JPH08200196A - Device and method for detecting misfire for internal combustion engine - Google Patents

Device and method for detecting misfire for internal combustion engine

Info

Publication number
JPH08200196A
JPH08200196A JP1348895A JP1348895A JPH08200196A JP H08200196 A JPH08200196 A JP H08200196A JP 1348895 A JP1348895 A JP 1348895A JP 1348895 A JP1348895 A JP 1348895A JP H08200196 A JPH08200196 A JP H08200196A
Authority
JP
Japan
Prior art keywords
ion current
output
ignition
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1348895A
Other languages
Japanese (ja)
Inventor
Kenji Ujiie
健二 氏家
Kenji Tabuchi
憲司 田渕
Michimasa Horiuchi
道正 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1348895A priority Critical patent/JPH08200196A/en
Publication of JPH08200196A publication Critical patent/JPH08200196A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • F02P2017/125Measuring ionisation of combustion gas, e.g. by using ignition circuits

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

PURPOSE: To prevent the occurrence of malfunction of misfire detection owing to other current than an ion current by a method wherein the output of an ion current detecting means is rendered ineffective for a given period each time an ignition signal rises. CONSTITUTION: Since a transistor 210a is turned ON for a given period by means of the output 206a of a mask circuit 200a, an integrator 90a is reset during this period, and other current than an ion current is not integrated during this period. Namely, in the integrator 90a, the output 72a of an ion current detecting. means 70a is integrated during a period of from a time to a time when a subsequent ignition signal 41a is outputted, and the integrated value is obtained as a positive voltage 101a by a reverse amplifier 100a. When no ignition is effected even if a spark discharge current flows by a subsequent ignition signal 41a for a given period, since an ion current on and after some time does not flow, an integrated value on and after that is reduced to 0. This constitution decides the occurrence of a misfire from the presence of the output 101a of the inversion amplifier 100a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関に係り、特に、
シリンダ内の燃焼で生じるイオン電流の有無による内燃
機関の失火検出装置、および失火検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine, and more particularly to
The present invention relates to a misfire detection device for an internal combustion engine and a misfire detection method depending on the presence or absence of an ionic current generated by combustion in a cylinder.

【0002】[0002]

【従来の技術】点火コイルの二次巻線の低圧側でイオン
電流を検出する代表的な方法はUSP4648367号公報に
記載されている。
2. Description of the Related Art A typical method for detecting an ion current on the low voltage side of a secondary winding of an ignition coil is described in US Pat. No. 4,648,367.

【0003】[0003]

【発明が解決しようとする課題】点火時期が異なる複数
の点火プラグに接続した複数のイオン電流検出手段の出
力にはそれぞれ、点火プラグで放電終了時毎に発生する
イオン電流以外の電流、および他のイオン電流検出手段
からのノイズが混入する。
The outputs of a plurality of ion current detecting means connected to a plurality of ignition plugs having different ignition timings are the currents other than the ion currents generated at the end of each discharge in the ignition plug, and others. The noise from the ionic current detection means is mixed.

【0004】本発明の目的は、このイオン電流以外の電
流による失火検出の誤動作を防ぐことにある。
An object of the present invention is to prevent misoperation of misfire detection due to a current other than the ion current.

【0005】[0005]

【課題を解決するための手段】本発明の失火検出装置お
よび失火検出方法は、前記点火信号が立上がる毎に所定
期間は前記イオン電流検出手段の出力を無効にする手段
および方法を有している。
The misfire detection device and the misfire detection method of the present invention have means and method for invalidating the output of the ion current detection means for a predetermined period each time the ignition signal rises. There is.

【0006】[0006]

【作用】本発明では、点火プラグで放電終了時毎に発生
するイオン電流以外の電流、および他のイオン電流検出
手段からのノイズをマスクするため、失火検出の誤動作
を防ぐ作用がある。
The present invention masks currents other than the ionic current generated at the end of each discharge in the spark plug and noise from other ionic current detecting means, and thus has the effect of preventing malfunction of misfire detection.

【0007】[0007]

【実施例】以下、図面を用いて本発明の実施例を説明す
る。図5は、本発明の実施例のエンジンの制御装置の全
体構成を示し、801は例えば8気筒のエンジン、80
2は一端がエアクリーナ803を介して大気に開口し他
端がエンジン801に開口してエンジン801に吸気
(空気)を供給する吸気通路、804は一端がエンジン
801に開口し他端が大気に開口してエンジン801か
らの排気を排出する排気通路である。805はエンジン
出力要求に応じて踏込み操作されるアクセルペダル、8
06は吸気通路802に配設され吸入空気量を制御する
スロットル弁であって、スロットル弁806は、アクセ
ルペダル805とは機械的な連係関係がなく、後述のよ
うにアクセルペダル805の踏込み量つまりアクセル操
作量により電気的に制御される。807はスロットル弁
806を開閉作動させるステップモータ等よりなるスロ
ットルアクチュエータである。808は排気通路804
に介設され排気ガスを浄化するための触媒装置である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 shows an overall configuration of an engine control device according to an embodiment of the present invention. Reference numeral 801 denotes an 8-cylinder engine, 80
Reference numeral 2 denotes an intake passage having one end open to the atmosphere via the air cleaner 803 and the other end open to the engine 801 to supply intake air (air) to the engine 801, and 804 has one end open to the engine 801 and the other end open to the atmosphere. And an exhaust passage for discharging the exhaust gas from the engine 801. Reference numeral 805 denotes an accelerator pedal which is operated in response to an engine output request, and 8
Reference numeral 06 denotes a throttle valve that is disposed in the intake passage 802 and controls the intake air amount. The throttle valve 806 has no mechanical linkage with the accelerator pedal 805, and as described below, the depression amount of the accelerator pedal 805, that is, It is electrically controlled by the accelerator operation amount. Reference numeral 807 denotes a throttle actuator including a step motor or the like for opening and closing the throttle valve 806. 808 is an exhaust passage 804
Is a catalyst device for purifying exhaust gas.

【0008】また、809は一端が排気通路804の触
媒装置808上流に開口し他端が吸気通路802のスロ
ットル弁806下流に開口して、排気通路804の排気
ガスの一部を吸気通路802に還流する排気還流通路、
810は排気還流通路809の途中に介設され、排気還
流量を制御する吸気負圧を作動源とするダイヤフラム装
置よりなる還流制御弁、811は還流制御弁810を開
閉制御するソレノイド弁である。
Further, one end 809 of the exhaust passage 804 is opened upstream of the catalyst device 808 and the other end thereof is opened downstream of the throttle valve 806 of the intake passage 802, so that part of the exhaust gas in the exhaust passage 804 is introduced into the intake passage 802. Exhaust gas recirculation passage for recirculation,
Reference numeral 810 is a recirculation control valve that is provided in the middle of the exhaust gas recirculation passage 809 and includes a diaphragm device that uses an intake negative pressure for controlling the amount of recirculation of exhaust gas as an operation source, and 811 is a solenoid valve that controls opening / closing of the recirculation control valve 810.

【0009】一方、812は吸気通路802のスロット
ル弁806下流に配設され燃料を噴射供給する燃料噴射
弁である。燃料噴射弁812は燃料ポンプ813および
燃料フィルタ814を介設した燃料供給通路815を介
して燃料タンク816に連通されており、燃料タンク8
16からの燃料が送給されるとともに、その余剰燃料は
燃圧レギュレータ817を介設したリターン通路818
を介して燃料タンク816に還流され、よって所定圧の
燃料が燃料噴射弁812に供給されるようにしている。
On the other hand, reference numeral 812 denotes a fuel injection valve which is arranged downstream of the throttle valve 806 in the intake passage 802 and injects and supplies fuel. The fuel injection valve 812 is connected to a fuel tank 816 via a fuel supply passage 815 having a fuel pump 813 and a fuel filter 814.
16 is supplied, and the surplus fuel is supplied to the return passage 818 having the fuel pressure regulator 817.
The fuel is recirculated to the fuel tank 816 via the fuel tank 816, and thus fuel having a predetermined pressure is supplied to the fuel injection valve 812.

【0010】加えて、819はアクセルペダル805の
踏込み量つまりアクセル操作量αを検出するアクセル操
作量検出手段としてのアクセルペダルポジションセン
サ、820は吸気通路802のスロットル弁806上流
に配設され吸入空気量(QaR)を検出する吸気量検出
手段としてのエアフローメータ、821は同じく吸気通
路802のスロットル弁806の開度を検出するスロッ
トルポジションセンサ、823はエンジン冷却水の温度
TWを検出する水温センサ、824は排気通路804の
触媒装置808上流に配設され排気ガス中の酸素濃度成
分よりエンジン801の空燃比λを検出するO2 セン
サ、825は還流制御弁810に付設され排気還流時を
検出する排気還流時検出手段としての還流センサであっ
て、これら819〜825の検出信号はアナログコンピ
ュータ等よりなるコントロールユニット826に入力さ
れていて、コントロールユニット826によりスロット
ルアクチュエータ807,ソレノイド弁811および燃
料噴射弁812が制御される。さらに、コントロールユ
ニット826にはイグナイタ827が入力接続されてい
て、点火回数つまりエンジン回転数Neの信号を入力し
ている。コントロールユニット826は点火プラグ82
8と接続しており、点火時期信号を出力している。ま
た、コントロールユニット826にはバッテリ829が
入力接続されていて、バッテリ電圧VBの信号を入力し
ている。
In addition, 819 is an accelerator pedal position sensor as an accelerator operation amount detecting means for detecting the depression amount of the accelerator pedal 805, that is, the accelerator operation amount α, and 820 is arranged in the intake passage 802 upstream of the throttle valve 806. An air flow meter as an intake air amount detecting means for detecting the amount (QaR), 821 a throttle position sensor for detecting the opening of the throttle valve 806 of the intake passage 802, 823 a water temperature sensor for detecting the temperature TW of the engine cooling water, Reference numeral 824 is an O 2 sensor arranged upstream of the catalyst device 808 in the exhaust passage 804 to detect the air-fuel ratio λ of the engine 801 from the oxygen concentration component in the exhaust gas, and 825 is attached to the recirculation control valve 810 to detect when exhaust gas is recirculating. A recirculation sensor as exhaust gas recirculation time detection means, The detection signal is input to the control unit 826 consisting of analog computer, the throttle actuator 807 by the control unit 826, the solenoid valve 811 and the fuel injection valve 812 is controlled. Further, an igniter 827 is input-connected to the control unit 826 to input a signal indicating the number of ignitions, that is, the engine speed Ne. The control unit 826 is a spark plug 82.
8 and outputs an ignition timing signal. Further, a battery 829 is input-connected to the control unit 826 and inputs a signal of the battery voltage VB.

【0011】図1は、2気筒エンジンのイオン電流検出
システム図である。バッテリ10と点火コイル20a,
20bの一次巻線21a,21bと点火トランジスタ3
0a,30bをそれぞれ接続し、制御装置40で点火時
期の制御を行う。点火コイル20a,20bの二次巻線
22a,22bの高圧側は、それぞれシリンダ50a,
50b内の点火プラグ60a,60bに、低圧側はイオ
ン電流検出手段70a,70bにそれぞれ接続する。イ
オン電流検出手段70a,70bは、それぞれ反転増幅
器80a,80b,積分器90a,90b,反転増幅器
100a,100bを経て失火判定出力101a,101b
を得る。マスク回路200a,200bは、それぞれト
ランジスタ300a,300bをオンし、この期間は他
方の反転増幅器80b,80aの出力を0にマスクす
る。更に、このマスク回路200a,200bは、それ
ぞれトランジスタ210a,210bをオンし、この期
間は積分値を0にマスクする。
FIG. 1 is a diagram of an ion current detection system for a two-cylinder engine. Battery 10 and ignition coil 20a,
20b primary windings 21a, 21b and ignition transistor 3
0a and 30b are connected to each other, and the control device 40 controls the ignition timing. The high-voltage side of the secondary windings 22a and 22b of the ignition coils 20a and 20b are connected to the cylinders 50a and
The spark plugs 60a and 60b in 50b are connected to the ion current detecting means 70a and 70b on the low voltage side. The ion current detecting means 70a, 70b pass through inverting amplifiers 80a, 80b, integrators 90a, 90b, inverting amplifiers 100a, 100b, respectively, and misfire determination outputs 101a, 101b.
Get. The mask circuits 200a and 200b turn on the transistors 300a and 300b, respectively, and mask the outputs of the other inverting amplifiers 80b and 80a to 0 during this period. Further, the mask circuits 200a and 200b turn on the transistors 210a and 210b, respectively, and mask the integrated value to 0 during this period.

【0012】図2は、図1のタイミングチャートであ
る。制御装置40で出力された点火信号41a,41b
に対し、点火コイル20a,20bの二次巻線22a,
22bに23a,23bの電流がそれぞれ流れ、点火プ
ラグ60a,60bが交互に放電する。時刻t0では点
火プラグ60aとシリンダ50a間の静電容量や漏洩容
量24aへの充電電流が流れ、時刻t1では点火プラグ
60aの火花放電電流が流れ、時刻t2ではイオン電流
検出手段70aのコンデンサ71aに充電された電圧に
より、点火プラグ60aとシリンダ50a間の静電容量
や漏洩容量24aへの充電電流が流れ、その後、時刻t
3からシリンダ50a内に生じるイオンによりイオン電
流が流れる。コンデンサ71aの充電電圧で流れる電流
によって生じるイオン電流検出手段70aの出力72a
はアース側が正の負電圧であり、反転増幅器80aで正
電圧の出力81aとなる。マスク回路200aは、出力
81aをクロック,点火信号41aをリセットとするフリ
ップフロップ201aの出力202aの立上りで動作す
るワンショット203aで時間T1の出力204aを得
る。フリップフロップ201aの反転出力とワンショッ
ト203aの出力204aをオア205aの入力として出力
206aを得る。同様に、制御装置40で出力された点
火信号41bに対し、マスク回路の出力206bを得
る。つまり時間T2は、一方の点火プラグ60aに接続
しているイオン電流検出回路70aにとってみれば、も
う一方の点火プラグ60bの点火信号41bの立上りか
ら始まり、点火プラグ60bの放電終了後、時刻t7〜
t8に発生するイオン電流以外の電流を検出し終わるま
での期間となる。マスク回路200bの出力206bに
より、時間T2だけトランジスタ300bがオンするの
で、イオン電流検出手段70aの出力72aにおいて時
間T2に現れるノイズをマスクし、この間の出力が無効
となって、ノイズが出力されない反転増幅器80aの出
力81aを得る。ノイズは、イオン電流検出手段70a
と70bとのグランドレベルの変動や、電磁誘導等に起
因しており、二次巻線22bの電流23bに誘導された
ものである。マスク回路200aの出力206aによ
り、時刻t0から時刻t4まではトランジスタ210a
がオンするので、この間、積分器90aがリセットさ
れ、この間のイオン電流以外の電流は積分されない。す
なわち、積分器90aは時刻t4から次の点火信号41
aが出力する時刻t10までのイオン電流検出手段70
aの出力72aが積分され、その積分値を反転増幅器1
00aにより正電圧101aとして得る。次の点火信号4
1aで時刻t11から時刻t12で火花放電電流が流れ
ても点火しない場合は、時刻t13以降のイオン電流が
流れないので時刻t14以降の積分値は0となる。これ
より、反転増幅器100aの出力101aの有無により
失火判定をすることができる。他方の失火検出手段につ
いても全く同様の説明である。なお、時間T1は失火時
波形から判るように、時刻t12から時刻t13′の時
間幅に設定する。
FIG. 2 is a timing chart of FIG. Ignition signals 41a and 41b output by the control device 40
On the other hand, the secondary windings 22a of the ignition coils 20a, 20b,
The electric currents of 23a and 23b flow into 22b, respectively, and the spark plugs 60a and 60b are alternately discharged. At time t0, a charging current for the electrostatic capacity between the spark plug 60a and the cylinder 50a or the leakage capacitance 24a flows, a spark discharge current for the spark plug 60a flows at time t1, and a capacitor 71a of the ion current detecting means 70a at time t2. Due to the charged voltage, a charging current to the electrostatic capacity between the spark plug 60a and the cylinder 50a or the leakage capacity 24a flows, and then, at time t
An ion current flows due to the ions generated in the cylinder 50a from No. 3. Output 72a of ion current detecting means 70a generated by current flowing at the charging voltage of the capacitor 71a
Has a positive negative voltage on the ground side, and becomes a positive voltage output 81a in the inverting amplifier 80a. The mask circuit 200a outputs
The output 204a at time T1 is obtained by the one-shot 203a which operates at the rising edge of the output 202a of the flip-flop 201a whose clock is 81a and whose ignition signal 41a is reset. The output 206a is obtained by using the inverted output of the flip-flop 201a and the output 204a of the one-shot 203a as the input of the OR 205a. Similarly, the output 206b of the mask circuit is obtained with respect to the ignition signal 41b output by the control device 40. In other words, the time T2 starts from the rise of the ignition signal 41b of the other ignition plug 60b, when the ion current detection circuit 70a connected to the one ignition plug 60a starts, and after the discharge of the ignition plug 60b ends, the time t7-.
This is a period until the detection of a current other than the ion current generated at t8 is completed. Since the output 206b of the mask circuit 200b turns on the transistor 300b for the time T2, the noise appearing at the time T2 at the output 72a of the ion current detecting means 70a is masked, and the output during this period is invalidated, and the noise is not output. The output 81a of the amplifier 80a is obtained. Noise is caused by the ion current detecting means 70a.
And 70b due to fluctuations in the ground level, electromagnetic induction, etc., and are induced by the current 23b in the secondary winding 22b. The output 206a of the mask circuit 200a causes the transistor 210a from time t0 to time t4.
Is turned on, the integrator 90a is reset during this period, and currents other than the ion current during this period are not integrated. That is, the integrator 90a starts the next ignition signal 41 from time t4.
Ion current detection means 70 until time t10 output by
The output 72a of a is integrated, and the integrated value is calculated by the inverting amplifier 1
00a to obtain a positive voltage 101a. Next ignition signal 4
If ignition does not occur even if a spark discharge current flows from time t11 to time t12 at 1a, the ion current after time t13 does not flow, so the integrated value after time t14 becomes zero. From this, misfire determination can be made based on the presence or absence of the output 101a of the inverting amplifier 100a. The same description applies to the other misfire detecting means. The time T1 is set to a time width from time t12 to time t13 ', as can be seen from the misfire waveform.

【0013】本実施例によれば、時間T1のマスク時間
により火花放電終了直後に生じる不要な波形、およびT
2のマスク時間により他方のイオン電流検出手段からの
ノイズを除いた実際のイオン電流の積分値が得られるの
で、失火検出を確実にできる効果がある。
According to this embodiment, an unnecessary waveform generated immediately after the end of the spark discharge due to the mask time of time T1 and T
With the mask time of 2, the actual integrated value of the ion current excluding the noise from the other ion current detecting means is obtained, so that there is an effect that the misfire detection can be surely performed.

【0014】図3は本発明の他の実施例で、8気筒エン
ジンのイオン電流による失火検出システムの回路図であ
る。各点火プラグに接続した点火コイルの二次巻線の低
圧側400に、イオン電流検出モジュール500を接続
し、モジュールの出力510a,510b,510c,51
0dを基に制御装置600でイオン電流部のみを積分
し、CPU670がその積分値で失火を判定する。互いに点火
時期の位相が180゜ずれている点火コイルの二次巻線
の低圧側401と402,403と404,405と40
6,407と408をそれぞれイオン電流検出手段50
0a,500b,500c,500dに接続する。
FIG. 3 is another embodiment of the present invention, which is a circuit diagram of an ion current misfire detection system for an 8-cylinder engine. The ion current detection module 500 is connected to the low-voltage side 400 of the secondary winding of the ignition coil connected to each spark plug, and the output 510a, 510b, 510c, 51 of the module is connected.
Based on 0d, the controller 600 integrates only the ion current portion, and the CPU 670 determines the misfire based on the integrated value. The phases of the ignition timing are 180 ° out of phase with each other. The low-voltage side 401, 402, 403, 404, 405, 40 of the secondary winding of the ignition coil.
6, 407 and 408 are ion current detecting means 50, respectively.
0a, 500b, 500c, 500d.

【0015】図4は、図3のタイミングチャートであ
る。エンジンの制御装置700で出力された点火信号7
10に同期したイオン電流検出モジュール500の出力
510a,510b,510c,510dは、それぞれ反転
増幅器610a,610b,610c,610dで正電
圧となり、マルチプレクサ620の入力となる。CPU670
からの信号671,672に従って、イオン電流検出手
段500の出力510a,510b,510c,510
dのうち、点火時期の位相が互いに180゜ずれている
510aと510b,510cと510dをそれぞれ合
成した信号を前記実施例と同様、マスク回路630a,
630bで処理し、ノイズをマスクしたマルチプレクサ
620の出力631a,631bを得る。CPU670からの
信号673a,673bは、積分器660a,660b
の積分期間を決定し、それに従って積分器660a,6
60bはマルチプレクサ620の出力631a,631
bを積分し、イオン電流積分波形661a,661bを
得る。これより、CPU670がイオン電流積分波形661
a,661bの有無を判定し、失火判定する。
FIG. 4 is a timing chart of FIG. Ignition signal 7 output from engine control unit 700
Output of ion current detection module 500 synchronized with 10
510a, 510b, 510c, and 510d become positive voltages in the inverting amplifiers 610a, 610b, 610c, and 610d, respectively, and are input to the multiplexer 620. CPU670
Outputs 510a, 510b, 510c, 510 of the ion current detecting means 500 according to the signals 671, 672 from
In the same manner as in the above embodiment, the signals obtained by combining 510a and 510b and 510c and 510d, whose phases of the ignition timing are 180 ° out of phase with each other, are masked by the mask circuit 630a,
The outputs 631a and 631b of the multiplexer 620, which have been processed by 630b and have noise masked, are obtained. Signals 673a and 673b from the CPU 670 are supplied to integrators 660a and 660b.
Of the integrators 660a, 6
60b is the output 631a, 631 of the multiplexer 620.
b is integrated to obtain ion current integral waveforms 661a and 661b. From this, the CPU 670 shows that the ion current integral waveform 661
The presence or absence of a and 661b is determined, and misfire is determined.

【0016】本実施例によれば、8気筒エンジンの場合
にも火花放電終了直後に生じる不要な波形、および点火
時期の異なる気筒のイオン電流検出手段からのノイズを
除いた実際のイオン電流の積分値が得られるので、失火
検出が確実にできる。
According to this embodiment, even in the case of an 8-cylinder engine, an unnecessary waveform generated immediately after the end of the spark discharge and the integration of the actual ion current excluding the noise from the ion current detecting means of the cylinders having different ignition timings. Since the value is obtained, misfire detection can be reliably performed.

【0017】また、8気筒エンジンに限らず複数気筒の
失火検出する場合についても作用,効果は同等である。
Further, not only in the case of the 8-cylinder engine but also in the case of detecting the misfires of a plurality of cylinders, the action and the effect are the same.

【0018】[0018]

【発明の効果】点火プラグで放電終了直後に生じる不要
な波形、および他のイオン電流検出手段からのノイズを
マスクできるので、失火検出が確実にできる。
EFFECTS OF THE INVENTION Since it is possible to mask unnecessary waveforms generated immediately after the end of discharge with the spark plug and noise from other ion current detecting means, misfire detection can be reliably performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による失火検出装置の一実施例を示す回
路図。
FIG. 1 is a circuit diagram showing an embodiment of a misfire detection device according to the present invention.

【図2】一実施例の動作の説明図。FIG. 2 is an explanatory diagram of the operation of the embodiment.

【図3】本発明による失火検出装置の他の実施例を示す
回路図。
FIG. 3 is a circuit diagram showing another embodiment of the misfire detection device according to the present invention.

【図4】他の実施例の動作の説明図。FIG. 4 is an explanatory diagram of an operation of another embodiment.

【図5】全体システムのタイミングチャート。FIG. 5 is a timing chart of the entire system.

【符号の説明】[Explanation of symbols]

20a,20b…点火コイル、40…制御装置、70
a,70b…イオン電流検出手段、80a,80b,1
00a,100b…反転増幅器、90a,90b…積分
器、200a,200b…マスク回路。
20a, 20b ... Ignition coil, 40 ... Control device, 70
a, 70b ... Ion current detection means, 80a, 80b, 1
00a, 100b ... Inverting amplifier, 90a, 90b ... Integrator, 200a, 200b ... Mask circuit.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一つのシリンダ,少なくとも一
つの一次巻線と少なくとも一つの二次巻線で構成される
複数の点火コイル,複数の点火プラグ,前記点火コイル
の一次巻線を通電し、前記複数の点火プラグを異なるタ
イミングで点火させる点火信号,前記複数の点火プラグ
に接続された複数のイオン電流検出手段,前記イオン電
流検出手段の出力の有無により失火検出する手段を有
し、前記点火プラグの放電により前記シリンダ内で燃焼
を生じさせる内燃機関において、前記点火信号が一つの
点火プラグを点火させる毎に所定期間は、他の点火プラ
グに接続された前記イオン電流検出手段の出力を無効に
する手段を有していることを特徴とする内燃機関の失火
検出装置。
1. A plurality of ignition coils each comprising at least one cylinder, at least one primary winding and at least one secondary winding, a plurality of ignition plugs, and a primary winding of the ignition coil, wherein: An ignition signal for igniting a plurality of ignition plugs at different timings; a plurality of ion current detecting means connected to the plurality of ignition plugs; and means for detecting a misfire based on the presence or absence of an output of the ion current detecting means. In an internal combustion engine that causes combustion in the cylinder by the discharge of, each time the ignition signal ignites one spark plug, the output of the ion current detection means connected to another spark plug is invalidated for a predetermined period. A misfire detection device for an internal combustion engine, comprising:
【請求項2】少なくとも一つのシリンダ,少なくとも一
つの一次巻線と少なくとも一つの二次巻線で構成される
複数の点火コイル,複数の点火プラグ,前記点火コイル
の一次巻線を通電し、前記複数の点火プラグを異なるタ
イミングで点火させる点火信号,前記複数の点火プラグ
に接続された複数のイオン電流検出手段,前記イオン電
流検出手段の出力の有無により失火検出する手段を有
し、前記点火プラグの放電により前記シリンダ内で燃焼
を生じさせる内燃機関において、前記点火信号が一つの
点火プラグを点火させる毎に所定期間は、他の点火プラ
グに接続された前記イオン電流検出手段の出力を無効に
することを特徴とする内燃機関の失火検出方法。
2. A plurality of ignition coils each comprising at least one cylinder, at least one primary winding and at least one secondary winding, a plurality of ignition plugs, and a primary winding of the ignition coil, wherein An ignition signal for igniting a plurality of ignition plugs at different timings; a plurality of ion current detecting means connected to the plurality of ignition plugs; and means for detecting a misfire based on the presence or absence of an output of the ion current detecting means. In an internal combustion engine that causes combustion in the cylinder by the discharge of, each time the ignition signal ignites one spark plug, the output of the ion current detection means connected to another spark plug is invalidated for a predetermined period. A method for detecting a misfire of an internal combustion engine, comprising:
【請求項3】請求項1または請求項2において、前記イ
オン電流検出手段は、前記二次巻線の低圧側に接続され
ている内燃機関の失火検出装置。
3. The misfire detection device for an internal combustion engine according to claim 1 or 2, wherein the ion current detection means is connected to a low voltage side of the secondary winding.
【請求項4】請求項1または請求項2において、前記点
火プラグは、前記二次巻線の高圧側に接続されている内
燃機関の失火検出装置。
4. The misfire detection device for an internal combustion engine according to claim 1, wherein the spark plug is connected to a high voltage side of the secondary winding.
【請求項5】請求項1または請求項2において、前記イ
オン電流検出手段の出力を無効にする手段にスイッチ手
段を用いる内燃機関の失火検出装置。
5. The misfire detection device for an internal combustion engine according to claim 1, wherein a switch means is used as a means for invalidating the output of the ion current detection means.
【請求項6】請求項1または請求項2において、前記イ
オン電流検出手段の出力を無効にする期間が、前記一次
巻線に通電開始から前記点火プラグの放電が終了した
後、所定時間経過後までである内燃機関の失火検出装
置。
6. The period for invalidating the output of the ion current detecting means according to claim 1 or 2, after a lapse of a predetermined time from the start of energization of the primary winding to the end of discharge of the spark plug. Misfire detection device for internal combustion engine.
【請求項7】請求項6において、前記点火プラグの放電
終了検出は、前記イオン電流検出手段の出力の立上りを
入力とする手段で構成される内燃機関の失火検出装置。
7. The misfire detection device for an internal combustion engine according to claim 6, wherein the discharge end detection of the spark plug is constituted by means for inputting a rise of an output of the ion current detection means.
JP1348895A 1995-01-31 1995-01-31 Device and method for detecting misfire for internal combustion engine Pending JPH08200196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1348895A JPH08200196A (en) 1995-01-31 1995-01-31 Device and method for detecting misfire for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1348895A JPH08200196A (en) 1995-01-31 1995-01-31 Device and method for detecting misfire for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08200196A true JPH08200196A (en) 1996-08-06

Family

ID=11834514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1348895A Pending JPH08200196A (en) 1995-01-31 1995-01-31 Device and method for detecting misfire for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08200196A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278712A2 (en) * 1987-02-06 1988-08-17 Kao Corporation Method of separating oleaginous matter into components having various melting points
EP1217207A3 (en) * 2000-12-20 2004-04-07 Honda Giken Kogyo Kabushiki Kaisha Misfire detection system for internal combustion engines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0278712A2 (en) * 1987-02-06 1988-08-17 Kao Corporation Method of separating oleaginous matter into components having various melting points
EP0278712B1 (en) * 1987-02-06 1993-10-27 Kao Corporation Method of separating oleaginous matter into components having various melting points
EP1217207A3 (en) * 2000-12-20 2004-04-07 Honda Giken Kogyo Kabushiki Kaisha Misfire detection system for internal combustion engines
US6803765B2 (en) 2000-12-20 2004-10-12 Honda Giken Kogyo Kabushiki Kaisha Misfire detection system for internal combustion engines

Similar Documents

Publication Publication Date Title
US6222368B1 (en) Ion current detection apparatus
JP2001280189A (en) Control method for electromagnetic fuel injection valve
JPS623303B2 (en)
JPS6218742B2 (en)
US20060027017A1 (en) Fuel level control system for internal combustion engine
GB2027944A (en) Electronic engine control apparatus
JPS6225860B2 (en)
JPS6181543A (en) Control device for air-fuel ratio of internal-combustion engine
JPS6224616B2 (en)
CN105164391B (en) The ignition control device of internal combustion engine and ignition control method
JPH08200196A (en) Device and method for detecting misfire for internal combustion engine
JPS5929733A (en) Electronically controlled fuel injection method of internal-combustion engine
JPH0610746A (en) Electronically controlled fuel injection device for engine
JP6953862B2 (en) Fuel injection control device
JPH04279742A (en) Fuel injection control device of internal combustion engine
JPH10238446A (en) Ionic current detector
JP3704303B2 (en) Misfire detection device for internal combustion engine
EP0161611A2 (en) Method and apparatus for controlling air-fuel ratio in internal combustion engine
JP2004263648A (en) Engine diagnosing method
JP3846195B2 (en) Fuel injection control device for internal combustion engine
JP2000145606A (en) Time course detecting method for ignition plug in internal combustion engine
JPH08511846A (en) Inspection method of spark ignition type internal combustion engine
JPS58214642A (en) Fuel control device for internal-combustion engine
JPH1144249A (en) Engine control device
JPS59188045A (en) Asynchronous fuel-feed controller for acceleration of internal-combustion engine