数回積層した
ものである。
Therefore, X combining a single crystal and a multilayer film
In the case of an X-ray spectroscopic element (see FIG. 4) using a line dispersion structure (X-ray dispersion structure in which a multilayer film is formed on a single crystal), in addition to spectroscopy in a short wavelength region by a single crystal, It is also possible to perform spectroscopy in a long wavelength region by using a multilayer film. The multilayer film used for the spectroscopic element for X-rays (for example, soft X-rays) in the long wavelength region is
Substances with large atomic numbers (eg W, Pt, Au, Au
Pd, ReW, Mo, Ru, Rh, Ni, Cr, etc. and small substances (for example, C, B 4 C, Si, SiC, V 2 O)
5 etc.) and any desired combination, and alternately laminated multiple times.

【0031】多層膜を単結晶上に成膜する方法としては
大きくわけて、多層膜を単結晶上に形成した後に、多層
膜を成膜した単結晶と基板の陽極接合を行う方法と、単
結晶と基板の陽極接合を行った後に、単結晶上に多層膜
を形成する方法がある。基板と単結晶との接合面の曲面
度(例えば曲率)が小さい場合には、接合後でも所望の
多層膜(構成層の膜厚比及び各構成層の膜厚が一定の交
互多層膜)を形成しやすいが、曲面度(例えば曲率)が
大きい場合には、接合後に所望の多層膜を形成しようと
すると、成膜条件の設定等、成膜工程が煩雑になる。そ
のため接合面の曲面度(例えば曲率)が大きい場合に
は、接合前に多層膜を形成するとよい。
The method of forming a multilayer film on a single crystal is broadly divided into a method of forming a multilayer film on a single crystal and then performing anodic bonding between the single crystal having the multilayer film formed thereon and a substrate. There is a method of forming a multilayer film on a single crystal after performing anodic bonding between the crystal and the substrate. When the degree of curvature (for example, curvature) of the bonding surface between the substrate and the single crystal is small, a desired multilayer film (alternate multilayer film in which the film thickness ratio of the constituent layers and the film thickness of each constituent layer are constant) is formed even after the bonding. Although it is easy to form, when the degree of curved surface (for example, curvature) is large, when a desired multilayer film is formed after joining, the film forming process such as setting of film forming conditions becomes complicated. Therefore, when the degree of curvature (eg, curvature) of the joint surface is large, it is preferable to form the multilayer film before joining.

【0032】以下、本発明を実施例により更に具体的に
説明するが、本発明はこれらの例に限定されるものでは
ない。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

【0033】[0033]

【実施例1】図1は本実施例のX線分光素子を製造する
方法を示す工程図であり、図1の3.は完成したX線分
光素子の概略側面図である。以下、本実施例のX線分光
素子を作製する手順を示す。先ず、平板状X線分散構造
体(シリコンウェハ)2aと、凹球面6及び空気抜きの
穴5を有する基板(ホウケイ酸ガラス)1を用意した
(図1の1.参照)。
[Embodiment 1] FIG. 1 is a process chart showing a method of manufacturing an X-ray spectroscopic element of the present embodiment. FIG. 3 is a schematic side view of the completed X-ray spectroscopic element. The procedure for producing the X-ray spectroscopic element of this example is described below. First, a flat plate X-ray dispersion structure (silicon wafer) 2a and a substrate (borosilicate glass) 1 having a concave spherical surface 6 and an air vent hole 5 were prepared (see 1. in FIG. 1).

【0034】陽極接合を行う前に、接合されるX線分散
構造体2a及び基板1の各接合面6,6’を研磨して平
滑鏡面化(0.05μm以下の最大表面粗さ)した。陽極接
合は、X線分散構造体2a及び基板1を約400℃に加
熱した状態において、X線分散構造体2a側電極3の極
性を+、基板1側電極3’の極性を−にして、直流電圧
約700Vを印加して行った(図1の2.参照)。
Before the anodic bonding, the bonding surfaces 6 and 6'of the X-ray dispersion structure 2a and the substrate 1 to be bonded were polished to be smooth mirror surface (maximum surface roughness of 0.05 μm or less). The anodic bonding is performed by setting the polarity of the X-ray dispersion structure 2a side electrode 3 to + and the polarity of the substrate 1 side electrode 3 ′ to − while heating the X-ray dispersion structure 2a and the substrate 1 to about 400 ° C. A direct current voltage of about 700 V was applied (see 2 in FIG. 1).

【0035】約10分で接合が完了し、基板1にX線分
散構造体2が接合されてなる本実施例のX線分光素子が
完成した(図1の3.)。本実施例のX線分光素子をX
線回折装置に使用したところ、円筒型分光素子2個を用
いた従来の場合と比較して、一つの素子で分光及び集光
を行うことができるので、光量の増大と光学系の簡素化
が可能となった。
Bonding was completed in about 10 minutes, and the X-ray spectroscopic element of this example in which the X-ray dispersion structure 2 was bonded to the substrate 1 was completed (3 in FIG. 1). The X-ray spectroscopic element of the present embodiment is X
When used in a line diffractometer, compared to the conventional case using two cylindrical spectroscopic elements, it is possible to perform spectroscopic and condensing with one element, so that an increase in light quantity and simplification of an optical system can be achieved. It has become possible.

【0036】[0036]

【実施例2】図2は本実施例のX線分光素子を製造する
方法を示す工程図であり、図2の4.は完成したX線分
光素子の概略側面図である。以下、本実施例のX線分光
素子を作製する手順を示す。先ず、平板状X線分散構造
体(シリコンウェハ)2aと、凹球面6及び空気抜きの
穴5を有する基板(ホウケイ酸ガラス)1を用意した
(図2の1.参照)。
[Embodiment 2] FIG. 2 is a process chart showing a method for manufacturing the X-ray spectroscopic element of the present embodiment. FIG. 3 is a schematic side view of the completed X-ray spectroscopic element. The procedure for producing the X-ray spectroscopic element of this example is described below. First, a flat plate X-ray dispersion structure (silicon wafer) 2a and a substrate (borosilicate glass) 1 having a concave spherical surface 6 and an air vent hole 5 were prepared (see 1. in FIG. 2).

【0037】陽極接合を行う前に、接合されるX線分散
構造体2a及び基板1の各接合面6,6’を研磨して鏡
面平滑化(0.05μm以下の最大表面粗さ)した。陽極接
合は、X線分散構造体2a及び基板1を約400℃に加
熱した状態において、X線分散構造体2a側3の極性を
+、基板1側3’の極性を−にして、直流電圧約700
Vを印加して行った(図2の2.参照)。
Prior to the anodic bonding, the bonding surfaces 6 and 6'of the X-ray dispersion structure 2a and the substrate 1 to be bonded were polished to a mirror surface smoothness (maximum surface roughness of 0.05 μm or less). Anodic bonding is performed by setting the polarity of the X-ray dispersion structure 2a side 3 to + and the polarity of the substrate 1 side 3 ′ to − while heating the X-ray dispersion structure 2a and the substrate 1 to about 400 ° C. About 700
V was applied (see 2 in FIG. 2).

【0038】約10分で接合が完了し、基板1にX線分
散構造体2bが接合された(図2の3.)。次に、X線
分散構造体2の格子面の湾曲半径、即ち基板1の曲面6
の曲率半径を直径とするローランド円に接するようにX
線分散構造体2の表面を研磨してJohansson 型配置(図
6参照)にかかる本実施例のX線分光素子が完成した
(図2の4.参照)。
Bonding was completed in about 10 minutes, and the X-ray dispersion structure 2b was bonded to the substrate 1 (3 in FIG. 2). Next, the radius of curvature of the lattice plane of the X-ray dispersion structure 2, that is, the curved surface 6 of the substrate 1.
X so that it touches a Roland circle whose radius is the radius of curvature of
The surface of the line dispersion structure 2 was polished to complete the X-ray spectroscopic element of this example according to the Johansson type arrangement (see FIG. 6) (see 4. in FIG. 2).

【0039】[0039]

【実施例3】図3は本実施例のX線分光素子の概略側面
図である。該分光素子は、基板(ステンレス)1の曲面
に誘電体層(ホウケイ酸ガラス層、厚さ0.4 μm)7を
設け該誘電体層7を介してX線分散構造体(シリコンウ
ェハ)と基板1を陽極接合した後、X線分散構造体2の
格子面の湾曲半径、即ち基板1の曲面の曲率半径を直径
とするローランド円に接するようにX線分散構造体2の
表面を研磨してJohansson 型配置(図6参照)にかかる
X線分光素子としたものである。
Third Embodiment FIG. 3 is a schematic side view of the X-ray spectroscopic element of this embodiment. In this spectroscopic element, a dielectric layer (borosilicate glass layer, thickness 0.4 μm) 7 is provided on a curved surface of a substrate (stainless steel) 1, and an X-ray dispersion structure (silicon wafer) and the substrate 1 are provided via the dielectric layer 7. After anodic bonding, the surface of the X-ray dispersion structure 2 is polished so as to be in contact with a Roland circle whose diameter is the radius of curvature of the lattice plane of the X-ray dispersion structure 2, that is, the radius of curvature of the curved surface of the substrate 1. Johansson This is an X-ray spectroscopic element according to the mold arrangement (see FIG. 6).

【0040】[0040]

【実施例4】図4は本実施例のX線分光素子の概略側面
図である。該分光素子は、基板(ホウケイ酸ガラス)1
の曲面6にX線分散構造体(シリコンウェハ)を陽極接
合した後、X線分散構造体2の表面に多層膜(W/C交
互多層膜、50〜100ペア)9を成膜したものであ
る。
Fourth Embodiment FIG. 4 is a schematic side view of the X-ray spectroscopic element of this embodiment. The spectroscopic element is a substrate (borosilicate glass) 1
After the anodic bonding of the X-ray dispersion structure (silicon wafer) to the curved surface 6 of No. 1, a multilayer film (W / C alternating multilayer film, 50 to 100 pairs) 9 is formed on the surface of the X-ray dispersion structure 2. is there.

【0041】本実施例のX線分光素子は、単結晶と多層
膜を組み合わせたX線分散構造体(単結晶上に多層膜を
成膜したX線分散構造体)を用いたX線分光素子であ
り、単結晶による短波長領域での分光に加えて、多層膜
による長波長領域での分光も行うことができた。
The X-ray spectroscopic element of the present embodiment is an X-ray spectroscopic element using an X-ray dispersion structure in which a single crystal and a multilayer film are combined (X-ray dispersion structure in which a multilayer film is formed on a single crystal). Therefore, in addition to the spectroscopy in the short wavelength region by the single crystal, the spectroscopy in the long wavelength region by the multilayer film could be performed.

【0042】[0042]

【実施例5】図5は本実施例のX線分光素子の概略側面
図である。該分光素子は、X線分散構造体(水晶)にシ
リコン層(厚さ0.4 μm)8を設け、該シリコン層8を
介してX線分散構造体と基板(ホウケイ酸ガラス)1を
陽極接合した後、X線分散構造体2の格子面の湾曲半
径、即ち基板1の曲面の曲率半径を直径とするローラン
ド円に接するようにX線分散構造体2の表面を研磨して
Johansson 型配置(図6参照)にかかるX線分光素子と
したものである。
Fifth Embodiment FIG. 5 is a schematic side view of the X-ray spectroscopic element of this embodiment. In the spectroscopic element, a silicon layer (thickness 0.4 μm) 8 is provided on an X-ray dispersion structure (quartz), and the X-ray dispersion structure and the substrate (borosilicate glass) 1 are anodically bonded via the silicon layer 8. Then, the surface of the X-ray dispersion structure 2 is polished so as to be in contact with a Roland circle having a radius of curvature of the lattice plane of the X-ray dispersion structure 2, that is, a radius of curvature of the curved surface of the substrate 1.
This is an X-ray spectroscopic element according to the Johansson type arrangement (see FIG. 6).

【0043】[0043]

【発明の効果】以上説明したように、本発明のX線分光
素子は、球面のように形成が困難な表面を入射面として
有する湾曲X線分散構造体を用いたX線分光素子であ
り、単一素子で分光及び集光を行うことができるので、
湾曲X線分散構造体を用いた従来のX線分光素子を用い
る場合と比較して、光量の増大と光学系の簡素化が可能
である。
As described above, the X-ray spectroscopic element of the present invention is an X-ray spectroscopic element using a curved X-ray dispersive structure having a surface such as a spherical surface that is difficult to form as an incident surface. Since it is possible to perform spectroscopy and light collection with a single element,
The amount of light can be increased and the optical system can be simplified as compared with the case of using the conventional X-ray spectroscopic element using the curved X-ray dispersion structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、実施例1のX線分光素子を製造する方法を
示す工程図である。
FIG. 1 is a process drawing showing a method for manufacturing an X-ray spectroscopic element of Example 1.

【図2】は、実施例2のX線分光素子を製造する方法を
示す工程図である。
FIG. 2 is a process drawing showing a method for manufacturing the X-ray spectroscopic element of Example 2.

【図3】は、実施例3のX線分光素子の概略側面図であ
る。
FIG. 3 is a schematic side view of an X-ray spectroscopic element of Example 3.

【図4】は、実施例4のX線分光素子の概略側面図であ
る。
FIG. 4 is a schematic side view of an X-ray spectroscopic element of Example 4.

【図5】は、実施例5のX線分光素子の概略側面図であ
る。
FIG. 5 is a schematic side view of an X-ray spectroscopic element of Example 5.

【図6】は、反射型分光において最も採用されている光
学系の配置であるJohansson 型配置の一例を示す配置図
である。
FIG. 6 is an arrangement diagram showing an example of a Johansson type arrangement which is an arrangement of an optical system most adopted in reflection type spectroscopy.

【主要部分の符号の説明】[Explanation of symbols for main parts]

1・・・基板 2・・・X線分散構造体(基板1に接合された後のも
の) 2a・・・平板状X線分散構造体(基板1に接合される
前のもの) 3・・・X線分散構造体2a側電極 3’・・基板1側電極 4・・・直流電源 5・・・空気抜き穴 6・・・基板の曲面(接合面) 6’・・X線分散構造体の接合面 7・・・誘電体(ホウケイ酸ガラス)層 8・・・シリコン層 9・・・多層膜 10・・・X線点光源 12・・・ローランド円 13・・・湾曲X線分散構造体 14・・・結晶格子面間隔d 15・・・光路長L 16・・・結晶格子面の湾曲曲率R 以 上
DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... X-ray dispersion structure (after being bonded to the substrate 1) 2a ... Flat X-ray dispersion structure (before being bonded to the substrate 1) 3.・ X-ray dispersion structure 2a side electrode 3 '・ ・ Substrate 1 side electrode 4 ... DC power supply 5 ... Air vent hole 6 ... Substrate curved surface (joint surface) 6' ... Bonding surface 7 ... Dielectric (borosilicate glass) layer 8 ... Silicon layer 9 ... Multilayer film 10 ... X-ray point light source 12 ... Rowland circle 13 ... Curved X-ray dispersion structure 14 ... Crystal lattice plane spacing d 15 ... Optical path length L 16 ... Curvature curvature R of crystal lattice plane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 曲面を有する基板の該曲面に、X線分散
構造体を陽極接合法により接合してなるX線分光素子。
1. An X-ray spectroscopic element formed by bonding an X-ray dispersion structure to the curved surface of a substrate having a curved surface by an anodic bonding method.
【請求項2】 単結晶体を有することを特徴とする請求
項1記載のX線分光素子。
2. The X-ray spectroscopic element according to claim 1, which has a single crystal body.
【請求項3】 多層膜体を有することを特徴とする請求
項1または2記載のX線分光素子。
3. The X-ray spectroscopic element according to claim 1, which has a multilayer film body.
JP7010454A 1995-01-26 1995-01-26 X-ray spectroscopic element Pending JPH08201589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7010454A JPH08201589A (en) 1995-01-26 1995-01-26 X-ray spectroscopic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7010454A JPH08201589A (en) 1995-01-26 1995-01-26 X-ray spectroscopic element

Publications (1)

Publication Number Publication Date
JPH08201589A true JPH08201589A (en) 1996-08-09

Family

ID=11750598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7010454A Pending JPH08201589A (en) 1995-01-26 1995-01-26 X-ray spectroscopic element

Country Status (1)

Country Link
JP (1) JPH08201589A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022333A1 (en) * 2004-08-27 2006-03-02 Tohoku University Curvature distribution crystal lens, x-ray device having curvature distribution crystal lens, and curvature distribution crystal lens manufacturing method
JP2008528959A (en) * 2005-01-21 2008-07-31 コミサリヤ・ア・レネルジ・アトミク X-ray monochromator or neutron monochromator
JP2009534645A (en) * 2006-04-20 2009-09-24 ミロトロン ケイエフティー. Manufacturing method of low wave neutron guide plane
JP2010025723A (en) * 2008-07-18 2010-02-04 Japan Aerospace Exploration Agency X-ray reflector
JP2010112712A (en) * 2008-11-04 2010-05-20 Shimadzu Corp Germanium curved spectral element
JP2010540405A (en) * 2007-10-11 2010-12-24 ユニベルシテ ピエール エ マリー キュリー(パリ シズエム) Method for fixing a lamellar material sheet on a suitable substrate
US10175185B2 (en) 2015-03-26 2019-01-08 Rigaku Corporation Methods for manufacturing doubly bent X-ray focusing device, doubly bent X-ray focusing device assembly, doubly bent X-ray spectroscopic device and doubly bent X-ray spectroscopic device assembly
CN109702909A (en) * 2019-01-17 2019-05-03 同济大学 A kind of clamping device and production method applied to the production of the spherical surface bent crystal
WO2021009897A1 (en) * 2019-07-18 2021-01-21 株式会社島津製作所 Dispersive element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022333A1 (en) * 2004-08-27 2006-03-02 Tohoku University Curvature distribution crystal lens, x-ray device having curvature distribution crystal lens, and curvature distribution crystal lens manufacturing method
JPWO2006022333A1 (en) * 2004-08-27 2008-07-31 国立大学法人東北大学 Curvature distribution crystal lens, X-ray apparatus having curvature distribution crystal lens, and method of manufacturing curvature distribution crystal lens
JP4710022B2 (en) * 2004-08-27 2011-06-29 国立大学法人東北大学 Curvature distribution crystal lens, X-ray apparatus having curvature distribution crystal lens, and method of manufacturing curvature distribution crystal lens
JP2008528959A (en) * 2005-01-21 2008-07-31 コミサリヤ・ア・レネルジ・アトミク X-ray monochromator or neutron monochromator
JP2009534645A (en) * 2006-04-20 2009-09-24 ミロトロン ケイエフティー. Manufacturing method of low wave neutron guide plane
JP2010540405A (en) * 2007-10-11 2010-12-24 ユニベルシテ ピエール エ マリー キュリー(パリ シズエム) Method for fixing a lamellar material sheet on a suitable substrate
JP2010025723A (en) * 2008-07-18 2010-02-04 Japan Aerospace Exploration Agency X-ray reflector
US8824631B2 (en) 2008-07-18 2014-09-02 Japan Aerospace Exploration Agency X-ray reflecting device
JP2010112712A (en) * 2008-11-04 2010-05-20 Shimadzu Corp Germanium curved spectral element
US10175185B2 (en) 2015-03-26 2019-01-08 Rigaku Corporation Methods for manufacturing doubly bent X-ray focusing device, doubly bent X-ray focusing device assembly, doubly bent X-ray spectroscopic device and doubly bent X-ray spectroscopic device assembly
CN109702909A (en) * 2019-01-17 2019-05-03 同济大学 A kind of clamping device and production method applied to the production of the spherical surface bent crystal
WO2021009897A1 (en) * 2019-07-18 2021-01-21 株式会社島津製作所 Dispersive element
JPWO2021009897A1 (en) * 2019-07-18 2021-01-21
CN113924628A (en) * 2019-07-18 2022-01-11 株式会社岛津制作所 Light splitting element

Similar Documents

Publication Publication Date Title
US7738629B2 (en) X-ray focusing optic having multiple layers with respective crystal orientations
US5016267A (en) Instrumentation for conditioning X-ray or neutron beams
US7991116B2 (en) Monochromatic x-ray micro beam for trace element mapping
EP0943914B1 (en) Apparatus for X-ray analysis
Bilderback Review of capillary x‐ray optics from the 2nd International Capillary Optics Meeting
US20150357069A1 (en) High brightness x-ray absorption spectroscopy system
Collart et al. Spherically bent analyzers for resonant inelastic X-ray scattering with intrinsic resolution below 200 meV
JPH08201589A (en) X-ray spectroscopic element
CN110530907A (en) X-ray absorption measuring system
JP4710022B2 (en) Curvature distribution crystal lens, X-ray apparatus having curvature distribution crystal lens, and method of manufacturing curvature distribution crystal lens
JP5173435B2 (en) X-ray monochromator or neutron monochromator
JPWO2007072906A1 (en) Method of manufacturing curvature distribution crystal lens, polarization control device, X-ray reflectivity measuring device, and X-ray reflectivity measuring method
US9761340B2 (en) Method of preparing strain released strip-bent x-ray crystal analyzers
JP3301249B2 (en) Reflection optical element and method of manufacturing the same
Yavaş et al. Sapphire analyzers for high-resolution X-ray spectroscopy
JPH08201593A (en) Non-spherical surface reflection optical element
Wittry et al. Large aperture point‐focusing diffractor for x rays
JP3291953B2 (en) Optical element for reflection
JPH08201592A (en) Non-spherical surface reflection optical element
JP2988459B2 (en) X-ray spectrometer and method of manufacturing the same
Ice X-ray microprobe: The next step in microcharacterization
JPH02257100A (en) Production of johannson type curved crystal
Schields et al. Comparison of diffraction intensity using a monocapillary optic and pinhole collimators in a microdiffractometer with a curved image-plate
WO2024026158A1 (en) Polarized, energy dispersive x-ray fluorescence system and method
JP2023075381A (en) Curved crystal having crystal shape variable mechanism