JPH08196863A - Oxidation of waste liquid from magnesium process flue gas desulfurization equipment - Google Patents

Oxidation of waste liquid from magnesium process flue gas desulfurization equipment

Info

Publication number
JPH08196863A
JPH08196863A JP7010086A JP1008695A JPH08196863A JP H08196863 A JPH08196863 A JP H08196863A JP 7010086 A JP7010086 A JP 7010086A JP 1008695 A JP1008695 A JP 1008695A JP H08196863 A JPH08196863 A JP H08196863A
Authority
JP
Japan
Prior art keywords
oxidation
liquid
oxidation tower
tower
flue gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7010086A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kita
吉博 北
Naoyuki Uejima
直幸 上島
Shigekazu Hatano
茂和 畑野
Shinichi Takimoto
新一 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7010086A priority Critical patent/JPH08196863A/en
Publication of JPH08196863A publication Critical patent/JPH08196863A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE: To improve oxidation of waste water drawn out of a wet type flue gas desulfurization equipment, in which magnesium hydroxide or oxide is used as a desulfurizing agent, with an oxidation column, to make the oxidation more efficient and to reduce the size of the oxidation column. CONSTITUTION: In this bubble column type oxidation of a waste liquid discharged from a magnesium process flue gas desulfurization equipment, the pH of oxidation column outlet liquid is detected and the pH of oxidation column inlet liquid is controlled with an alkaline agent so that the pH of the oxidation column outlet liquid is >=5.5 to reduce the volume of the oxidation column and the amount of oxidizing air to be introduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は脱硫剤として、水酸化マ
グネシウム〔Mg(OH)2 〕または酸化マグネシウム
〔MgO〕を使用する湿式の排煙脱硫装置から抜き出さ
れた排水を酸化塔で酸化する方法に関する。
BACKGROUND OF THE INVENTION The present invention oxidizes waste water extracted from a wet type flue gas desulfurization device using magnesium hydroxide [Mg (OH) 2 ] or magnesium oxide [MgO] as a desulfurizing agent in an oxidation tower. On how to do.

【0002】[0002]

【従来の技術】マグネシウム法湿式排煙脱硫装置の概略
フロー例を図7に示す。この装置は処理水(液中浮遊物
質SS量<30mg/リットル、化学的酸素要求量CO
D<30mg/リットル≒液中亜硫酸濃度<3.75m
mol/リットル、液pH:5.5〜8.5)を海に放
流できることから(火力発電所等で一般に利用されてい
る石灰石膏法のような石膏回収装置が不要なため、低イ
ニシャルコストとなる)、一般産業(自家発)ボイラ用
の排煙脱硫装置として広く利用されている。そのため、
機器の主要な構成は、ボイラ排ガス中のSO2 除去及
び除塵を行う吸収塔(脱硫塔)、脱硫排液中のCOD
源であるSO2 吸収により生成した亜硫酸〔MgSO3
+Mg(HSO3 2 〕を空気酸化(MgSO3 +1/
2O2 →MgSO4 )して、排液のCODを低減する酸
化塔、亜硫酸の空気酸化で生成した硫酸塩(イオン)
により低下した排液のpHを中性付近に戻すためのアル
カリ液供給システム、排液中の浮遊物質を除去するた
めの排水フィルタなどから成る。
2. Description of the Related Art FIG. 7 shows a schematic flow example of a magnesium method wet flue gas desulfurization apparatus. This equipment treats treated water (suspended matter SS in liquid <30 mg / liter, chemical oxygen demand CO
D <30 mg / liter ≈ liquid sulfite concentration <3.75 m
Since it can release mol / liter, liquid pH: 5.5-8.5) into the sea (because it does not require a gypsum recovery device such as the lime gypsum method generally used in thermal power plants, etc., low initial cost and It is widely used as a flue gas desulfurization device for general industrial (in-house) boilers. for that reason,
The main components of the equipment are the absorption tower (desulfurization tower) that removes SO 2 and the dust in the boiler exhaust gas, and the COD in the desulfurization effluent.
Sulfurous acid generated by absorption of SO 2 as a source [MgSO 3
+ Mg (HSO 3 ) 2 ] is air-oxidized (MgSO 3 + 1 /
2O 2 → MgSO 4 ) to reduce COD of the effluent, a sulfate (ion) produced by the air oxidation of sulfurous acid
It consists of an alkaline solution supply system for returning the pH of the drainage lowered to about neutral to a drainage filter for removing suspended matter in the drainage.

【0003】この内の酸化塔及びアルカリ液供給シ
ステムについて、従来のシステムを図8に示す。図8に
おいて、(a)脱硫塔底部より抜き出された液8(p
H:5.5〜6.5)は、酸化塔1へ移送される。
(b)酸化塔1の底部に設置された散気管2にブロワな
どにより酸化空気10を送気する。(c)酸化塔1内で
は、液中の亜硫酸の酸化が行われると共に、液中に溶解
していたSO2 ガスが気相側に放散する。(d)酸化塔
1内をバブリングさせた空気は前記のとおり、SO2
含んでいるため、脱硫塔11へ戻す。(e)酸化塔1で
CODを充分に低減(COD<30mg/リットル、亜
硫酸濃度<3.75mmol/リットル)された液は、
亜硫酸の酸化により生成した硫酸イオンのため、液pH
が低下(酸化塔出口でpH3前後)する。これを中性付
近に戻すため、酸化塔1出口液pHが5.5〜6.5と
なるようpH電極4及びpH計5に連動した制御弁6の
開度を自動的に変更し、アルカリ液タンク7内のアルカ
リ薬剤を酸化塔1出口液に添加する。(f)pH調整さ
れた酸化塔1出口液を排液中のSS除去のための排水フ
ィルタ9へ供給する。(g)なお、酸化塔1の底部に沈
降・蓄積した固形物は、適宜ドレン抜き3より排出す
る。上記(e)で使用するアルカリ薬剤は、一般に脱硫
剤として使用しているMg(OH)2 やMgOスラリが
利用される。また、酸化塔1内での液滞留時間は、3時
間程度である。
FIG. 8 shows a conventional system for the oxidizing tower and the alkaline liquid supply system. In FIG. 8, (a) Liquid 8 (p
H: 5.5 to 6.5) is transferred to the oxidation tower 1.
(B) The oxidizing air 10 is sent to the diffuser pipe 2 installed at the bottom of the oxidation tower 1 by a blower or the like. (C) In the oxidation tower 1, the sulfurous acid in the liquid is oxidized and the SO 2 gas dissolved in the liquid is diffused to the gas phase side. (D) Since the air bubbling in the oxidation tower 1 contains SO 2 as described above, it is returned to the desulfurization tower 11. (E) The liquid whose COD has been sufficiently reduced in the oxidation tower 1 (COD <30 mg / liter, sulfur dioxide concentration <3.75 mmol / liter) is
Due to the sulfate ion generated by the oxidation of sulfurous acid, the liquid pH
Decrease (pH of around 3 at the outlet of the oxidation tower). In order to return this to near neutrality, the opening of the control valve 6 linked to the pH electrode 4 and the pH meter 5 is automatically changed so that the pH of the liquid at the outlet of the oxidation tower 1 is 5.5 to 6.5. The alkaline chemical in the liquid tank 7 is added to the outlet liquid of the oxidation tower 1. (F) The pH-adjusted outlet liquid of the oxidation tower 1 is supplied to the drainage filter 9 for removing SS in the waste liquid. (G) The solid matter settled and accumulated at the bottom of the oxidation tower 1 is appropriately discharged from the drainage 3. As the alkaline chemical used in the above (e), Mg (OH) 2 or MgO slurry which is generally used as a desulfurizing agent is used. The liquid retention time in the oxidation tower 1 is about 3 hours.

【0004】[0004]

【発明が解決しようとする課題】酸化塔1へ供給される
脱硫塔底部抜き出し液8は、脱硫塔循環液と同様pH
5.5〜6.5の液で、先に提案したとおり(特願平6
−24162)、脱硫効率向上、脱硫剤溶解促進、亜硫
酸塩析出防止の観点から亜硫酸濃度50〜100mmo
l/リットルの液としている。以下に従来の酸化塔の問
題点を列記する。 (i)酸化塔の容量が大きい、 ・材料費、設置面積が大きくイニシャルコストが高い、 ・保守・点検時に、内部の大量の液を抜き出すピットが
必要である、 (ii)排水規制強化に伴い、更に高効率な酸化塔が必要
である。
The desulfurization tower bottom withdrawal liquid 8 supplied to the oxidation tower 1 has the same pH as the desulfurization tower circulating liquid.
With the liquids of 5.5 to 6.5, as proposed previously (Japanese Patent Application No.
24162), from the viewpoint of improving the desulfurization efficiency, promoting the dissolution of the desulfurizing agent, and preventing the precipitation of sulfite, the sulfite concentration is 50 to 100 mmo.
It is a 1 / liter liquid. The problems of the conventional oxidation tower are listed below. (I) The capacity of the oxidation tower is large, -The material cost, the installation area is large, and the initial cost is high-A pit for extracting a large amount of liquid inside is required during maintenance / inspection. However, a highly efficient oxidation tower is required.

【0005】本発明は脱硫剤として、水酸化マグネシウ
ム〔Mg(OH)2 〕または酸化マグネシウム〔Mg
O〕を使用する湿式の排煙脱硫装置から抜き出された排
水を酸化塔で酸化する方法を改良し、酸化を効率化し、
酸化塔を小型化することを目的とする。
The present invention uses magnesium hydroxide [Mg (OH) 2 ] or magnesium oxide [Mg] as a desulfurizing agent.
O] is used to improve the method of oxidizing the wastewater extracted from the wet type flue gas desulfurization device in an oxidation tower to improve the efficiency of the oxidation,
The purpose is to reduce the size of the oxidation tower.

【0006】[0006]

【課題を解決するための手段】酸化塔内での亜硫酸の酸
化が効率良く行われるよう(空気中の酸素の高い利用率
が得られるよう)、酸化塔内の液pH及び液滞留時間を
最適制御し、酸化塔の小容量化(ブロワの小型化)を図
るために本発明はなされたものであって、特にアルカリ
薬剤を、酸化塔入口液に添加することを特徴とする。す
なわち、本発明は、マグネシウム法排煙脱硫装置の気泡
塔方式廃液酸化方法において、酸化塔出口液のpHを検
知し、酸化塔出口液のpHが5.5以上になるように、
酸化塔入口液のpHをアルカリ性薬剤により制御するこ
とにより、酸化塔を小容量化(小型化)または酸化空気
導入量を低減(空気供給ブロワを小型化)することを特
徴とする上記方法を提供するものである。
[Means for Solving the Problems] The liquid pH and the liquid retention time in the oxidation tower are optimized so that the oxidation of sulfurous acid in the oxidation tower is performed efficiently (to obtain a high utilization rate of oxygen in the air). The present invention has been made in order to control and reduce the capacity of the oxidation tower (downsizing of the blower), and is characterized in that an alkaline chemical is added to the oxidation tower inlet liquid. That is, the present invention, in the bubble column type waste liquid oxidation method of the magnesium method flue gas desulfurization apparatus, detects the pH of the oxidation tower outlet liquid, so that the pH of the oxidation tower outlet liquid is 5.5 or more,
Provided is the above method characterized by reducing the capacity of the oxidation tower (downsizing) or reducing the amount of oxidizing air introduced (downsizing the air supply blower) by controlling the pH of the inlet liquid of the oxidation tower with an alkaline chemical. To do.

【0007】[0007]

【作用】液中亜硫酸の空気酸化による液pHとの関係を
明確にするため、マグネシウムの亜硫酸塩を使用して、
図2に示す平面接触攪拌槽を用いた液中亜硫酸の酸化性
確認実験を実施した。その結果、図3に示すとおり液p
Hが6.0〜6.5の時をピークに、液pHの低下に伴
い液中亜硫酸の酸化速度が小さく(酸化性が悪く)なる
ことを確認した。この図は液pHと総括物質移動係数K
G との関係を示す。また、図4に示す気泡塔を用いて、
本発明の実装置の酸化塔を模擬した液中亜硫酸の酸化試
験を実施した。その結果、図5A及びBに示すとおり、
酸化塔出口液pHを高く(pH=5.5)保つように酸
化塔入口液にアルカリ薬剤〔Mg(OH)2 スラリ〕を
添加した場合、これを添加しない(酸化塔出口液のpH
調整なし)場合に比較して、液の酸化塔内滞留時間が短
くて(小さい酸化塔容量)、目標とする液中亜硫酸濃度
(3.75mmol/リットル以下)に達することを確
認した。例えば、空気の導入量や処理液量、散気ノズル
形状、気液温度、液中亜硫酸濃度、酸化塔高さなどの条
件が同一であれば、液pHが5.5の時に比較して、液
pH3.0では液中亜硫酸の酸化速度は約1/2と遅く
なる。
[Function] In order to clarify the relationship between the liquid pH of liquid sulfite due to air oxidation, magnesium sulfite is used.
An experiment for confirming the oxidizing property of sulfurous acid in liquid using the flat contact stirring tank shown in FIG. 2 was carried out. As a result, as shown in FIG.
It was confirmed that, when H was 6.0 to 6.5, the oxidation rate of sulfurous acid in the liquid was low (the oxidizing property was poor) as the pH of the liquid decreased. This figure shows liquid pH and overall mass transfer coefficient K
The relationship with G is shown. In addition, using the bubble column shown in FIG.
An oxidation test of sulfurous acid in liquid simulating the oxidation tower of the actual apparatus of the present invention was carried out. As a result, as shown in FIGS. 5A and 5B,
When an alkaline chemical [Mg (OH) 2 slurry] was added to the oxidation tower inlet liquid so as to keep the pH of the oxidation tower outlet liquid high (pH = 5.5), this was not added (pH of the oxidation tower outlet liquid).
It was confirmed that the retention time of the liquid in the oxidation tower was shorter (smaller capacity of the oxidation tower) and the target concentration of sulfurous acid in the liquid (3.75 mmol / liter or less) was reached as compared with the case without adjustment). For example, if the conditions such as the amount of introduced air, the amount of treatment liquid, the shape of the air diffuser nozzle, the gas-liquid temperature, the concentration of sulfurous acid in the liquid, and the height of the oxidation tower are the same, compared with when the liquid pH is 5.5, When the pH of the liquid is 3.0, the oxidation rate of sulfurous acid in the liquid is as slow as about 1/2.

【0008】また、実際の酸化塔では、亜硫酸の酸化に
伴ない高さ方向(気液の流れ方向)にpHの分布(低
下)が生じ、これに準じて液中亜硫酸の酸化速度の分布
(低下)が生じる。すなわち、従来システムでは、酸化
塔の中〜上層部の液pHの低下したところでは、導入し
た酸化空気の有効利用率が低下し、高い酸化効率が得ら
れない(逆説すれば、高い酸化効率を得るためには、酸
化塔容量を大きくし、酸化塔内の液滞留時間を大きく設
計するか、酸化空気導入量を増大する必要がある)。こ
れに対して、本発明に従い、酸化塔出口液のpHを高く
保つように酸化塔入口液にアルカリ薬剤を添加すると酸
化塔内の液pHの高さ方向の分布はかさ上げされ、ま
た、酸化塔入口液に添加したアルカリ薬剤であるMg
(OH)2 スラリやMgOスラリは溶解に時間を要する
ため、酸化塔入口付近での急激な液pH上昇を起こさず
液流れやガス流れに乗って、酸化塔の中〜上層部で溶解
が進むため、酸化塔内の全層において導入した酸化空気
が有効利用され、高い酸化効率が得られる。
[0008] In an actual oxidation tower, pH distribution (decrease) occurs in the height direction (gas-liquid flow direction) accompanying the oxidation of sulfurous acid, and in accordance with this, the distribution of the oxidation rate of liquid sulfurous acid ( Decrease) occurs. That is, in the conventional system, at a place where the liquid pH in the middle to upper layers of the oxidation tower is lowered, the effective utilization rate of the introduced oxidizing air is lowered, and high oxidation efficiency cannot be obtained (paradoxically, high oxidation efficiency is In order to obtain it, it is necessary to increase the capacity of the oxidation tower and design the liquid retention time in the oxidation tower to be large, or to increase the introduction amount of oxidizing air). On the other hand, according to the present invention, when an alkaline chemical is added to the oxidation tower inlet liquid so as to keep the pH of the oxidation tower outlet liquid high, the distribution of the liquid pH in the height direction in the oxidation tower is increased, and the oxidation Mg as an alkaline chemical added to the tower inlet liquid
Since (OH) 2 slurry and MgO slurry take time to dissolve, the dissolution progresses in the middle and upper layers of the oxidation tower without riding on the liquid flow or gas flow without causing a sharp increase in liquid pH near the inlet of the oxidation tower. Therefore, the oxidizing air introduced into all layers in the oxidation tower is effectively used, and high oxidation efficiency can be obtained.

【0009】[0009]

【実施例】本発明の方法の実施例を図1に基づいて以下
に説明する。 脱硫塔底部より抜き出された液8を酸化塔1に導入
した。この際、酸化塔出口液9のpHをpH電極4及び
pH計5により検知した。 酸化空気10を散気管2より導入(バブリング)す
ると共に、pH計5の指示値が5.5〜6.5となるよ
うpH計5に連動した制御弁6の開度を自動調整し、ア
ルカリ薬剤タンク7内のアルカリ薬剤〔Mg(OH)2
スラリやMgOスラリなど〕を酸化塔入口液(脱硫塔底
部抜出し液)8に添加した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method of the present invention will be described below with reference to FIG. The liquid 8 extracted from the bottom of the desulfurization tower was introduced into the oxidation tower 1. At this time, the pH of the oxidation tower outlet liquid 9 was detected by the pH electrode 4 and the pH meter 5. Oxidizing air 10 is introduced (bubbling) from the air diffuser 2, and the opening of the control valve 6 linked to the pH meter 5 is automatically adjusted so that the indicated value of the pH meter 5 is 5.5 to 6.5. Alkaline drug [Mg (OH) 2 in the drug tank 7
Slurry or MgO slurry] was added to the oxidation tower inlet liquid (desulfurization tower bottom extract liquid) 8.

【0010】実施例1 酸化塔入口液にアルカリ薬剤を添加した場合の酸化塔小
型化の実施例を以下に示す。石油コークス/重油だきボ
イラで処理ガス量20万Nm3 /h(dry)のマグネ
シウム法排煙脱硫装置(排水量:60m3 /h)の酸化
塔寸法、容量を以下に示す。 (本発明方法では、酸化塔出口液pHを5.5に調整)
Example 1 An example of reducing the size of the oxidation tower when an alkaline chemical is added to the inlet liquid of the oxidation tower will be described below. The size and capacity of the oxidation tower of a magnesium-type flue gas desulfurization unit (wastewater: 60 m 3 / h) with a processing gas amount of 200,000 Nm 3 / h (dry) in a petroleum coke / heavy oil-fired boiler are shown below. (In the method of the present invention, the pH of the liquid at the outlet of the oxidation tower is adjusted to 5.5)

【0011】実施例2 酸化塔容量を同一とした場合の本発明による酸化空気導
入量の低減効果を示す実験データを以下に示す。図4
(気泡塔による液中亜硫酸の酸化性確認試験)におい
て、模擬液供給量=23.61/h(酸化塔内滞留時間
=1h)とし、空気流量を変化させて酸化塔出口液の亜
硫酸濃度を測定した結果を図6に示す。本発明の方法で
は、従来方法に比べ、空気導入量が少なくてよい。
Example 2 The following is experimental data showing the effect of reducing the introduction amount of oxidizing air according to the present invention when the oxidizing tower volume is the same. FIG.
In the (oxidation confirmation test of sulfurous acid in a liquid by a bubble column), the simulated liquid supply amount = 23.61 / h (residence time in the oxidation tower = 1 h), and the air flow rate was changed to change the sulfurous acid concentration of the outlet liquid of the oxidation tower. The measurement result is shown in FIG. The method of the present invention requires less air than the conventional method.

【0012】[0012]

【発明の効果】従来方法では、排水規制値の一条件であ
るpH5.5〜8.5をクリアするために酸化塔の下流
側でアルカリ薬剤を添加していたが、これと同等の方法
で、アルカリ薬剤の添加位置を酸化塔の上流側に変更す
ることにより、酸化塔内での液中亜硫酸の酸化効率(導
入空気の酸素利用率)が向上し、処理亜硫酸量および酸
化空気量等が同一であれば、酸化塔の容量は従来方法
(液滞留時間は約3hr)の1/2〜1/3と小型化が
図れる。また、導入空気の酸素利用率が向上することか
ら、酸化塔容量を同一とすると、酸化空気導入量の低
減、すなわちブロワの小型化が図れる。
EFFECTS OF THE INVENTION In the conventional method, an alkaline chemical was added at the downstream side of the oxidation tower in order to clear pH 5.5 to 8.5, which is one condition of the wastewater regulation value. By changing the addition position of the alkaline chemical to the upstream side of the oxidation tower, the oxidation efficiency of sulfurous acid in the liquid (oxygen utilization rate of the introduced air) in the oxidation tower is improved, and the amount of treated sulfurous acid and the amount of oxidizing air are increased. If they are the same, the capacity of the oxidation tower can be reduced to 1/2 to 1/3 of the conventional method (the liquid retention time is about 3 hours). Further, since the oxygen utilization rate of the introduced air is improved, if the oxidizing tower capacity is made the same, the amount of the oxidizing air introduced can be reduced, that is, the blower can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明の実施例1に係る脱硫排液酸化
システムの概略フロー図である。
FIG. 1 is a schematic flow diagram of a desulfurization effluent oxidation system according to a first embodiment of the present invention.

【図2】図2は、平面接触攪拌槽による液中亜硫酸の酸
化性確認試験の装置、試験条件を示す概略フロー図であ
る。
FIG. 2 is a schematic flow chart showing an apparatus and a test condition for a test for confirming the oxidizing property of sulfurous acid in a liquid by a flat contact stirring tank.

【図3】図3は、平面接触攪拌槽による液中亜硫酸の酸
化性確認試験の結果を示すグラフである。
FIG. 3 is a graph showing the result of a test for confirming the oxidizing property of sulfurous acid in a liquid using a flat contact stirring tank.

【図4】図4は、気泡塔による液中亜硫酸の酸化性確認
試験のための装置、試験条件を示す概略フロー図であ
る。
FIG. 4 is a schematic flow chart showing an apparatus and a test condition for a test for confirming the oxidizing property of sulfurous acid in a liquid by a bubble column.

【図5】図5A及びBは夫々気泡塔による液中亜硫酸の
酸化性確認試験の結果を示すグラフであり、Aはアルカ
リ薬剤を添加してpH調整をした場合、BはpH調整を
しない場合の結果を示す。
5A and 5B are graphs showing the results of a test for confirming the oxidative property of liquid sulfite by a bubble column, where A is the pH adjustment by adding an alkaline chemical, and B is the pH adjustment not performed. The result is shown.

【図6】図6は図4に示す気泡塔による液中亜硫酸の酸
化性確認試験において空気流量を変化させて酸化塔出口
液の亜硫酸濃度を測定した結果を示すグラフである。
FIG. 6 is a graph showing the results of measuring the sulfurous acid concentration in the outlet liquid of the oxidation tower by changing the air flow rate in the test for confirming the oxidizing property of liquid sulfite by the bubble tower shown in FIG.

【図7】図7は、マグネシウム法湿式排煙脱硫装置の概
略フロー図である。
FIG. 7 is a schematic flowchart of a magnesium method wet flue gas desulfurization apparatus.

【図8】図8は、従来の脱硫排液酸化システムを示す概
略フロー図である。
FIG. 8 is a schematic flow diagram showing a conventional desulfurization effluent oxidation system.

【符号の説明】 1.酸化塔 2.散気管 3.ドレン抜き 4.pH電
極 5.pH計 6.制御弁 7.アルカリ液タンク
8.脱硫塔(吸収塔)底部抜き出し液 9.排水フィル
タへ 10.酸化空気 11.脱硫塔(吸収塔)へ
[Explanation of Codes] Oxidation tower 2. Air diffuser 3. Without drain 4. pH electrode 5. pH meter 6. Control valve 7. Alkaline liquid tank
8. Liquid drawn out from the bottom of the desulfurization tower (absorption tower) 9. To drain filter 10. Oxidizing air 11. To desulfurization tower (absorption tower)

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 125 R (72)発明者 滝本 新一 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location B01D 53/34 125 R (72) Inventor Shinichi Takimoto 1-1-1, Wadazaki-cho, Hyogo-ku, Kobe-shi, Hyogo No. Mitsubishi Heavy Industries, Ltd.Kobe Shipyard

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウム法排煙脱硫装置の気泡塔方
式廃液酸化方法において、酸化塔出口液のpHを検知
し、酸化塔出口液のpHが5.5以上になるように、酸
化塔入口液のpHをアルカリ性薬剤により制御すること
により、酸化塔を小容量化または酸化空気導入量を低減
することを特徴とする上記方法。
1. In a bubble column type waste liquid oxidation method for a magnesium-type flue gas desulfurization apparatus, the pH of the oxidation tower outlet liquid is detected, and the oxidation tower inlet liquid is adjusted so that the pH of the oxidation tower outlet liquid is 5.5 or more. The method as described above, wherein the capacity of the oxidation tower is reduced or the introduction amount of oxidizing air is reduced by controlling the pH of the solution with an alkaline chemical.
JP7010086A 1995-01-25 1995-01-25 Oxidation of waste liquid from magnesium process flue gas desulfurization equipment Withdrawn JPH08196863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7010086A JPH08196863A (en) 1995-01-25 1995-01-25 Oxidation of waste liquid from magnesium process flue gas desulfurization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7010086A JPH08196863A (en) 1995-01-25 1995-01-25 Oxidation of waste liquid from magnesium process flue gas desulfurization equipment

Publications (1)

Publication Number Publication Date
JPH08196863A true JPH08196863A (en) 1996-08-06

Family

ID=11740538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7010086A Withdrawn JPH08196863A (en) 1995-01-25 1995-01-25 Oxidation of waste liquid from magnesium process flue gas desulfurization equipment

Country Status (1)

Country Link
JP (1) JPH08196863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902018B1 (en) * 2007-08-01 2009-06-15 한국동서발전(주) Method for Treating Industrial Waste Water by Using Neutralizing Chemical Agent
CN104857838A (en) * 2015-04-09 2015-08-26 北京廷润膜技术开发有限公司 System and method for flue gas desulfurization through bipolar membrane electrodialysis
KR20230044491A (en) 2021-03-23 2023-04-04 후지 덴키 가부시키가이샤 Exhaust gas treatment device and exhaust gas treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100902018B1 (en) * 2007-08-01 2009-06-15 한국동서발전(주) Method for Treating Industrial Waste Water by Using Neutralizing Chemical Agent
CN104857838A (en) * 2015-04-09 2015-08-26 北京廷润膜技术开发有限公司 System and method for flue gas desulfurization through bipolar membrane electrodialysis
KR20230044491A (en) 2021-03-23 2023-04-04 후지 덴키 가부시키가이샤 Exhaust gas treatment device and exhaust gas treatment method

Similar Documents

Publication Publication Date Title
US4337230A (en) Method of absorbing sulfur oxides from flue gases in seawater
DK172817B1 (en) Process for desulphurizing flue gas by the wet method
US5756052A (en) Flue gas treatment system
JP2007098307A (en) Circulation type carbon dioxide fixation system
US9321025B2 (en) Oxidation control for improved flue gas desulfurization performance
JP6462359B2 (en) Method and apparatus for desulfurization of exhaust gas containing sulfurous acid gas
JPH06285326A (en) Method and device for flue gas desulfurization
JPH0824566A (en) Method for controlling oxidation of sulfite
CN1134852A (en) Aeration sea water type technology for removing sulphur from smoke and aeration device
CN103030231B (en) Recovery system and recovery process for desulfurized seawater
CN2810730Y (en) Circulating water treatment device for wet-method fume desulfurization
JPH08196863A (en) Oxidation of waste liquid from magnesium process flue gas desulfurization equipment
JP2005152745A (en) Wet flue gas desulfurization method and wet flue gas desulfurizer
JP3337382B2 (en) Exhaust gas treatment method
JP2740533B2 (en) Wet exhaust gas desulfurization method
JP2001179048A (en) Method for desulfurizing exhaust gas by magnesium hydroxide system
CN111533319B (en) Device and method for treating COD (chemical oxygen demand) in desulfurization wastewater by ozone oxidation method
JP6742830B2 (en) Seawater plant with tilted aeration and mixed automatic recovery
JPH09248420A (en) Wet type flue gas desulfurization apparatus
JPH0724252A (en) Wet flue gas desulfurizer by magnesium oxide and method thereof
JP4014679B2 (en) Wastewater treatment method
JP3408571B2 (en) Wet flue gas treatment method and wet flue gas treatment device
JP3748861B2 (en) Exhaust gas desulfurization method by metathesis method
KR100573186B1 (en) Wastewater Disposal Method in Flue Gas Desulfurization System by Using Scale Preventer
JP2006021119A (en) Fluid treatment method and fluid treatment system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402