JPH08201406A - Scanning probe type microscope - Google Patents

Scanning probe type microscope

Info

Publication number
JPH08201406A
JPH08201406A JP1176395A JP1176395A JPH08201406A JP H08201406 A JPH08201406 A JP H08201406A JP 1176395 A JP1176395 A JP 1176395A JP 1176395 A JP1176395 A JP 1176395A JP H08201406 A JPH08201406 A JP H08201406A
Authority
JP
Japan
Prior art keywords
probe
sample
measurement
displacement
force curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1176395A
Other languages
Japanese (ja)
Inventor
Hisano Shimazu
久乃 島津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1176395A priority Critical patent/JPH08201406A/en
Publication of JPH08201406A publication Critical patent/JPH08201406A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE: To enable a scanning probe microscope to surely and efficiently measure a force curve by controlling the operation of an actuator based on the displacement of a probe. CONSTITUTION: A sample 22 is brought nearer to a probe 24 after the probe displacement data Lz obtained from the output of an A/D converter 3 at the time of starting measurement is set to be Lz1 and the sample 22 is continuously brought nearer to the probe 24 until the data Lz reaches a prescribed value Ld. The data Lz when the data Lz reaches the value Ld and the length of an XYZ driving piezoelectric body 23 are respectively represented by Lz3 and z3. Then the sample 22 is continuously separated from the probe until the data Lz becomes unchangeable even when the piezoelectric body 23 contacts. After separating the sample 22 from the probe 24, the piezoelectric body 23 is returned to the original length. When the body 23 is returned to the original length, one force curve measuring cycle is completed. Since the piezoelectric body 23 is controlled based on the probe displacement data during the measurement, useless movement can be reduced and, therefore, the measuring time can be shortened as compared with the conventional measurement. In addition, since the measurement is terminated after confirming the separation of the probe 24 from the sample 22, the necessity of repeating the measurement of the force curve can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査型プローブ顕微鏡に
関する。
FIELD OF THE INVENTION The present invention relates to a scanning probe microscope.

【0002】[0002]

【従来の技術】従来、走査型プローブ顕微鏡の一つとし
て、先端下方に探針の付いたカンチレバーで試料表面を
走査し、表面状態を観察する原子間力顕微鏡(AFM)
が知られている。
2. Description of the Related Art Conventionally, as one of scanning probe microscopes, an atomic force microscope (AFM) for observing a surface state by scanning a sample surface with a cantilever having a probe below its tip is observed.
It has been known.

【0003】原子間力顕微鏡では、試料表面の測定を行
なう場合、探針の試料表面に対する荷重値を設定するた
めにフォースカーブ測定が不可欠である。このため、一
般に原子間力顕微鏡にはフォースカーブ測定機構が設け
られている。
In the atomic force microscope, when measuring the sample surface, force curve measurement is indispensable for setting the load value of the probe on the sample surface. Therefore, the atomic force microscope is generally provided with a force curve measuring mechanism.

【0004】以下、フォースカーブの測定方法について
図5を用いて説明する。図5はフォースカーブ測定時の
カンチレバー21とXYZ駆動圧電体23に取り付けら
れた試料22の状態の時間的変化を示している。まず時
刻t1 では、カンチレバー21の探針24と試料22は
離れている。ここからXYZ駆動圧電体23をZ方向へ
伸ばし、時刻t2 において試料22と探針24が接触す
る。さらにXYZ駆動圧電体23をZ方向に伸ばし続
け、時刻t3 でXYZ駆動圧電体23が所定の長さに達
したら、今度はXYZ駆動圧電体23を縮める。その
後、試料22と探針24の間の吸着力の作用により時刻
t4 までカンチレバー21は変位し、この直後に探針2
4と試料22は離れる。さらにXYZ駆動圧電体23を
縮め、時刻t5 で元の長さに戻る。以上が、一回のフォ
ースカーブ測定に要する動作である。
A method of measuring the force curve will be described below with reference to FIG. FIG. 5 shows a temporal change in the state of the sample 22 attached to the cantilever 21 and the XYZ driving piezoelectric body 23 at the time of measuring the force curve. First, at time t1, the probe 24 of the cantilever 21 and the sample 22 are separated. From here, the XYZ driving piezoelectric body 23 is extended in the Z direction, and the sample 22 and the probe 24 come into contact with each other at time t2. Further, the XYZ driving piezoelectric body 23 is continuously extended in the Z direction, and when the XYZ driving piezoelectric body 23 reaches a predetermined length at time t3, the XYZ driving piezoelectric body 23 is contracted this time. After that, the cantilever 21 is displaced until time t4 by the action of the suction force between the sample 22 and the probe 24, and immediately after this, the probe 2 is moved.
4 and the sample 22 are separated. Further, the XYZ driving piezoelectric body 23 is contracted, and returns to the original length at time t5. The above is the operation required for one force curve measurement.

【0005】[0005]

【発明が解決しようとする課題】このように、従来のフ
ォースカーブ測定では、XYZ駆動圧電体のZ方向の伸
縮量すなわち試料22の上下動作範囲が固定されてい
る。このため、時刻t1 における探針24と試料22の
最初の間隔が狭かった場合に、探針24が試料表面を必
要以上に押圧し、探針24や試料22が損傷することが
ある。
As described above, in the conventional force curve measurement, the amount of expansion and contraction of the XYZ driving piezoelectric body in the Z direction, that is, the vertical movement range of the sample 22 is fixed. Therefore, when the initial distance between the probe 24 and the sample 22 at time t1 is narrow, the probe 24 may press the sample surface more than necessary, and the probe 24 and the sample 22 may be damaged.

【0006】また、試料表面の吸着力が大きい場合に、
時刻t5 においてXYZ駆動圧電体23が元の長さに戻
った後でも、探針24が試料22に吸着したまま離れず
にいることがある。
Further, when the suction force on the sample surface is large,
Even after the XYZ driving piezoelectric body 23 returns to the original length at the time t5, the probe 24 may remain adsorbed to the sample 22 and not separated.

【0007】このような場合、フォースカーブ測定をや
り直さなければならない。特に、試料22の表面の吸着
力を測定するために複数回のフォースカーブ測定を行な
う場合、データの取り直しに非常に時間を要してしま
う。
In such a case, the force curve measurement must be redone. In particular, when the force curve measurement is performed a plurality of times to measure the suction force on the surface of the sample 22, it takes a very long time to collect the data.

【0008】本発明の目的は、フォースカーブ測定を確
実に行なえる走査型プローブ顕微鏡を提供することであ
る。また本発明の別の目的は、そのフォースカーブ測定
に基づいて試料表面の情報を得ることのできる走査型プ
ローブ顕微鏡を提供することである。
An object of the present invention is to provide a scanning probe microscope which can reliably perform force curve measurement. Another object of the present invention is to provide a scanning probe microscope capable of obtaining information on the sample surface based on the force curve measurement.

【0009】[0009]

【課題を解決するための手段】本発明は、探針を試料表
面に近接させて走査することにより試料表面の情報を得
る走査型プローブ顕微鏡において、探針の荷重の設定の
ために行なうフォースカーブ測定の際に、探針と試料の
間に働く力による探針の変位を検出しながら、その変位
に基づいてアクチュエータの動作を制御することを特徴
とする。
DISCLOSURE OF THE INVENTION The present invention provides a force curve for setting the load of a probe in a scanning probe microscope that obtains information on the sample surface by scanning the probe close to the sample surface. At the time of measurement, the displacement of the probe due to the force acting between the probe and the sample is detected, and the operation of the actuator is controlled based on the displacement.

【0010】また、上記の走査型プローブ顕微鏡におい
て、一回のフォースカーブ測定の際にその場所における
吸着力や形状や固さの情報を算出し、フォースカーブ測
定を試料表面の複数の場所で行ない、試料表面全体の吸
着力や形状や固さの情報を得ることを特徴とする。
Further, in the above scanning probe microscope, information on the adsorption force, shape and hardness at the location is calculated during one force curve measurement, and the force curve measurement is performed at a plurality of locations on the sample surface. The feature is that information on the adsorption force, shape, and hardness of the entire sample surface is obtained.

【0011】さらに、上記の走査型プローブ顕微鏡にお
いて、フォースカーブ測定時に探針の傾きも同時に検出
し、この傾きも加味してアクチュエーターの動作を制御
することを特徴とする。
Further, in the above scanning probe microscope, the inclination of the probe is detected at the same time when the force curve is measured, and the operation of the actuator is controlled in consideration of this inclination.

【0012】[0012]

【作用】本発明では、探針と試料を接近させ、両者間に
荷重を発生させ、また遠ざけるといった、フォースカー
ブ測定の際のアクチュエーターの一連の動作の制御を探
針の変位に基づいて行なう。また、フォースカーブ測定
時のアクチュエータの動きと探針の変位に基づいて吸着
力や形状や固さの情報を算出する。フォースカーブ測定
を試料表面の複数の場所で行ない、試料表面全体の吸着
力や形状や固さの情報を得る。さらに、アクチュエータ
ーの動作の制御を探針の変位と探針の傾きに基づいて行
なう。
In the present invention, a series of operations of the actuator at the time of force curve measurement, such as bringing the probe and the sample close to each other, generating a load between them, and moving them away from each other, are controlled based on the displacement of the probe. In addition, information on the suction force, the shape, and the hardness is calculated based on the movement of the actuator and the displacement of the probe when measuring the force curve. Force curve measurement is performed at multiple locations on the sample surface to obtain information on the adsorption force, shape and hardness of the entire sample surface. Further, the operation of the actuator is controlled based on the displacement of the probe and the inclination of the probe.

【0013】[0013]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。本実施例において使用する走査型プローブ顕
微鏡の構成を図1に示す。マイクロコンピューター1は
本装置の各機能を制御しながら測定を行ない、測定デー
タをホストコンピューター2へ転送する。ホストコンピ
ューター2は測定データを記憶し表示する。試料22は
XYZ駆動圧電体23の上に配置される。D/Aコンバ
ータ4は、マイクロコンピュータ1が出力するXYZ駆
動圧電体23をZ方向に動かすためのデジタルのZ駆動
信号をアナログ信号に変換し、Z駆動信号10を出力す
る。D/Aコンバータ5は、マイクロコンピュータ1の
出力するXYZ駆動圧電体23を二次元駆動させるため
のデジタルのXY走査信号をアナログ信号に変換し、X
Y走査信号11を出力する。探針変位検出回路6はカン
チレバー21の自由端にある探針24のZ方向の変位を
検出し、探針変位信号13を出力する。サーボ制御回路
7は探針変位信号13を一定に保つようにXYZ駆動圧
電体23を駆動させるZサーボ信号12を出力する。信
号選択回路8は探針変位信号13またはZサーボ信号1
2の一方を選択し、A/Dコンバータ3に供給する。A
/Dコンバータ3は入力されるアナログ信号をデジタル
信号に変換し、マイクロコンピュータ1に送る。信号選
択回路9はZ駆動信号10またはZサーボ信号12の一
方を選択し、XYZ駆動圧電体23に供給する。
Embodiments of the present invention will be described below with reference to the drawings. The configuration of the scanning probe microscope used in this embodiment is shown in FIG. The microcomputer 1 performs measurement while controlling each function of the apparatus, and transfers measurement data to the host computer 2. The host computer 2 stores and displays the measurement data. The sample 22 is placed on the XYZ driving piezoelectric body 23. The D / A converter 4 converts a digital Z drive signal for moving the XYZ drive piezoelectric body 23 output from the microcomputer 1 in the Z direction into an analog signal, and outputs a Z drive signal 10. The D / A converter 5 converts a digital XY scanning signal for two-dimensionally driving the XYZ driving piezoelectric body 23 output from the microcomputer 1, into an analog signal,
The Y scanning signal 11 is output. The probe displacement detection circuit 6 detects displacement of the probe 24 at the free end of the cantilever 21 in the Z direction and outputs a probe displacement signal 13. The servo control circuit 7 outputs a Z servo signal 12 for driving the XYZ driving piezoelectric body 23 so as to keep the probe displacement signal 13 constant. The signal selection circuit 8 uses the probe displacement signal 13 or the Z servo signal 1
One of the two is selected and supplied to the A / D converter 3. A
The / D converter 3 converts the input analog signal into a digital signal and sends it to the microcomputer 1. The signal selection circuit 9 selects one of the Z drive signal 10 and the Z servo signal 12 and supplies it to the XYZ drive piezoelectric body 23.

【0014】なお、このようなサーボ制御を行なうと
き、信号選択回路8および信号選択回路9は、Zサーボ
制御回路7を通した探針変位信号13であるZサーボ信
号12を選択する。そして、信号選択回路8は、A/D
コンバータ3を介してマイクロコンピューター1へZサ
ーボ信号12を入力し、更に、マイクロコンピューター
1は、その信号をホストコンピューター2へ転送する。
また、信号選択回路9は、Zサーボ信号12に基づくZ
方向の制御信号をXYZ駆動圧電体23に入力し、これ
を駆動する。
When performing such servo control, the signal selection circuit 8 and the signal selection circuit 9 select the Z servo signal 12 which is the probe displacement signal 13 that has passed through the Z servo control circuit 7. Then, the signal selection circuit 8 uses the A / D
The Z servo signal 12 is input to the microcomputer 1 via the converter 3, and the microcomputer 1 further transfers the signal to the host computer 2.
In addition, the signal selection circuit 9 uses the Z servo signal 12 for Z
A direction control signal is input to the XYZ driving piezoelectric body 23 to drive it.

【0015】以下、本実施例のフォースカーブ測定につ
いて図2〜図4を用いて説明する。まず、探針24を試
料表面の測定位置まで移動させる。その際、探針24と
試料22が接触することのないように、サーボ制御回路
7を用いて探針先端と試料表面の間の距離を一定に保つ
ようにサーボ制御を行ないながら探針の移動を行なう。
The force curve measurement of this embodiment will be described below with reference to FIGS. First, the probe 24 is moved to the measurement position on the sample surface. At that time, in order to prevent the probe 24 and the sample 22 from coming into contact with each other, the servo control circuit 7 is used to move the probe while performing servo control so as to keep the distance between the probe tip and the sample surface constant. Do.

【0016】また、このフォースカーブ測定を行なうと
き、信号選択回路8は、Zサーボ制御回路7を通さない
探針変位信号13を選択する。更に、信号選択回路9
は、Z駆動信号10を選択し、このZ駆動信号に基づく
Z方向の制御信号をXYZ駆動圧電体23に入力し、こ
れを駆動する。
When performing this force curve measurement, the signal selection circuit 8 selects the probe displacement signal 13 which does not pass through the Z servo control circuit 7. Furthermore, the signal selection circuit 9
Selects the Z drive signal 10, inputs a control signal in the Z direction based on this Z drive signal to the XYZ drive piezoelectric body 23, and drives it.

【0017】この後、以下の手順でフォースカーブ測定
を行なう。なお、測定の間は常に、マイクロコンピュー
タ1はXYZ駆動圧電体23の長さデータzと探針変位
データLz をホストコンピュータ2に転送し、ホストコ
ンピュータ2はこれを記憶する。
After that, the force curve is measured in the following procedure. During the measurement, the microcomputer 1 always transfers the length data z of the XYZ driving piezoelectric body 23 and the probe displacement data Lz to the host computer 2, and the host computer 2 stores the data.

【0018】測定開始時(時刻t1 )のXYZ駆動圧電
体23の長さzをz1 とし、そのときのA/Dコンバー
タ3の出力より得られる探針変位データLz をLz1とす
る(図2のステップS101)。その後、試料22を探
針24に近づける。すなわち、D/Aコンバータ4の出
力を変化させ、XYZ駆動圧電体23を1ステップ分Z
方向に伸ばす(図2のステップS102)。この動作
(図2のステップS102)を探針変位データLz が所
定値Ld に達するまで続ける(図2のステップS10
3)。このときの探針変位データLz をLz3(図2のス
テップS104)とし、その時刻をt3 とする。またX
YZ駆動圧電体23の長さをz3 とする。
The length z of the XYZ driving piezoelectric element 23 at the start of measurement (time t1) is z1, and the probe displacement data Lz obtained from the output of the A / D converter 3 at that time is Lz1 (see FIG. 2). Step S101). Then, the sample 22 is brought close to the probe 24. That is, the output of the D / A converter 4 is changed to move the XYZ driving piezoelectric body 23 by one step.
It is extended in the direction (step S102 in FIG. 2). This operation (step S102 in FIG. 2) is continued until the probe displacement data Lz reaches the predetermined value Ld (step S10 in FIG. 2).
3). The probe displacement data Lz at this time is set to Lz3 (step S104 in FIG. 2), and its time is set to t3. Also X
The length of the YZ drive piezoelectric body 23 is z3.

【0019】また、探針変位データLz はLz1からLz3
へ推移する間に一旦減少し、その後に増加する。そのと
きの極小値をLz2とし、その時刻をt2 、そのときのX
YZ駆動圧電体23の長さをz2 とする。
Further, the probe displacement data Lz is Lz1 to Lz3.
It decreases once during the transition to and then increases. The minimum value at that time is Lz2, the time is t2, and X at that time is
The length of the YZ driving piezoelectric body 23 is z2.

【0020】探針変位データLz が所定値Ld に達した
後は試料22を探針24から遠ざける。まず探針変位デ
ータLz をLb とし(図2のステップS105)、続い
てD/Aコンバータ4の出力を変化させてXYZ駆動圧
電体23を1ステップ分Z方向に縮める(図2のステッ
プS106)。この一連の動作(ステップS105とス
テップS106)を、探針変位データLz がLz1に等し
く、かつ探針変位データLz がLb に等しくなるまで続
ける(図2のステップS107)。言い換えれば、探針
変位データLz がXYZ駆動圧電体23が縮んでも変化
しなくなるまで続け、その時刻t5 とする。その後、X
YZ駆動圧電体23を元の長さに戻す(図2のステップ
S108)。これで一回のフォースカーブの測定が終了
する。
After the probe displacement data Lz reaches the predetermined value Ld, the sample 22 is moved away from the probe 24. First, the probe displacement data Lz is set to Lb (step S105 in FIG. 2), and then the output of the D / A converter 4 is changed to shrink the XYZ driving piezoelectric body 23 in the Z direction by one step (step S106 in FIG. 2). . This series of operations (steps S105 and S106) is continued until the probe displacement data Lz is equal to Lz1 and the probe displacement data Lz is equal to Lb (step S107 in FIG. 2). In other words, the probe displacement data Lz continues until the XYZ driving piezoelectric body 23 contracts and remains unchanged until time t5. Then X
The YZ drive piezoelectric body 23 is returned to the original length (step S108 of FIG. 2). This completes one force curve measurement.

【0021】なお、測定を終了する直前における探針2
4の変位の最小値をLz4とし、その時刻をt4 、またそ
のときのXYZ駆動圧電体23の長さをz4 とする。こ
の一連の動作における、XYZ駆動圧電体23の長さz
すなわち試料22のZ方向変位と時間の関係を示すグラ
フと、探針24のZ方向変位と時間の関係を示すグラフ
を図3に示す。また、図3の二つのグラフに基づいて、
図4に示す、試料Z方向変位と探針Z方向変位の関係を
示す図いわゆるフォースカーブの図が得られる。
The probe 2 just before the measurement is finished
The minimum value of the displacement of 4 is Lz4, the time is t4, and the length of the XYZ driving piezoelectric body 23 at that time is z4. The length z of the XYZ driving piezoelectric body 23 in this series of operations
That is, FIG. 3 shows a graph showing the relationship between the Z direction displacement of the sample 22 and time, and the graph showing the relationship between the Z direction displacement of the probe 24 and time. Also, based on the two graphs in FIG.
A so-called force curve diagram showing the relationship between the sample Z-direction displacement and the probe Z-direction displacement shown in FIG. 4 is obtained.

【0022】この測定において、探針変位量(Lz3−L
z1)が試料22に対する探針24の押し込み量となる。
したがって、この値(Lz3−Lz1)を小さくすることに
より、すなわちLz3を決める所定値Ld を小さく設定す
ることにより、試料22と探針24の損傷を極力小さく
することができる。
In this measurement, the probe displacement (Lz3-L
z1) is the pushing amount of the probe 24 with respect to the sample 22.
Therefore, by decreasing this value (Lz3−Lz1), that is, by setting the predetermined value Ld that determines Lz3 to be small, the damage to the sample 22 and the probe 24 can be minimized.

【0023】また、探針変位量(Lz1−Lz4)が試料表
面の吸着により探針24がZ方向に変位した大きさにな
る。このように本実施例では、フォースカーブを測定す
る間のXYZ駆動圧電体23の制御は探針変位データに
基づいて行なっている。つまり、XYZ駆動圧電体は測
定に必要な最小限の動きを行なっており、予め定めた一
定の範囲を上下させる従来の測定に比べて無駄な動きが
なく、従って測定時間がかなり短くなる。さらに、探針
が試料から離れたことを確認してから測定を終了してい
るので、従来の様に測定終了時に探針が試料に接触した
ままにあるためにフォースカーブの測定をやり直しが余
儀なくされるいったことがなくなる。
Further, the amount of displacement of the probe (Lz1-Lz4) is the size of displacement of the probe 24 in the Z direction due to the adsorption on the sample surface. As described above, in this embodiment, the control of the XYZ driving piezoelectric body 23 during the measurement of the force curve is performed based on the probe displacement data. That is, the XYZ driving piezoelectric body makes the minimum movement necessary for measurement, and there is no unnecessary movement as compared with the conventional measurement in which the predetermined fixed range is moved up and down, and therefore the measurement time is considerably shortened. Furthermore, since the measurement is completed after confirming that the probe has moved away from the sample, the force curve must be measured again because the probe remains in contact with the sample at the end of measurement as in the past. It will never be done.

【0024】続いて、この一回のフォースカーブ測定結
果より得られたデータから試料表面の形状、吸着力、固
さ等の情報を算出する方法について説明する。図3よ
り、試料表面の形状としては、時刻t2 に探針24と試
料22が初めて接触するときの試料Z方向の変位z2 を
求める。
Next, a method of calculating information such as the shape of the sample surface, the adsorption force, and the hardness from the data obtained from the result of this one-time force curve measurement will be described. From FIG. 3, as the shape of the sample surface, the displacement z2 in the sample Z direction when the probe 24 and the sample 22 first contact at time t2 is obtained.

【0025】また、探針24と試料22が接触するとき
の吸着力(Fa )は、カンチレバー変位量(Lz1−Lz
2)にカンチレバーのばね定数を乗じたものになり、探
針24と試料22が離れるときの吸着力(Fb )はカン
チレバー変位量(Lz1−Lz4)にカンチレバーのばね定
数を乗じたものになる。
The attraction force (Fa) when the probe 24 and the sample 22 contact each other is determined by the cantilever displacement amount (Lz1-Lz).
2) is multiplied by the spring constant of the cantilever, and the attraction force (Fb) when the probe 24 and the sample 22 are separated is the product of the cantilever displacement (Lz1-Lz4) multiplied by the spring constant of the cantilever.

【0026】さらに試料表面の固さを表す指標として
は、探針24が試料22に接触してから押し込まれる間
つまり時刻t2 から時刻t3 の間における試料Z方向の
変位量に対するカンチレバーZ方向の変位量の比すなわ
ち(Lz3−Lz2)/(z3 −z2 )が相当する。この値
が1に近いほど試料表面が固いことを示している。
Further, as an index showing the hardness of the sample surface, the displacement in the cantilever Z direction with respect to the displacement amount in the sample Z direction between the time when the probe 24 is in contact with the sample 22 and the time when the probe 24 is pushed in, that is, between time t2 and time t3. The ratio of the quantities, namely (Lz3-Lz2) / (z3-z2), corresponds. The closer this value is to 1, the harder the sample surface is.

【0027】次に第二実施例について説明する。第一実
施例のフォースカーブ測定では、試料Z方向に対するカ
ンチレバーZ方向の変位だけを検出しているが、さらに
試料表面の情報を得るため、同時に探針の傾きすなわち
カンチレバーのねじれを検出してもよい。
Next, a second embodiment will be described. In the force curve measurement of the first embodiment, only the displacement in the cantilever Z direction with respect to the sample Z direction is detected. However, in order to obtain further information on the sample surface, the tilt of the probe, that is, the twist of the cantilever is also detected. Good.

【0028】ねじれを検出する光学系の一例を図6に示
す。この光学系は、図から分かるように、カンチレバー
21からの光を受ける対物レンズ61、対物レンズから
の光を二分するハーフミラー62、ハーフミラーで反射
された光を受ける臨界角プリズム63、この臨界角プリ
ズムからの光を受ける受光素子AとB、ハーフミラーを
透過した光を受ける臨界角プリズム64、この臨界角プ
リズムからの光を受ける受光素子CとDを有している。
実線で示されるようにカンチレバー21にねじれがない
とき、受光素子上の光スポットは実線で示されるように
中心に位置しており、カンチレバー21が想像線で示さ
れるようにねじれると、光スポットは想像線の位置に移
動する。従って、ねじれは、各受光素子の出力をそれぞ
れA、B、C、Dとすると、(A−B)−(D−C)で
求められる。
FIG. 6 shows an example of an optical system for detecting the twist. As shown in the figure, this optical system includes an objective lens 61 that receives light from the cantilever 21, a half mirror 62 that divides the light from the objective lens into two, a critical angle prism 63 that receives light reflected by the half mirror, and a critical angle prism 63. It has light receiving elements A and B for receiving the light from the prism, a critical angle prism 64 for receiving the light transmitted through the half mirror, and light receiving elements C and D for receiving the light from the critical angle prism.
When the cantilever 21 is not twisted as shown by the solid line, the light spot on the light receiving element is located at the center as shown by the solid line, and when the cantilever 21 is twisted as shown by the imaginary line, the light spot becomes Move to the position of the imaginary line. Therefore, the twist is calculated by (A−B) − (D−C), where A, B, C, and D are outputs of the respective light receiving elements.

【0029】このねじれに基づいて得られた時間に対す
るカンチレバーねじれのグラフを、時間に対する試料Z
方向変位のグラフと併せて図7に示す。フォースカーブ
測定時にカンチレバーのねじれによる変位とZ方向の変
位を同時に検出し表示させることで、ノイズなどの影響
を受けてもカンチレバーZ方向の変位を適切に判断する
ことができる。
A graph of the cantilever twist with respect to time obtained based on this twist is shown as a sample Z with respect to time.
It is shown in FIG. 7 together with the graph of the directional displacement. By simultaneously detecting and displaying the displacement due to the torsion of the cantilever and the displacement in the Z direction at the time of measuring the force curve, the displacement in the Z direction of the cantilever can be appropriately determined even when affected by noise or the like.

【0030】また、このようにフォースカーブとカンチ
レバーのねじれとを同時に測定し、それらのグラフを同
時に画面表示すると、フォースカーブ測定時に探針24
が試料表面に近接した状態でカンチレバーがねじれれ
ば、斜め方向の力を試料表面から検出していると言う事
であり、試料表面が傾斜を有するか、大きな凹凸を有す
る事の比較検討が可能である。更に、同様のことが、探
針24が試料と離れるような状態でも言える。
Further, if the force curve and the torsion of the cantilever are simultaneously measured in this way and their graphs are simultaneously displayed on the screen, the probe 24 is measured when the force curve is measured.
If the cantilever twists in the state of being close to the sample surface, it means that the diagonal force is detected from the sample surface, and it is possible to compare and examine whether the sample surface has an inclination or has large unevenness. Is. Furthermore, the same thing can be said even when the probe 24 is separated from the sample.

【0031】従って、このような構成としたことで、単
純な試料表面の吸着力及び試料の硬さ等を求める通常の
フォースカーブ測定だけでなく、試料が純物質のはずが
混合物であることや、試料表面の吸着力の方向性の分布
等のフォースカーブに関連する試料の物質特性や表面状
態など、更に詳しい試料表面の情報を得ることができ
る。
Therefore, by adopting such a constitution, not only the usual force curve measurement for obtaining the adsorption force on the sample surface and the hardness of the sample, but also that the sample should be a pure substance is a mixture. It is possible to obtain more detailed information on the sample surface such as the material properties and surface condition of the sample related to the force curve such as the distribution of the directionality of the adsorption force on the sample surface.

【0032】[0032]

【発明の効果】本発明によれば、フォースカーブの測定
を確実に行なえるようになり、測定のやり直しが余儀な
くされる事態になることがない。また、無駄な動きがな
くなるので測定時間も短縮される。さらに、フォースカ
ーブに基づいて試料表面の種々の情報が得られる。
As described above, according to the present invention, the force curve can be measured with certainty, and there is no need to repeat the measurement. In addition, since the unnecessary movement is eliminated, the measurement time is shortened. Further, various information on the sample surface can be obtained based on the force curve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例において使用する走査型プロー
ブ顕微鏡の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a scanning probe microscope used in an embodiment of the present invention.

【図2】本発明の実施例のフォースカーブ測定の流れを
示すフローチャートである。
FIG. 2 is a flowchart showing a flow of force curve measurement according to the embodiment of the present invention.

【図3】試料のZ方向の変位の時間的変化を示すグラフ
と、探針のZ方向の変位の時間的変化を示すグラフであ
る。
FIG. 3 is a graph showing a temporal change in displacement of the sample in the Z direction and a graph showing a temporal change in displacement of the probe in the Z direction.

【図4】図3の二つのグラフに基づき得られる試料Z方
向変位に対する探針Z方向変位の依存性を示す図であ
る。
FIG. 4 is a diagram showing the dependence of the displacement in the Z direction of the probe on the displacement in the Z direction of the sample obtained based on the two graphs in FIG.

【図5】フォースカーブ測定時におけるカンチレバーと
試料の状態の時間変化を示す図である。
FIG. 5 is a diagram showing a change over time in a state of a cantilever and a sample at the time of measuring a force curve.

【図6】カンチレバーのねじれを検出する光学系の構成
を示す図である。
FIG. 6 is a diagram showing a configuration of an optical system that detects twist of a cantilever.

【図7】図6の光学系により得られるカンチレバーのね
じれ変位の時間的変化を示すグラフと、試料のZ方向の
変位の時間的変化を示すグラフである。
7A and 7B are a graph showing a temporal change of torsional displacement of a cantilever obtained by the optical system of FIG. 6 and a graph showing a temporal change of displacement of a sample in a Z direction.

【符号の説明】[Explanation of symbols]

1…マイクロコンピュータ、2…ホストコンピュータ、
7…サーボ制御回路、21…カンチレバー、22…試
料、23…XYZ駆動圧電体、24…探針。
1 ... Microcomputer, 2 ... Host computer,
7 ... Servo control circuit, 21 ... Cantilever, 22 ... Sample, 23 ... XYZ drive piezoelectric body, 24 ... Probe.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】探針を試料表面に近接させて走査すること
により試料表面の情報を得る走査型プローブ顕微鏡にお
いて、探針の荷重の設定のために行なうフォースカーブ
測定の際に、探針と試料の間に働く力による探針の変位
を検出しながら、その変位に基づいてアクチュエータの
動作を制御することを特徴とする走査型プローブ顕微
鏡。
1. A scanning probe microscope that obtains information on the sample surface by scanning the probe in the vicinity of the sample surface, in the force curve measurement for setting the load of the probe, A scanning probe microscope characterized by detecting the displacement of a probe due to a force acting between samples and controlling the operation of an actuator based on the displacement.
【請求項2】請求項1において、一回のフォースカーブ
測定の際にその場所における吸着力や形状や固さの情報
を算出し、フォースカーブ測定を試料表面の複数の場所
で行ない、試料表面全体の吸着力や形状や固さの情報を
得ることを特徴とする走査型プローブ顕微鏡。
2. The surface of a sample according to claim 1, wherein during one force curve measurement, information on the adsorption force, shape and hardness at that location is calculated, and the force curve measurement is performed at a plurality of locations on the sample surface. A scanning probe microscope characterized by obtaining information on the overall suction force, shape, and hardness.
【請求項3】請求項1において、フォースカーブ測定時
に探針の傾きも同時に検出し、この傾きも加味してアク
チュエーターの動作を制御することを特徴とする走査型
プローブ顕微鏡。
3. The scanning probe microscope according to claim 1, wherein the inclination of the probe is detected at the same time when the force curve is measured, and the operation of the actuator is controlled by taking this inclination into consideration.
JP1176395A 1995-01-27 1995-01-27 Scanning probe type microscope Withdrawn JPH08201406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1176395A JPH08201406A (en) 1995-01-27 1995-01-27 Scanning probe type microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1176395A JPH08201406A (en) 1995-01-27 1995-01-27 Scanning probe type microscope

Publications (1)

Publication Number Publication Date
JPH08201406A true JPH08201406A (en) 1996-08-09

Family

ID=11787025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176395A Withdrawn JPH08201406A (en) 1995-01-27 1995-01-27 Scanning probe type microscope

Country Status (1)

Country Link
JP (1) JPH08201406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044007B2 (en) * 2001-12-06 2006-05-16 Veeco Instruments Inc. Force scanning probe microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044007B2 (en) * 2001-12-06 2006-05-16 Veeco Instruments Inc. Force scanning probe microscope

Similar Documents

Publication Publication Date Title
JP4603036B2 (en) System and method for detecting displacement of a plurality of micro and nanomechanical elements such as macrocantilevers
US7170048B2 (en) Compound scanning probe microscope
JPH08201406A (en) Scanning probe type microscope
JP3131517B2 (en) Scanning probe microscope equipment
JP2003028772A (en) Scanning probe microscope and its measurement setting method
JPH0980060A (en) Scanning probe microscope
JPH0972925A (en) Scanning type microscope
JPH10206433A (en) Scanning-type probe microscope
JPH08123553A (en) Positioning device
JP2001027596A (en) Apparatus and method for detection of surface characteristic and electric characteristic by scanning probe and apparatus and method for detection of surface characteristic and electric characteristic by multiprobe constituted of them as well as apparatus and method for observation
JPH0915137A (en) Frictional force measuring apparatus and scanning frictional force microscope
JP3278899B2 (en) Ultra small material testing machine
JPH09304408A (en) Measuring method by scanning probe microscope
JP3117304B2 (en) Apparatus and method for separating and measuring surface information
JPH10170525A (en) Scanning probe microscope, and measuring method for adsorption force using the scanning probe microscope
JPH10232240A (en) Surface observing device
JPH07248334A (en) Interatomic force microscope
JP2003315241A (en) Scanning probe microscope
JPH05332711A (en) Scanning probe microscope
JP3671591B2 (en) Scanning probe microscope
JP2000146806A (en) Scanning probe microscope
JP2000241334A (en) Apparatus and method for controlling scanning probe microscope
JPH0886791A (en) Scanning probe microscope device
JPH11326347A (en) Scan type probe microscope
JP2000097825A (en) Spring characteristic measurement method and its device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402