JPH08195314A - Thin film magnetic material - Google Patents

Thin film magnetic material

Info

Publication number
JPH08195314A
JPH08195314A JP1974495A JP1974495A JPH08195314A JP H08195314 A JPH08195314 A JP H08195314A JP 1974495 A JP1974495 A JP 1974495A JP 1974495 A JP1974495 A JP 1974495A JP H08195314 A JPH08195314 A JP H08195314A
Authority
JP
Japan
Prior art keywords
layer
thin film
same
magnetic material
film magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1974495A
Other languages
Japanese (ja)
Inventor
Atsuyuki Watada
篤行 和多田
Yoshiko Kurosawa
美子 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1974495A priority Critical patent/JPH08195314A/en
Publication of JPH08195314A publication Critical patent/JPH08195314A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE: To obtain magnetic thin film material, which has both a large magnetooptic effect and uniaxial magnetic anisotropy, by forming the material by laminating a plurality of specified synchronous structures. CONSTITUTION: A plurality of synchronous structures An1 +Bn2 comprising An1 , wherein the repeating units of α layer-αlayer-β layer are repeated, and Bn2 , wherein αlayer-β layer are repeated, are laminated in synchronism, and the thin-film magnetic material is manufactured. The α layer is the single atomic layer comprising MI and MII. The β layer is the single atomic layer comprising MIII. MI: Co, Cr, Cu, Fc, Mn, Ni, and Zn. MII: As, Bi, Ge, Pb, Sb, Si, Sn, Al, Ga and In. MIII: Ag, Au, Cu, Al, Mo, Nb, Pd, Pt, Rh, Zr, Ni, Co, Fe and Mn. Thus, the material like composite material having the characteristics of the magnetic material of the Cu2 Sb-type crystal structure and the characteristics of the magnetic material of the L21 -type crystal structure can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、大きな磁気光学効果と大きな一
軸性異方性の両方の特徴を兼ね備えた薄膜磁性材料の分
野に関する。
TECHNICAL FIELD The present invention relates to the field of a thin film magnetic material having both a large magneto-optical effect and a large uniaxial anisotropy.

【0002】[0002]

【従来技術】PtMnSbの磁気光学効果が大きいこと
は良く知られている。しかしながら、光磁気記録媒体と
して使用するには垂直磁化膜である必要があるが、
It is well known that PtMnSb has a large magneto-optical effect. However, it is necessary to use a perpendicular magnetization film to use it as a magneto-optical recording medium.

【数1】 であり薄膜にした時に垂直磁化膜とはならない。希土類
−遷移金属アモルファス合金膜では磁気光学効果の大き
な膜と垂直磁気異方性の大きな膜の交換結合2層膜によ
る特性改善が提案されている。PtMnSbの場合にも
垂直磁気異方性の大きな希土類−遷移金属アモルファス
合金膜との2層膜が提案されているが、この場合、2層
間の交換結合力事態があまり大きなものは期待できず、
静磁力による結合に関しては、PtMnSbの磁化が希
土類−遷移金属アモルファス合金膜よりも大きく、希土
類−遷移金属アモルファス合金膜によってPtMnSb
の磁化方向を決定するのは不可能とおもわれる。一方、
Mn系の磁性材料の中にはCu2Sb型(P4/nm
n)正方晶系の結晶構造を有するものが、一軸磁気異方
性を示す可能性があり、Al、Mg、Ge等はC軸方向
に磁化容易軸が有り、膜面に対して垂直方向にC軸を配
向させることにより垂直磁化膜が得られている。そこで
これらの膜とPtMnSb系の膜とを積層させることに
より、PtMnSb系膜と希土類−遷移金属アモルファ
ス合金膜間の交換結合力よりは大きな交換力が期待でき
る。但し、2層膜では充分な磁気特性を示す程度の膜厚
にすると各層の磁気特性が個別に現れ、一方の層の磁化
方向に他方の層の磁化方向を完全に揃えることは不可能
となってくる。逆に、磁性膜全体としての膜厚を薄くす
ると薄膜内の磁化方向を均一に揃えることは可能かもし
れないが、super−paramagnetism等
の影響により、充分な磁気特性は示さなくなる。近年、
薄膜作製技術の発展とともに、MBE等の技術を使うこ
とにより、これまで作製不可能であった結晶構造の薄膜
も作製可能となり、全く新しい特性を持つ材料の研究も
盛んになりつつある。
[Equation 1] Therefore, when it is made into a thin film, it does not become a perpendicular magnetization film. In the rare earth-transition metal amorphous alloy film, it has been proposed to improve the characteristics of the film having a large magneto-optical effect and the film having a large perpendicular magnetic anisotropy by an exchange coupling two-layer film. In the case of PtMnSb as well, a two-layer film with a rare earth-transition metal amorphous alloy film having a large perpendicular magnetic anisotropy has been proposed, but in this case, a situation in which the exchange coupling force between the two layers is too large cannot be expected,
Regarding the coupling by the static magnetic force, the magnetization of PtMnSb is larger than that of the rare earth-transition metal amorphous alloy film, and PtMnSb is formed by the rare earth-transition metal amorphous alloy film.
It seems impossible to determine the magnetization direction of. on the other hand,
Cu 2 Sb type (P4 / nm
n) Those having a tetragonal crystal structure may exhibit uniaxial magnetic anisotropy, and Al, Mg, Ge, etc. have an easy axis of magnetization in the C-axis direction and are perpendicular to the film surface. A perpendicular magnetization film is obtained by orienting the C axis. Therefore, by stacking these films and a PtMnSb-based film, a larger exchange force than the exchange-coupling force between the PtMnSb-based film and the rare earth-transition metal amorphous alloy film can be expected. However, in a two-layer film, if the film thickness is such that sufficient magnetic characteristics are exhibited, the magnetic characteristics of each layer appear individually, and it becomes impossible to completely align the magnetization direction of one layer with the magnetization direction of the other layer. Come on. On the contrary, if the thickness of the magnetic film as a whole is reduced, it may be possible to make the magnetization directions in the thin film uniform, but due to the influence of super-paramagnetism, sufficient magnetic characteristics will not be exhibited. recent years,
With the development of thin film manufacturing technology, it has become possible to manufacture a thin film having a crystal structure, which has been impossible to manufacture by using the technology such as MBE, and research on materials having completely new characteristics is becoming active.

【0003】[0003]

【目的】本発明は、例えば大きな磁気光学効果と大きな
一軸性磁気異方性の両方の特性を兼ね備える様な、これ
までにバルクでは存在しなかった全く新しい磁性薄膜材
料の提供を目的とする。
It is an object of the present invention to provide a completely new magnetic thin film material which has not been present in bulk until now, but which has both properties of a large magneto-optical effect and a large uniaxial magnetic anisotropy.

【0004】[0004]

【構成】本発明の第1は、(α層−α層−β層)の繰り
返し単位(以下、A周期という)を1回以上繰り返した
もの(An1)と(α層−β層)の繰り返し単位(以
下、B周期という)を1回以上繰り返したもの(Bn
2)である周期構造(An1+Bn2)を複数周期積層し
て形成された薄膜磁性材料。 An1:A周期を1回以上繰り返したもの Bn2:B周期を1回以上繰り返したもの n1:A周期の繰り返し数で、1以上の数で、好ましく
は1〜100 n2:B周期の繰り返し数で、1以上の数で、好ましく
は1〜100 α層:MIとMIIからなる単原子層 β層:MIIIからなる単原子層であって、α層のMIとM
IIを合わせた原子密度と同じ原子密度を有する層 MI:Co、Cr、Cu、Fe、Mn、NiおよびZn
よりなる群から選ばれた少なくとも1種以上の元素。 MII:As、Bi、Ge、Pb、Sb、Si、Sn、A
l、GaおよびInよりなる群から選ばれた少なくとも
1種以上の元素。 MIII:Ag、Au、Cu、Al、Mo、Nb、Pd、
Pt、Rh、Zr、Ni、Co、FeおよびMnよりな
る群から選ばれた少なくとも1種以上の元素。 前記薄膜磁性材料において、A周期を1回以上繰り返し
たもの(An1)はCu2Sb型結晶構造に近い周期構造
となる可能性が高く、またB周期を1回以上繰り返した
もの(Bn2)はL21型結晶構造に近い周期構造となる
可能性が高いが、但しAn1とBn2はこれら結晶構造の
ものに限定されるものではない。またA周期で(X1+
X2)配置−(X2+X1)配置−Z配置の繰り返しで堆
積するとCu2Sb型結晶構造をとり、B周期で(X1+
X2)配置−Z配置−(X2+X1)配置−Z配置の繰り
返しで堆積するとL21(Fm3m)型結晶構造をと
る。ここで、前記X1配置、X2配置、Y1配置、Y2配置
およびZ配置は、直交座標系の原子配列において、座標
面に平行な面でスライスしたときの原子配置として、図
1に示すような配置を示す。ただし、格子歪等により厳
密には原子の位置がずれることがある。また各原子層を
一定周期で堆積していく場合には、これらの原子配置を
規則的に繰り返して堆積するのがエネルギー的に安定と
なる。前記(X1+X2)配置とは、MIがX1配置で、M
IIがX2配置を示す。また、(X2+X1)配置とは、MI
がX2配置で、MIIがX1配置を示す。A周期Cu2Sb
型結晶構造をとるべき元素を選択し、B周期にL21
結晶構造をとるべき元素を選択した場合でも、2種類の
異質な構造が周期的に積層されていることで、結晶的に
歪みが発生して全く新しい特性を示す。特に結晶的に歪
みが磁気異方性に与える影響は大きく、n1、n2、n3
および/またはMI、MII、MIIIの元素の組み合わせに
よりこの歪みをコントロ−ルすることで全く新しい垂直
磁化膜を得ることも可能である。
[Structure] The first aspect of the present invention is to repeat (An1) and (α layer-β layer) in which a repeating unit (hereinafter referred to as A cycle) of (α layer-α layer-β layer) is repeated one or more times. A unit (hereinafter referred to as B cycle) repeated one or more times (Bn
2) A thin film magnetic material formed by laminating a plurality of periodic structures (An1 + Bn2). An1: A cycle repeated one or more times Bn2: B cycle repeated one or more times n1: A cycle repeated number, 1 or more, preferably 1 to 100 n2: B cycle repeated number 1 or more, preferably 1 to 100 α layer: monoatomic layer consisting of M I and M II β layer: monoatomic layer consisting of M III , wherein M I and M of α layer
Layer having the same atomic density as the combined atomic density of II M I : Co, Cr, Cu, Fe, Mn, Ni and Zn
At least one element selected from the group consisting of: M II : As, Bi, Ge, Pb, Sb, Si, Sn, A
At least one element selected from the group consisting of 1, Ga and In. M III : Ag, Au, Cu, Al, Mo, Nb, Pd,
At least one element selected from the group consisting of Pt, Rh, Zr, Ni, Co, Fe and Mn. Among the above thin film magnetic materials, the one in which the A cycle is repeated one or more times (An1) is highly likely to have a periodic structure close to the Cu 2 Sb type crystal structure, and the one in which the B cycle is repeated one or more times (Bn2) is L2 is likely to be closer periodic structure 1 type crystal structure, provided An1 and Bn2 is not intended to be limited to these crystal structures. In cycle A (X1 +
X2) configuration- (X2 + X1) configuration-Z configuration is repeated to form a Cu 2 Sb type crystal structure, and (X 1 +
When deposited by repeating the X2) arrangement-Z arrangement- (X2 + X1) arrangement-Z arrangement, an L2 1 (Fm3m) type crystal structure is obtained. Here, the X1 arrangement, X2 arrangement, Y1 arrangement, Y2 arrangement and Z arrangement are the arrangements shown in FIG. 1 as atomic arrangements when sliced in a plane parallel to the coordinate plane in the atomic arrangement of the orthogonal coordinate system. Indicates. However, strictly speaking, the atomic positions may be displaced due to lattice distortion or the like. In addition, when each atomic layer is deposited at a constant cycle, it is energetically stable to repeatedly deposit these atomic arrangements regularly. The (X1 + X2) arrangement means that M I is the X1 arrangement and M
II indicates the X2 configuration. The (X2 + X1) arrangement means M I
Indicates the X2 configuration and M II indicates the X1 configuration. Period A Cu 2 Sb
Even when an element that should have a L-type crystal structure is selected and an element that should have an L2 1 -type crystal structure in the B cycle is selected, the two types of heterogeneous structures are cyclically stacked, which results in crystal distortion. Occurs and shows a completely new characteristic. In particular, the influence of crystal distortion on magnetic anisotropy is large, and n1, n2, n3
It is also possible to obtain a completely new perpendicular magnetization film by controlling this strain by combining the elements of M I , M II and M III .

【0005】本発明の第2は、An1と(α層−γ層)
の繰り返し単位(以下、C周期という)を1回以上繰り
返したもの(Cn3)よりなる周期構造(An1+Cn
3)を複数周期積層して形成された薄膜磁性材料に関す
る。 Cn3 :C周期を1回以上繰り返したもの n3 :C周期の繰り返し数で、1以上の数、好ましく
は1〜100 α層 :前記に同じ γ層 :MIIIからなる単原子層であって、α層のMI
IIを合わせた原子密度の半分の原子密度の単原子層 前記薄膜磁性材料において、C周期で(X1+X2)配置
−Y1配置−(X2+X1−Y2)配置の繰り返しで堆積
するとC1b型結晶構造をとるので、該薄膜磁性材料は
Cu2Sb型結晶構造の磁性材料とC1b型結晶構造の複
合的なものとなる。
The second aspect of the present invention is that An1 and (α layer-γ layer)
A periodic structure (An1 + Cn) consisting of a repeating unit (hereinafter referred to as C cycle) repeated one or more times (Cn3).
3) A thin film magnetic material formed by laminating a plurality of cycles of. Cn3: one in which the C cycle is repeated one or more times n3: the number of repetitions in the C cycle, which is a number of 1 or more, preferably 1 to 100 α layer: the same as the above γ layer: a monoatomic layer consisting of M III , in monoatomic layer wherein the thin film magnetic material of half atomic density of M I and M II the combined atomic density of α layer, the C period (X1 + X2) arranged -Y1 disposed - (X2 + X1-Y 2 ) depositing a repeating arrangement Then since taking C1b type crystal structure, the thin film magnetic material becomes a composite of magnetic material and C1b crystal structure of Cu 2 Sb type crystal structure.

【0006】本発明の第3は、Bn2とCn3よりなる周
期構造(Bn2+Cn3)を複数周期積層して形成された
薄膜磁性材料に関する。 Bn2:前記に同じ Cn3:前記に同じ n2:前記に同じ n3:前記に同じ 前記薄膜磁性材料はL21型結晶構造の磁性材料とC1b
型結晶構造の複合的なものとなる。
A third aspect of the present invention relates to a thin film magnetic material formed by laminating a plurality of periodic structures (Bn2 + Cn3) composed of Bn2 and Cn3. Bn2: the same Cn3: the same n2: the same n3: the same the thin film magnetic material in said magnetic material of L2 1 crystal structure C1b
It becomes a complex type crystal structure.

【0007】本発明の第4は、An1とBn2とCn3よ
りなる周期構造(An1+Bn2+Cn3)を複数周期積
層して形成された薄膜磁性材料に関する。 An1:前記に同じ Bn2:前記に同じ Cn3:前記に同じ n1:前記に同じ n2:前記に同じ n3:前記に同じ 前記薄膜磁性材料は、An1とBn2とCn3(An1+B
n2+Cn3)を複数周期積層Cu2Sb型結晶構造の磁
性材料とC1b型結晶構造の複合的なものとなる。 An1:前記に同じ Bn2:前記に同じ Cn3:前記に同じ n1:前記に同じ n2:前記に同じ n3:前記に同じ
A fourth aspect of the present invention relates to a thin film magnetic material formed by laminating a plurality of periodic structures (An1 + Bn2 + Cn3) composed of An1, Bn2 and Cn3. An1: Same as above Bn2: Same as above Cn3: Same as above n1: Same as above n2: Same as above n3: Same as above The thin film magnetic material includes An1, Bn2 and Cn3 (An1 + B).
n2 + Cn3) is a composite of a magnetic material having a Cu 2 Sb type crystal structure and a C 1b type crystal structure having a plurality of laminated cycles. An1: Same as above Bn2: Same as above Cn3: Same as above n1: Same as above n2: Same as above n3: Same as above

【0008】本発明の第5は、前記第1、2、3または
4記載の薄膜磁性材料において、n1又はn2、n3の異
なるものを少なくとも2種以上積層したことを特徴とす
る薄膜磁性材料に関する。 n1:前記に同じ n2:前記に同じ n3:前記に同じ 前記薄膜磁性材料において、n1又はn2、n3の異なる
ものを少なくとも2種以上積層し、繰り返し周期の数を
変えることにより、膜厚方向に意識的に不均一性を持た
せて、層方向に特性を変化させた薄膜磁性材料を得るこ
とが出来る。
A fifth aspect of the present invention relates to a thin film magnetic material according to the first, second, third or fourth aspect, characterized in that at least two kinds of thin film magnetic materials different in n1, n2 and n3 are laminated. . n1: same as above n2: same as above n3: same as above In the thin film magnetic material, at least two kinds of n1 or n2 or n3 different from each other are laminated and the number of repeating cycles is changed to thereby change the thickness direction. It is possible to obtain a thin film magnetic material whose properties are changed in the layer direction by intentionally providing nonuniformity.

【0009】本発明の第6は、前記第1、2、3または
4記載の薄膜磁性材料において、MI又はMII、MIII
異なるものを少なくとも2種以上積層したことを特徴と
する薄膜磁性材料に関する。 MI :前記に同じ MII :前記に同じ MIII :前記に同じ 前記薄膜磁性材料において、MI又はMII、MIIIの異な
るものを少なくとも2種以上積層し、繰り返し周期の数
は、一定で、各層を構成する元素の種類あるいは比を変
えることにより、膜厚方向に意識的に不均一性を持たせ
て、層方向に特性を変化させた薄膜磁性材料を得ること
が出来る。なお本発明の薄膜磁性材料は、前記第5の手
段と第6の手段を組合せて形成したものであってもよ
い。
A sixth aspect of the present invention is characterized in that, in the thin film magnetic material according to the first, second, third or fourth aspect, at least two or more different types of M I or M II , M III are laminated. Regarding magnetic materials. M I : same as above M II : same as above M III : same as above In the thin film magnetic material, at least two kinds of M I or M II and M III different from each other are laminated, and the number of repeating cycles is constant. Then, by changing the kind or ratio of the elements forming each layer, it is possible to obtain a thin film magnetic material in which the characteristics are changed in the layer direction by intentionally providing nonuniformity in the film thickness direction. The thin film magnetic material of the present invention may be formed by combining the fifth means and the sixth means.

【0010】本発明の第7は、前記第1、2、3または
4記載のの薄膜磁性材料の少なくとも2種以上積層した
ことを特徴とする薄膜磁性材料に関する。前記第1、
2、3または4記載のの薄膜磁性材料の少なくとも2種
以上積層することにより、前記第5および6の薄膜磁性
材料と同様に、膜厚方向に意識的に不均一性を持たせ
て、層方向に特性を変化させた薄膜磁性材料を得ること
が出来る。
A seventh aspect of the present invention relates to a thin film magnetic material characterized by laminating at least two kinds of the thin film magnetic materials according to the first, second, third or fourth aspect. The first,
By laminating at least two kinds of the thin film magnetic materials described in 2, 3 or 4, the layers are made to have intentionally non-uniformity in the film thickness direction as in the fifth and sixth thin film magnetic materials. It is possible to obtain a thin film magnetic material whose characteristics are changed in the direction.

【0011】本発明の第8は、正方晶系の[100]面
または[110]面単結晶配向膜、あるいは正方晶系の
[100]面、[110]面または[001]面単結晶
配向膜の基板上に形成した請求項1、2、3、4、5、
6または7記載の薄膜磁性材料に関する。前記単結晶基
板上に前記薄膜磁性材料を形成することにより、その作
製に際して、結晶配向させることが容易となり、また、
膜作製開始時点での原子の配列(結晶化)がスムーズに
なり、膜の結晶性の向上、膜作製温度を低下させること
ができる。
The eighth aspect of the present invention is a tetragonal [100] plane or [110] plane single crystal orientation film, or a tetragonal [100] plane, [110] plane or [001] plane single crystal orientation film. Claims 1, 2, 3, 4, 5, formed on a film substrate.
The present invention relates to the thin film magnetic material described in 6 or 7. By forming the thin film magnetic material on the single crystal substrate, it becomes easy to orient the crystal during its production, and
The atom arrangement (crystallization) at the start of film formation becomes smooth, the crystallinity of the film can be improved, and the film formation temperature can be lowered.

【0012】本発明の第9は、ガラスあるいはプラスチ
ック基板上に立方晶系の[100]面または[110]
面単結晶配向膜、あるいは正方晶系の[100]面、
[110]面または[001]面単結晶配向膜を下地層
としてその上に作製したことを特徴とする前記第1、
2、3、4、5、6または7記載の薄膜磁性材料に関す
る。単結晶基板を作製した場合、その上に作製した膜は
単結晶的な結晶構造となり、磁気特性も単結晶的になる
傾向があるが、ガラスあるいはプラスチック等の基板上
に前記のような下地層を作製し、更にその上に前記磁性
膜を作製することで、膜は多結晶となり、多結晶として
の磁気特性が得られる。また、単結晶磁性膜では磁壁移
動が容易に起こり、保磁力の低下など、磁気記録材料と
して不適切な場合もあるが、多結晶膜では磁壁移動は抑
制され、保磁力の大きなものが得られる。また、多結晶
膜では形状異方性等も期待できる。さらに前記のような
下地層を設けることにより高価な単結晶基板を使用する
必要はなくコストも下げることが出来る。
A ninth aspect of the present invention is the cubic [100] face or [110] face on a glass or plastic substrate.
Plane single crystal orientation film, or tetragonal [100] plane,
The first aspect characterized in that a [110] plane or [001] plane single crystal orientation film is formed as an underlayer thereon.
The present invention relates to the thin film magnetic material described in 2, 3, 4, 5, 6 or 7. When a single crystal substrate is prepared, the film formed on it has a single crystal-like crystal structure, and the magnetic characteristics tend to be single crystal, but the above-mentioned underlayer on a substrate such as glass or plastic. Is produced, and the magnetic film is further formed thereon, so that the film becomes polycrystalline and the magnetic characteristics as polycrystalline are obtained. Further, in a single-crystal magnetic film, domain wall movement easily occurs, which may be unsuitable as a magnetic recording material, such as a decrease in coercive force, but in a polycrystalline film, domain wall movement is suppressed and a large coercive force can be obtained. . Moreover, shape anisotropy and the like can be expected in the polycrystalline film. Further, by providing the above-mentioned base layer, it is not necessary to use an expensive single crystal substrate, and the cost can be reduced.

【0013】本発明の第10は、前記第1、2、3、
4、5、6、7、8または9記載の薄膜磁性材料を製造
する方法において、磁性材料を各単原子層ずつ堆積して
薄膜形成を行うことを特徴とする薄膜磁性材料の製造方
法に関する。前記のように単原子層ずつ堆積することに
より薄膜形成を行うと、原子の配列(結晶化)がスム−
ズとなり、膜膜の結晶性の向上、膜作製温度の低下が可
能となる。
A tenth aspect of the present invention is the first, second, third,
The method for producing a thin film magnetic material according to 4, 5, 6, 7, 8 or 9 relates to a method for producing a thin film magnetic material, which comprises depositing each monoatomic layer of a magnetic material to form a thin film. When a thin film is formed by depositing each monoatomic layer as described above, the atomic arrangement (crystallization) is smooth.
It is possible to improve the crystallinity of the film and lower the film forming temperature.

【0014】本発明の第11は、前記第1、2、3、
4、5、6、7、8または9記載の薄膜磁性材料を製造
する方法において、各周期毎にその周期の平均組成に見
合った混合物を同時に堆積して薄膜形成を行うことを特
徴とする薄膜磁性材料の製造方法。前記のような製造方
法を採用することにより、比較的簡単な装置で膜作成が
可能となり、量産に適し、コストダウンにつながる。
The eleventh aspect of the present invention is the first, second, third,
In the method for producing a thin film magnetic material described in 4, 5, 6, 7, 8 or 9, a thin film is formed by simultaneously depositing a mixture corresponding to the average composition of each period for each period. Manufacturing method of magnetic material. By adopting the manufacturing method as described above, it becomes possible to form a film with a relatively simple apparatus, which is suitable for mass production and leads to cost reduction.

【0015】[0015]

【効果】【effect】

1.請求項1の発明に対する効果 Cu2Sb型結晶構造の磁性材料の特性とL21型結晶構
造の磁性材料の特性を兼ね備えた複合材料的なものが得
られる。 2.請求項2の発明に対する効果:Cu2Sb型結晶構
造の磁性材料とC1b型結晶構造の特性を兼ね備えた複
合材料的なものが得られる。 3.請求項3の発明に対する効果:L21型結晶構造の
磁性材料とC1b型結晶構造の特性を兼ね備えた複合材
料的なものが得られる。 4.請求項4の発明に対する効果 Cu2Sb型結晶構造の磁性材料の特性とL21型結晶構
造の特性とC1b型結晶構造の磁性材料の特性を兼ね備
えた複合材料的なものが得られる。 5.請求項5、6および7の発明に対する効果 基板側の界面付近の特性と膜表面側の特性、或は、膜全
体としての特性と基板側の界面付近の特性又は膜表面側
の特性に変化を付けることができる。例えば、基板側又
は表面側を特にカー回転角の大きな材料の構成にするこ
とで、全体的な特性は変えずに、基板側又は表面側から
読みだしたカー回転角だけを増大させることが可能とな
る。又、交換結合多層膜としての機能が得られる。 6.請求項8の発明に対する効果:作製に際して、結晶
配向させることが容易となり、また、膜作製開始時点で
の原子の配列(結晶化)がスムーズになり、膜の結晶性
の向上、膜作製温度を低下させることができる。 7.請求項9の発明に対する効果 前記のような下地層を作製し、更にその上に前記磁性膜
を作製することで、膜は多結晶となり、多結晶としての
磁気特性が得られる。また、単結晶磁性膜では磁壁移動
が容易に起こり、保磁力の低下など、磁気記録材料とし
て不適切な場合もあるが、多結晶膜では磁壁移動は抑制
され、保磁力の大きなものが得られる。また、多結晶膜
では形状異方性等も期待できる。さらに前記のような下
地層を設けることにより高価な単結晶基板を使用する必
要はなくコストも下げることが出来る。 8.請求項10の発明に対する効果 単原子層ずつ堆積を行うことにより、原子の配列(結晶
化)がスムーズになり、膜の結晶性の向上、膜作製温度
の低下の効果が得られる。 9.請求項11の発明に対する効果:請求項10の発明
と同様の効果が得られる。その効果としては、請求項9
の発明よりはやや劣ることがあるが、比較的簡単な装置
で膜作製が可能となり、量産に適し、コストダウンにつ
ながる。
1. Effect on the Invention of Claim 1 A composite material having the characteristics of the magnetic material having the Cu 2 Sb type crystal structure and the characteristics of the magnetic material having the L 2 1 type crystal structure can be obtained. 2. Effect on Invention of Claim 2: A magnetic material having a Cu 2 Sb type crystal structure and a composite material having the characteristics of a C 1b type crystal structure are obtained. 3. Effect on the invention of claim 3: L2 1 type composite ones that combines the properties of the magnetic material and C1b crystal structure of the crystal structure is obtained. 4. Effect on Invention of Claim 4 A composite material having both the characteristics of the magnetic material having the Cu 2 Sb type crystal structure, the characteristics of the L 2 1 type crystal structure and the characteristics of the magnetic material having the C 1b type crystal structure can be obtained. 5. Effects on the Invention of Claims 5, 6 and 7 The characteristics near the interface on the substrate side and the characteristics on the film surface side, or the characteristics of the entire film and the characteristics near the interface on the substrate side or the characteristics on the film surface side are changed. Can be attached. For example, by making the substrate side or the surface side a material having a particularly large Kerr rotation angle, it is possible to increase only the Kerr rotation angle read from the substrate side or the surface side without changing the overall characteristics. Becomes Further, the function as an exchange coupling multilayer film can be obtained. 6. Effect on invention of claim 8: Crystallographic orientation becomes easy at the time of production, and atoms are aligned (crystallized) smoothly at the time of starting film production, improving the crystallinity of the film and improving film production temperature. Can be lowered. 7. Effect on Invention of Claim 9 By forming the underlayer as described above and further forming the magnetic film on the underlayer, the film becomes polycrystalline and magnetic characteristics as polycrystalline are obtained. Further, in a single-crystal magnetic film, domain wall movement easily occurs, which may be unsuitable as a magnetic recording material, such as a decrease in coercive force, but in a polycrystalline film, domain wall movement is suppressed and a large coercive force can be obtained. . Moreover, shape anisotropy and the like can be expected in the polycrystalline film. Further, by providing the above-mentioned base layer, it is not necessary to use an expensive single crystal substrate, and the cost can be reduced. 8. Effect of the Invention of Claim 10 By depositing each monoatomic layer, the arrangement (crystallization) of atoms becomes smooth, and the effects of improving the crystallinity of the film and lowering the film formation temperature can be obtained. 9. Effect of the invention of claim 11: The same effect as that of the invention of claim 10 can be obtained. As its effect, claim 9
Although it may be slightly inferior to the invention of (1), the film can be formed with a relatively simple apparatus, is suitable for mass production, and leads to cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の薄膜磁性材料の膜面内の原子配置を示
す図である。ただし、格子歪等により厳密には原子の位
置がずれることがある。
FIG. 1 is a diagram showing an atomic arrangement in a film surface of a thin film magnetic material of the present invention. However, strictly speaking, the atomic positions may be displaced due to lattice distortion or the like.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 (α層−α層−β層)の繰り返し単位
(以下、A周期という)を1回以上繰り返したもの(A
n1)と(α層−β層)の繰り返し単位(以下、B周期
という)を1回以上繰り返したもの(Bn2)よりなる
周期構造(An1+Bn2)を複数周期積層して形成され
た薄膜磁性材料。 An1:A周期を1回以上繰り返したもの Bn2:B周期を1回以上繰り返したもの n1:A周期の繰り返し数で、1以上の数 n2:B周期の繰り返し数で、1以上の数 α層:MIとMIIからなる単原子層 β層:MIIIからなる単原子層であって、α層のMIとM
IIを合わせた原子密度と同じ原子密度を有する層、 MI:Co、Cr、Cu、Fe、Mn、NiおよびZn
よりなる群から選ばれた少なくとも1種以上の元素、 MII:As、Bi、Ge、Pb、Sb、Si、Al、G
aおよびInよりなる群から選ばれた少なくとも1種以
上の元素、 MIII:Ag、Au、Cu、Al、Mo、Nb、Pd、
Pt、Rh、Zr、Ni、Co、FeおよびMnよりな
る群から選ばれた少なくとも1種以上の元素。
1. A repeating unit of (α layer-α layer-β layer) (hereinafter referred to as A cycle) repeated one or more times (A
A thin film magnetic material formed by laminating a plurality of periodic structures (An1 + Bn2) composed of a repeating unit (Bn2) in which a repeating unit of (n1) and (α layer-β layer) (hereinafter referred to as B period) is repeated one or more times. An1: A cycle repeated one or more times Bn2: B cycle repeated one or more times n1: A cycle repeated number 1 or more n2: B cycle repeated number 1 or more α layer : Monoatomic layer consisting of M I and M II β layer: Monoatomic layer consisting of M III , M I and M of α layer
A layer having the same atomic density as II combined, M I : Co, Cr, Cu, Fe, Mn, Ni and Zn
At least one element selected from the group consisting of: M II : As, Bi, Ge, Pb, Sb, Si, Al, G
at least one element selected from the group consisting of a and In, M III : Ag, Au, Cu, Al, Mo, Nb, Pd,
At least one element selected from the group consisting of Pt, Rh, Zr, Ni, Co, Fe and Mn.
【請求項2】 An1と(α層−γ層)の繰り返し単位
(以下、C周期という)を1回以上繰り返したもの(C
n3)よりなる周期構造(An1+Cn3)を複数周期積
層して形成された薄膜磁性材料。 Cn3 :C周期を1回以上繰り返したもの n3 :C周期の繰り返し数で、1以上の数 α層 :前記に同じ γ層 :MIIIからなる単原子層であって、α層のMI
IIを合わせた原子密度の半分の原子密度の単原子層
2. A repeating unit (C period) of An1 and (α layer-γ layer) repeated one or more times (C
A thin film magnetic material formed by laminating a plurality of periodic structures (An1 + Cn3) of n3). Cn3: C cycle repeated once or more n3: C cycle repetition number of 1 or more α layer: Same as above γ layer: Monoatomic layer consisting of M III , which is the M I of α layer Monoatomic layer with half the atomic density of M II combined
【請求項3】 Bn2とCn3よりなる周期構造(Bn2
+Cn3)を複数周期積層して形成された薄膜磁性材
料。 Bn2:前記に同じ Cn3:前記に同じ n2 :前記に同じ n3 :前記に同じ
3. A periodic structure composed of Bn2 and Cn3 (Bn2
+ Cn3) is a thin film magnetic material formed by laminating a plurality of cycles. Bn2: same as above Cn3: same as above n2: same as above n3: same as above
【請求項4】 An1とBn2とCn3よりなる周期構造
(An1+Bn2+Cn3)を複数周期積層して形成され
た薄膜磁性材料。 An1:前記に同じ Bn2:前記に同じ Cn3:前記に同じ n1 :前記に同じ n2 :前記に同じ n3 :前記に同じ
4. A thin film magnetic material formed by laminating a plurality of periodic structures (An1 + Bn2 + Cn3) composed of An1, Bn2 and Cn3. An1: Same as above Bn2: Same as above Cn3: Same as above n1: Same as above n2: Same as above n3: Same as above
【請求項5】 請求項1、2、3または4記載の薄膜磁
性材料において、n1又はn2、n3の異なるものを少な
くとも2種以上積層したことを特徴とする薄膜磁性材
料。 n1 :前記に同じ n2 :前記に同じ n3 :前記に同じ
5. The thin film magnetic material according to claim 1, 2, 3 or 4, wherein at least two kinds of materials having different n1 or n2 and n3 are laminated. n1: same as above n2: same as above n3: same as above
【請求項6】 請求項1、2、3または4記載の薄膜磁
性材料において、MI又はMII、MIIIの異なるものを少
なくとも2種以上積層したことを特徴とする薄膜磁性材
料。 MI :前記に同じ MII :前記に同じ MIII:前記に同じ
6. The thin film magnetic material according to claim 1, 2, 3 or 4, wherein at least two kinds of materials having different M I or M II , M III are laminated. M I : same as above M II : same as above M III : same as above
【請求項7】 請求項1、2、3または4記載のの薄膜
磁性材料の少なくとも2種以上積層したことを特徴とす
る薄膜磁性材料。
7. A thin film magnetic material comprising at least two kinds of thin film magnetic materials according to claim 1, 2, 3 or 4 laminated.
【請求項8】 立方晶系の[100]面または[11
0]面単結晶配向膜、あるいは正方晶系の[100]
面、[110]面または[001]面単結晶配向膜の基
板上に形成した請求項1、2、3、4、5、6または7
記載の薄膜磁性材料。
8. A cubic [100] plane or [11]
0] plane single crystal orientation film or tetragonal [100]
A surface, a [110] plane, or a [001] plane single crystal orientation film formed on a substrate.
The thin film magnetic material described.
【請求項9】 ガラスあるいはプラスチック基板上に立
方晶系の[100]面または[110]面単結晶配向
膜、あるいは正方晶系の[100]面、[110]面ま
たは[001]面単結晶配向膜を下地層としてその上に
形成したことを特徴とする請求項1、2、3、4、5、
6または7記載の薄膜磁性材料。
9. A cubic [100] plane or [110] plane single crystal oriented film or a tetragonal [100] plane, [110] plane or [001] plane single crystal on a glass or plastic substrate. An alignment film is formed as a base layer on the alignment film, and the alignment film is formed on the alignment film.
6. The thin film magnetic material according to 6 or 7.
【請求項10】 請求項1、2、3、4、5、6、7、
8または9記載の薄膜磁性材料を製造する方法におい
て、磁性材料を各単原子層ずつ堆積して薄膜形成を行う
ことを特徴とする薄膜磁性材料の製造方法。
10. The method according to claim 1, 2, 3, 4, 5, 6, 7,
8. The method for producing a thin film magnetic material as described in 8 or 9, wherein each monoatomic layer of the magnetic material is deposited to form a thin film.
【請求項11】 請求項1、2、3、4、5、6、7、
8または9記載の薄膜磁性材料を製造する方法におい
て、各周期毎にその周期の平均組成に見合った混合物を
同時に堆積して薄膜形成を行うことを特徴とする薄膜磁
性材料の製造方法。
11. The method according to claim 1, 2, 3, 4, 5, 6, 7,
8. The method for producing a thin film magnetic material according to 8 or 9, wherein a thin film is formed by simultaneously depositing a mixture corresponding to the average composition of the period for each period.
JP1974495A 1995-01-12 1995-01-12 Thin film magnetic material Pending JPH08195314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1974495A JPH08195314A (en) 1995-01-12 1995-01-12 Thin film magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1974495A JPH08195314A (en) 1995-01-12 1995-01-12 Thin film magnetic material

Publications (1)

Publication Number Publication Date
JPH08195314A true JPH08195314A (en) 1996-07-30

Family

ID=12007851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1974495A Pending JPH08195314A (en) 1995-01-12 1995-01-12 Thin film magnetic material

Country Status (1)

Country Link
JP (1) JPH08195314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015206A1 (en) * 2000-08-02 2002-02-21 Sumitomo Special Metals Co., Ltd. Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015206A1 (en) * 2000-08-02 2002-02-21 Sumitomo Special Metals Co., Ltd. Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet
EP1329912A1 (en) * 2000-08-02 2003-07-23 Sumitomo Special Metals Company Limited Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet
EP1329912A4 (en) * 2000-08-02 2005-09-21 Sumitomo Spec Metals Thin film rare earth permanent magnet, and method for manufacturing the permanent magnet
US7285338B2 (en) 2000-08-02 2007-10-23 Neomax Co., Ltd. Anisotropic thin-film rare-earth permanent magnet

Similar Documents

Publication Publication Date Title
JP3320079B2 (en) Magnetic laminate and magnetoresistive element
US20040191578A1 (en) Method of fabricating L10 ordered fePt or FePtX thin film with (001) orientation
JP3981732B2 (en) FePt magnetic thin film having perpendicular magnetic anisotropy and method for producing the same
Harp et al. Seeded epitaxy of metals by sputter deposition
EP0304927B1 (en) Perpendicular magnetic recording medium
Laughlin et al. Engineering the microstructure of thin films for perpendicular recording
JPH08195314A (en) Thin film magnetic material
JPH0831372B2 (en) Method for manufacturing Fe—Co magnetic film
WO2005022565A1 (en) Nano-particle device and method for manufacturing nano-particle device
JPH08195313A (en) Thin film magnetic material
JP3559332B2 (en) Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium
JP3593761B2 (en) Oxide magnetic body and method of manufacturing the same
JP2957236B2 (en) Magnetic multilayer film
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
Nakagawa et al. Low temperature deposition of c-axis oriented Sr-ferrite thin films prepared by facing targets sputtering with mixture gas of Ar and Kr
JPH0567525A (en) Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element
JP2710441B2 (en) Soft magnetic laminated film
Wang et al. Effect of microstructure on coercivity of c‐axis in‐plane‐oriented Co/Cr multilayered films
JP2921103B2 (en) Soft magnetic thin film and method of manufacturing the same
JP3346787B2 (en) Magnetic laminate and magnetoresistive element
JP3559333B2 (en) Magnetic multilayer film, method of manufacturing the same, and magneto-optical recording medium
JP2707561B2 (en) Artificial lattice magneto-optical recording medium
Cho et al. Twin formation in Ag seeded Co/Pt multilayers grown on GaAs by molecular beam epitaxy
JP3100714B2 (en) Magnetic laminate and magnetoresistive element
JPS61110328A (en) Vertical magnetic recording medium and its production