JPH08195281A - Thin film electroluminescent element and its manufacture - Google Patents

Thin film electroluminescent element and its manufacture

Info

Publication number
JPH08195281A
JPH08195281A JP7005345A JP534595A JPH08195281A JP H08195281 A JPH08195281 A JP H08195281A JP 7005345 A JP7005345 A JP 7005345A JP 534595 A JP534595 A JP 534595A JP H08195281 A JPH08195281 A JP H08195281A
Authority
JP
Japan
Prior art keywords
electrode
insulating film
light emitting
emitting layer
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7005345A
Other languages
Japanese (ja)
Inventor
Hisato Kato
久人 加藤
Yutaka Terao
豊 寺尾
Tomoyuki Kawashima
朋之 河島
Yukinori Kawamura
幸則 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7005345A priority Critical patent/JPH08195281A/en
Publication of JPH08195281A publication Critical patent/JPH08195281A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE: To prevent sulfurized corrosion of a first electrode, and provide an element excellent in light emitting brightness by using silicide having a melting point not less than a specific temperature as the first electrode of a light emitting element where the first electrode, a first insulating film, a light emitting layer, a second insulating film and a second electrode are formed in order on an insulating substrate. CONSTITUTION: A lower electrode 6 composed of silicide such as molybdenum silicide having a melting point not less than 660 deg.C is formed as a film on a glass substrate 1 by sputtering. Next, an insulating film 3 such as silicon oxide and a light emitting layer 4 composed of SrS, Ce or the like are formed as films, and heat treatment is performed at a substrate temperature of about 600 deg.C in sulfurous atmosphere gas. Afterwards, an insulating film 5 and a transparent upper electrode 2 are layered and patterned in order. Since the silicide having a melting point not less than 660 deg.C is used as the electrode 6, an element excellent in light emitting brightness is obtained without corroding and melting the electrode 6 in the heat treatment of the light emitting layer 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄型表示装置に用いる
薄膜電場発光素子及びその製造方法に係り、特に発光輝
度に優れるカラー発光素子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film electroluminescent device used in a thin display device and a method of manufacturing the same, and more particularly to a color light emitting device having excellent emission brightness and a method of manufacturing the same.

【0002】[0002]

【従来の技術】電場の印加によりエレクトロルミネセン
スELを呈する薄膜電場発光素子は、高輝度発光.高速
応答.広視野角.薄型軽量.高解像度など多くの優れた
特長を有することから、薄型表示装置の表示素子として
注目されている。薄膜電場発光素子は、マンガンをドー
プした硫化亜鉛ZnS:Mnやセリウムをドープした硫
化ストロンチウムSrS:Ceなどの発光層の両側に絶
縁膜を設け、透明電極と対向電極との間に交流電圧を印
加することにより、電場発光が得られる。
2. Description of the Related Art A thin film electroluminescent device that exhibits electroluminescence EL when an electric field is applied emits light with high brightness. Fast response. Wide viewing angle. Thin and lightweight. Since it has many excellent features such as high resolution, it has attracted attention as a display element for thin display devices. The thin film electroluminescent device is provided with insulating films on both sides of a light emitting layer such as zinc sulfide ZnS: Mn doped with manganese or strontium sulfide SrS: Ce doped with cerium, and an AC voltage is applied between a transparent electrode and a counter electrode. By doing so, electroluminescence can be obtained.

【0003】図3は従来の薄膜電場発光素子を示す断面
図である。ガラスからなる絶縁基板1の上に透明電極2
A、第一絶縁膜3、発光層4A、第二絶縁膜5、Alか
らなる背面電極6Aが順次積層され、これらが封止ガラ
ス8を介して密封される。このような従来の薄膜電場発
光素子は以下のようにして作製される。
FIG. 3 is a sectional view showing a conventional thin film electroluminescent device. Transparent electrode 2 on insulating substrate 1 made of glass
A, a first insulating film 3, a light emitting layer 4A, a second insulating film 5, and a back electrode 6A made of Al are sequentially stacked, and these are sealed via a sealing glass 8. Such a conventional thin film electroluminescent device is manufactured as follows.

【0004】ガラス基板1上にインジウムスズ酸化物I
TOからなる透明電極2A(第一電極)を設け、この上
に透明電極2Aの端子部を覆わないように(例えば端子
部の部分にメタルマスクを付けて成膜する)第一絶縁膜
3を被着する。次にZnS:Mnからなる発光層4Aを
成膜した後、真空中において温度550℃で1時間熱処
理を行い、発光層の膜歪みの緩和や結晶性の改善をす
る。そして第二絶縁膜5を第一絶縁膜3と同様に、透明
電極2Aの端子部を覆わないように被着した後、Alか
らなる背面電極6A(第二電極)を設ける。そしてこれ
らを封止ガラス8を介して密封する。
On the glass substrate 1, indium tin oxide I
A transparent electrode 2A (first electrode) made of TO is provided, and a first insulating film 3 is formed thereon so as not to cover the terminal portion of the transparent electrode 2A (for example, a film is formed by attaching a metal mask to the terminal portion). Put on. Next, after forming the light emitting layer 4A made of ZnS: Mn, heat treatment is performed in vacuum at a temperature of 550 ° C. for 1 hour to relax the film strain of the light emitting layer and improve the crystallinity. Similarly to the first insulating film 3, the second insulating film 5 is deposited so as not to cover the terminal portion of the transparent electrode 2A, and then the back electrode 6A (second electrode) made of Al is provided. Then, these are sealed via the sealing glass 8.

【0005】現在商品化されている上述の薄膜電場発光
素子は黄橙色モノカラーの薄膜電場発光素子であり、発
光層にZnS:Mnを用い、真空中で熱処理することに
より発光層の膜歪みの緩和や結晶性の改善を行うことが
できる。
The above-mentioned thin film electroluminescent device that is currently commercialized is a yellow-orange monocolor thin film electroluminescent device. ZnS: Mn is used for the light emitting layer, and film distortion of the light emitting layer is caused by heat treatment in vacuum. It is possible to relax and improve the crystallinity.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上述の従
来の薄膜電場発光素子の発光色は黄橙色のみであり、カ
ラー化された薄膜電場発光素子としては利用できないも
のである。カラー化された薄膜電場発光素子としてはカ
ラーフィルタと組み合わせる方式の薄膜電場発光素子が
検討されている。ここで用いられるフィルタは加工性、
および視野角の面から有機フィルタが用いられるが、有
機フィルタの耐熱温度は約200℃であって低いために
薄膜電場発光素子の製造プロセスで発光層の熱処理に必
要とされる550℃の温度に耐えることができない。
However, the above-mentioned conventional thin film electroluminescent device emits only yellow orange, which cannot be used as a colored thin film electroluminescent device. As a thin-film electroluminescent device that is colored, a thin-film electroluminescent device that is combined with a color filter is under study. The filter used here is processable,
Although an organic filter is used from the viewpoint of viewing angle, the heat resistance temperature of the organic filter is about 200 ° C., which is low, so that the temperature of 550 ° C. which is required for heat treatment of the light emitting layer in the manufacturing process of the thin film electroluminescent device. I can't stand it.

【0007】従って、有機フィルタを用いた薄膜電場発
光素子を作製するためにはいわゆる反転構造の薄膜電場
発光素子に有機フィルタを乗せる方式が提案されてい
る。図4は従来の反転構造薄膜電場発光素子を示す断面
図である。ガラスからなる基板1上に下部電極6B、第
1絶縁膜3、発光層4B、第2絶縁膜5、透明上部電極
2Bを順次積層した構造であり、これらが有機フィルタ
7のパターニングされた封止ガラス8を用いて密封され
る。光は有機フィルタを介して取り出される反転構造と
なっている。
Therefore, in order to manufacture a thin film electroluminescent device using an organic filter, a method has been proposed in which an organic filter is mounted on a so-called inverted structure thin film electroluminescent device. FIG. 4 is a sectional view showing a conventional inverted structure thin film electroluminescent device. This is a structure in which a lower electrode 6B, a first insulating film 3, a light emitting layer 4B, a second insulating film 5 and a transparent upper electrode 2B are sequentially laminated on a substrate 1 made of glass, and these are sealed by a patterned organic filter 7. It is sealed with glass 8. The light has an inverted structure that is extracted through an organic filter.

【0008】反転構造薄膜電場発光素子では、発光層4
Bは例えば母体材料ZnSに発光中心としてMnを添加
した厚さ約1μmのZnS:Mn膜やセリウムをドープ
したSrSが用いられる。第1絶縁膜3、および第2絶
縁膜5は、例えば発光層4Bに接する厚さ約200nm
のSi3N4 膜、そしてその外側の厚さ約50nmのSiO2
よりなる。
In the inverted structure thin film electroluminescent device, the light emitting layer 4 is used.
As B, for example, a ZnS: Mn film having a thickness of about 1 μm in which Mn is added to the base material ZnS as an emission center and SrS doped with cerium are used. The first insulating film 3 and the second insulating film 5 have a thickness of, for example, about 200 nm in contact with the light emitting layer 4B.
Of Si 3 N 4 and a SiO 2 film having a thickness of about 50 nm on the outside thereof.

【0009】反転構造薄膜電場発光素子では、下部電極
6Bは熱処理工程の温度が高いため、この温度で安定な
材料であることが必要であり、高融点金属であるMo膜
やW膜などが用いられる。熱処理は真空中や不活性ガス
中で行われる。しかしながら上述の真空中や不活性ガス
中において高温で熱処理した素子の発光輝度は低いとい
う問題があった。発光輝度を向上させるためには硫黄雰
囲気ガス中で熱処理することが必要であるが、硫黄雰囲
気ガス中で熱処理するとMo膜やW膜などが硫化して腐
食する。
In the inverted structure thin film electroluminescent device, since the lower electrode 6B has a high temperature in the heat treatment step, it is necessary that it is a material stable at this temperature, and a Mo film or a W film which is a refractory metal is used. To be The heat treatment is performed in a vacuum or an inert gas. However, there has been a problem that the light emission luminance of the element heat-treated at high temperature in the above-mentioned vacuum or inert gas is low. It is necessary to perform heat treatment in a sulfur atmosphere gas in order to improve the emission brightness, but when heat treatment is performed in a sulfur atmosphere gas, the Mo film, the W film, etc. are sulfided and corroded.

【0010】この発明は上述の点に鑑みてなされその目
的は、反転構造薄膜電場発光素子の下部電極が硫黄雰囲
気ガス中で熱処理した際に硫化腐食することを防止し
て、発光輝度に優れるカラー化された反転構造の薄膜電
場発光素子を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to prevent the lower electrode of an inverted structure thin film electroluminescent device from undergoing sulfide corrosion during heat treatment in a sulfur atmosphere gas, and to provide a color having excellent emission brightness. Another object of the present invention is to provide a thin film electroluminescent device having an inverted structure.

【0011】[0011]

【課題を解決するための手段】上述の目的は第一の発明
によれば絶縁基板上に、第一電極、第一絶縁膜、発光
層、第二絶縁膜および第二電極を有し、第一電極は融点
が660℃以上のケイ化物からなるストライプであり絶
縁基板の上に複数個が並列的に設けられ、第一絶縁膜は
前記した各ストライプと絶縁基板を選択的に被覆し、発
光層は硫化物からなる第一絶縁膜の上に選択的に積層さ
れ、第二絶縁膜は発光層の全部と第一絶縁膜の上に積層
され、第二電極は透明導電膜からなり、第一電極と立体
的に交差する複数のストライプであり、第二絶縁膜を選
択的に被覆してなるとすることにより達成される。
According to the first aspect of the present invention, there is provided a first electrode, a first insulating film, a light emitting layer, a second insulating film and a second electrode on an insulating substrate. One electrode is a stripe made of silicide having a melting point of 660 ° C. or more, and a plurality of stripes are provided in parallel on the insulating substrate. The first insulating film selectively covers each stripe and the insulating substrate to emit light. The layer is selectively stacked on the first insulating film made of sulfide, the second insulating film is stacked on all of the light emitting layer and the first insulating film, and the second electrode is made of a transparent conductive film. This is achieved by forming a plurality of stripes that three-dimensionally intersect with one electrode and selectively covering the second insulating film.

【0012】上述の発明において第一電極はモリブデン
シリサイドであるとすることが有効である。また第二の
発明によれば絶縁基板上に、第一電極、第一絶縁膜、発
光層、第二絶縁膜および第二電極を順次積層する薄膜電
場発光素子の製造方法において、融点が660℃以上の
ケイ化物からなる複数個のストライプを絶縁基板の上に
並列的に積層して第一電極を設ける工程と、前記した各
ストライプと絶縁基板上に絶縁膜を選択的に被覆して第
一絶縁膜を設ける工程と、第一絶縁膜の上に硫化物を選
択的に積層し、次いで硫黄ガス若しくは硫黄化合物ガス
または硫黄ガス若しくは硫黄化合物ガスを不活性ガスと
混合したガスからなる雰囲気ガス中で温度500ないし
650℃の範囲で硫化物を熱処理して発光層を形成する
工程と、発光層の全部と第一絶縁膜の上に絶縁膜を被覆
して第二絶縁膜を設ける工程と、透明導電膜からなる複
数のストライプを第一電極と立体的に交差して、第二絶
縁膜上に選択的に被覆して、第二電極を形成する工程と
を備えるとすることにより達成される。
In the above invention, it is effective that the first electrode is molybdenum silicide. According to the second invention, in the method for manufacturing a thin film electroluminescent device in which a first electrode, a first insulating film, a light emitting layer, a second insulating film and a second electrode are sequentially laminated on an insulating substrate, the melting point is 660 ° C. The step of stacking a plurality of stripes of the above silicide on an insulating substrate in parallel to provide a first electrode, and the step of selectively coating an insulating film on each stripe and the insulating substrate In an atmosphere gas consisting of a step of providing an insulating film, a sulfide is selectively laminated on the first insulating film, and then a sulfur gas or a sulfur compound gas or a gas in which a sulfur gas or a sulfur compound gas is mixed with an inert gas At a temperature of 500 to 650 ° C. to form a light emitting layer by heat treatment, and a step of covering the entire light emitting layer and the first insulating film with an insulating film to form a second insulating film. A plurality of transparent conductive films The stripe intersects the first electrode and the three-dimensional, selectively coated on the second insulating film is achieved by a and a step of forming a second electrode.

【0013】[0013]

【作用】第一電極に融点が660℃以上のケイ化物を用
いる場合は、第一電極に腐食や溶融を起こすことなく、
硫黄ガス若しくは硫黄化合物ガスまたは硫黄ガス若しく
は硫黄化合物ガスを不活性ガスと混合したガスからなる
雰囲気ガス中において、温度500ないし650℃の範
囲で硫化物である発光層を熱処理することができ、その
結果発光輝度の良好な薄膜電場発光素子が得られる。
When a silicide having a melting point of 660 ° C. or higher is used for the first electrode, the first electrode does not corrode or melt,
The luminescent layer which is a sulfide can be heat-treated at a temperature in the range of 500 to 650 ° C. in an atmosphere gas consisting of sulfur gas or sulfur compound gas or a mixture of sulfur gas or sulfur compound gas with an inert gas. As a result, a thin film electroluminescent device having a good emission brightness can be obtained.

【0014】第一電極にモリブデンシリサイドを用いる
と、モリブデンシリサイドは光反射率が高いので反転型
薄膜電場発光素子の発光輝度をより高めることができ
る。硫黄ガス若しくは硫黄化合物ガスまたは硫黄ガス若
しくは硫黄化合物ガスを不活性ガスと混合したガスから
なる雰囲気ガス中で温度500ないし650℃の範囲で
硫化物を熱処理して発光層を形成すると硫化物結晶の硫
黄欠陥がなくなり発光層の発光輝度が高まる。
When molybdenum silicide is used for the first electrode, the light reflectance of molybdenum silicide is high, so that the emission brightness of the inverted thin film electroluminescent device can be further increased. When a light emitting layer is formed by heat-treating a sulfide at a temperature in the range of 500 to 650 ° C. in an atmosphere gas composed of sulfur gas or a sulfur compound gas or a mixture of a sulfur gas or a sulfur compound gas with an inert gas, a sulfide crystal is formed. The sulfur defects are eliminated and the emission brightness of the light emitting layer is increased.

【0015】[0015]

【実施例】【Example】

実施例1 図1は、本発明の実施例に係る薄膜電場発光素子を示す
断面図である。ガラスからなる絶縁基板1上に下部電極
6としてモリブデンシリサイドMoSi2をDCスパッタ成
膜した後、通常のフォトプロセスによりパタニングを行
う。その後、第一絶縁膜3としてSiO2とSi3N4 の積層膜
(250nm) を基板温度300 ℃にてスパッタ成膜し、続いて
発光層4としてSrS:Ce(600nm) を成膜する。SrS:Ce膜を
常圧の硫黄雰囲気ガス中で基板温度 600℃で熱処理した
後、第二絶縁膜5、透明上部電極2を順次積層パタニン
グする。この時の条件はそれぞれ第一絶縁膜3、下部電
極6の条件と全く同様である。有機フィルタ7をパター
ニングした封止ガラス8によりシリコンオイルを用い
て、上述の方法で得られた素子を封止した。
Example 1 FIG. 1 is a sectional view showing a thin film electroluminescent device according to an example of the present invention. After molybdenum silicide MoSi 2 is formed as a lower electrode 6 on the insulating substrate 1 made of glass by DC sputtering, patterning is performed by a normal photo process. After that, a laminated film of SiO 2 and Si 3 N 4 is used as the first insulating film 3.
(250 nm) is sputter-deposited at a substrate temperature of 300 ° C., and then SrS: Ce (600 nm) is deposited as the light emitting layer 4. The SrS: Ce film is heat-treated in a sulfur atmosphere gas at a normal pressure at a substrate temperature of 600 ° C., and then the second insulating film 5 and the transparent upper electrode 2 are sequentially laminated and patterned. The conditions at this time are exactly the same as the conditions of the first insulating film 3 and the lower electrode 6, respectively. The element obtained by the above-described method was sealed with silicon oil by the sealing glass 8 on which the organic filter 7 was patterned.

【0016】モリブデンシリサイドMoSi2 の光反射率は
モリブデンMoの光反射率とほぼ同じで約50%であ
る。得られた薄膜電場発光素子の特性を測定した。図2
はこの発明の実施例に係る薄膜電場発光素子の発光輝度
につき電圧依存性(11)を従来の素子の特性(12)
と対比して示す線図である。発光層を硫黄雰囲気中で熱
処理しているために発光輝度が従来の約2倍になってい
ることがわかる。 実施例2 下部電極6のモリブデンシリサイドMoSi2 をタングステ
ンシリサイドWSi2に替え、発光層4の SrS:Ce をZnS:Mn
に替え、硫黄雰囲気ガス中で基板温度 600℃での熱処理
を亜硫酸ガス中で温度500℃で熱処理する方法に替え
る他は実施例1と同様にして薄膜電場発光素子を製作し
た。
The light reflectance of molybdenum silicide MoSi 2 is approximately the same as that of molybdenum Mo, which is about 50%. The characteristics of the obtained thin film electroluminescent device were measured. Figure 2
Shows the voltage dependence (11) of the emission brightness of the thin film electroluminescent device according to the embodiment of the present invention, and the characteristics (12) of the conventional device.
It is a diagram shown in contrast with. It can be seen that since the light emitting layer is heat-treated in a sulfur atmosphere, the emission luminance is about twice that of the conventional one. Instead of molybdenum silicide MoSi 2 Example 2 lower electrode 6 of the tungsten silicide WSi 2, the light-emitting layer 4 SrS: a Ce ZnS: Mn
In place of the heat treatment at a substrate temperature of 600 ° C. in a sulfur atmosphere gas at a temperature of 500 ° C. in a sulfurous acid gas, a thin film electroluminescent device was manufactured in the same manner as in Example 1.

【0017】タングステンシリサイドWSi2の光反射率は
モリブデンシリサイドMoSi2 とほぼ同じく約50%であ
る。実施例1と同様な良好な特性が得られた。
The light reflectance of tungsten silicide WSi 2 is about 50%, which is almost the same as that of molybdenum silicide MoSi 2 . Good characteristics similar to those of Example 1 were obtained.

【0018】[0018]

【発明の効果】第一の発明によれば第一電極が融点66
0℃以上のケイ化物からなるので硫黄ガス若しくは硫黄
化合物ガスまたは硫黄ガス若しくは硫黄化合物ガスを不
活性ガスと混合したガスからなる雰囲気ガス中におい
て、温度500ないし650℃の範囲で硫化物である発
光層を熱処理することができ、その結果第一電極に腐食
や溶融を起こすことなく、発光輝度の良好な薄膜電場発
光素子が得られる。
According to the first invention, the first electrode has a melting point of 66.
Emission of sulfide at a temperature of 500 to 650 ° C. in an atmosphere gas consisting of a sulfur gas or a sulfur compound gas or a mixture of a sulfur gas or a sulfur compound gas with an inert gas because it is composed of a silicide at 0 ° C. or higher. The layer can be heat treated, resulting in a thin film electroluminescent device with good emission brightness without corrosion or melting of the first electrode.

【0019】第一電極にモリブデンシリサイドを用いる
と、モリブデンシリサイドは光反射率が高いので反転型
薄膜電場発光素子の発光輝度をより高めることができ
る。また第二の発明によれば第一電極に融点が660℃
以上のケイ化物を用い、硫黄ガス若しくは硫黄化合物ガ
スまたは硫黄ガス若しくは硫黄化合物ガスを不活性ガス
と混合したガスからなる雰囲気ガス中で温度500ない
し650℃の範囲で硫化物を熱処理して発光層を形成す
るので発光層の硫黄欠陥がなくなり、発光輝度の良好な
薄膜電場発光素子が得られる。
When molybdenum silicide is used for the first electrode, the light reflectance of molybdenum silicide is high, so that the emission brightness of the inverted thin film electroluminescent device can be further increased. According to the second invention, the melting point of the first electrode is 660 ° C.
Using the above silicide, the sulfide is heat-treated at a temperature in the range of 500 to 650 ° C. in an atmosphere gas composed of a sulfur gas or a sulfur compound gas or a mixture of a sulfur gas or a sulfur compound gas with an inert gas to form a light emitting layer. Thus, the sulfur defect of the light emitting layer is eliminated, and a thin film electroluminescent device having good emission brightness can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る薄膜電場発光素子を示す
断面図
FIG. 1 is a sectional view showing a thin film electroluminescent device according to an embodiment of the present invention.

【図2】本発明の実施例に係る薄膜電場発光素子につき
発光輝度特性を従来の特性と対比して示す線図
FIG. 2 is a diagram showing emission luminance characteristics of a thin film electroluminescent device according to an example of the present invention in comparison with conventional characteristics.

【図3】従来の薄膜電場発光素子を示す断面図FIG. 3 is a cross-sectional view showing a conventional thin film electroluminescent device.

【図4】従来の反転構造薄膜電場発光素子を示す断面図FIG. 4 is a cross-sectional view showing a conventional inverted thin film electroluminescent device.

【符号の説明】[Explanation of symbols]

1 絶縁基板 2 透明上部電極 2A 透明電極 2B 透明上部電極 3 第一絶縁膜 4 発光層 4A 発光層 4B 発光層 5 第二絶縁膜 6 下部電極 6A 背面電極 6B 下部電極 7 有機フィルタ 8 封止ガラス 1 Insulating Substrate 2 Transparent Upper Electrode 2A Transparent Electrode 2B Transparent Upper Electrode 3 First Insulating Film 4 Light Emitting Layer 4A Light Emitting Layer 4B Light Emitting Layer 5 Second Insulating Film 6 Lower Electrode 6A Rear Electrode 6B Lower Electrode 7 Organic Filter 8 Sealing Glass

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河村 幸則 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yukinori Kawamura 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に、第一電極、第一絶縁膜、発
光層、第二絶縁膜および第二電極を有し、 第一電極は融点が660℃以上のケイ化物からなるスト
ライプであり絶縁基板の上に複数個が並列的に設けら
れ、 第一絶縁膜は前記した各ストライプと絶縁基板を選択的
に被覆し、 発光層は硫化物からなり第一絶縁膜の上に選択的に積層
され、 第二絶縁膜は発光層の全部と第一絶縁膜の上に積層さ
れ、 第二電極は透明導電膜からなり、第一電極と立体的に交
差する複数のストライプであり、第二絶縁膜を選択的に
被覆してなることを特徴とする薄膜電場発光素子。
1. A first electrode, a first insulating film, a light emitting layer, a second insulating film and a second electrode are provided on an insulating substrate, and the first electrode is a stripe made of silicide having a melting point of 660 ° C. or higher. Yes A plurality are provided in parallel on the insulating substrate, the first insulating film selectively covers each stripe and the insulating substrate, and the light emitting layer is made of sulfide and selectively on the first insulating film. The second insulating film is laminated on the entire light emitting layer and the first insulating film, the second electrode is made of a transparent conductive film, and is a plurality of stripes three-dimensionally intersecting with the first electrode. A thin film electroluminescent device characterized by being selectively covered with two insulating films.
【請求項2】第一電極はモリブデンシリサイドであるこ
とを特徴とする薄膜電場発光素子。
2. A thin film electroluminescent device, wherein the first electrode is molybdenum silicide.
【請求項3】絶縁基板上に、第一電極、第一絶縁膜、発
光層、第二絶縁膜および第二電極を順次積層する薄膜電
場発光素子の製造方法において、 融点が660℃以上のケイ化物からなる複数個のストラ
イプを絶縁基板の上に並列的に積層して第一電極を設け
る工程と、 前記した各ストライプと絶縁基板上に絶縁膜を選択的に
被覆して第一絶縁膜を設ける工程と、 第一絶縁膜の上に硫化物を選択的に積層し、次いで硫黄
ガス若しくは硫黄化合物ガスまたは硫黄ガス若しくは硫
黄化合物ガスを不活性ガスと混合したガスからなる雰囲
気ガス中で温度500ないし650℃の範囲で硫化物を
熱処理して発光層を形成する工程と、 発光層の全部と第一絶縁膜の上に絶縁膜を被覆して第二
絶縁膜を設ける工程と、 透明導電膜からなる複数のストライプを第一電極と立体
的に交差して、第二絶縁膜上に選択的に被覆して、第二
電極を形成する工程とを備えることを特徴とする薄膜電
場発光素子の製造方法。
3. A method of manufacturing a thin film electroluminescent device, which comprises sequentially laminating a first electrode, a first insulating film, a light emitting layer, a second insulating film and a second electrode on an insulating substrate, and a melting point of 660 ° C. or more. A step of stacking a plurality of stripes of oxides on an insulating substrate in parallel to provide a first electrode; and a step of selectively covering each stripe and the insulating substrate with an insulating film to form a first insulating film. A step of providing, and a sulfide is selectively laminated on the first insulating film, and then the temperature is set to 500 in an atmosphere gas consisting of a sulfur gas or a sulfur compound gas or a gas in which the sulfur gas or the sulfur compound gas is mixed with an inert gas. To 650 ° C. to form a light emitting layer by heat treatment, a step of covering the entire light emitting layer and the first insulating film with an insulating film to form a second insulating film, and a transparent conductive film. Multiple strikes consisting of The intersect the first electrode and the three-dimensional, selectively coated on the second insulating film, method of manufacturing a thin film electroluminescent device characterized by comprising a step of forming a second electrode.
JP7005345A 1995-01-18 1995-01-18 Thin film electroluminescent element and its manufacture Pending JPH08195281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7005345A JPH08195281A (en) 1995-01-18 1995-01-18 Thin film electroluminescent element and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7005345A JPH08195281A (en) 1995-01-18 1995-01-18 Thin film electroluminescent element and its manufacture

Publications (1)

Publication Number Publication Date
JPH08195281A true JPH08195281A (en) 1996-07-30

Family

ID=11608629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7005345A Pending JPH08195281A (en) 1995-01-18 1995-01-18 Thin film electroluminescent element and its manufacture

Country Status (1)

Country Link
JP (1) JPH08195281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018464A (en) * 2009-07-07 2011-01-27 Toyota Central R&D Labs Inc Electrode material, electrode, and element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018464A (en) * 2009-07-07 2011-01-27 Toyota Central R&D Labs Inc Electrode material, electrode, and element

Similar Documents

Publication Publication Date Title
EP1505666B1 (en) Top-emission active matrix organic electroluminescent display device and method for fabricating the same
US6403204B1 (en) Oxide phosphor electroluminescent laminate
JP2001155867A (en) Organic el display device
JPH10308286A (en) Organic electroluminescent light emitting device
JP2837004B2 (en) EL display element
JPH08213169A (en) Thin film electroluminescent element
JPS61230296A (en) El element and manufacture thereof
JPH08195281A (en) Thin film electroluminescent element and its manufacture
JP3533710B2 (en) Electroluminescence device and multicolor electroluminescence device
JPH01186589A (en) Electroluminescence element
JP3258780B2 (en) Electroluminescence device and method of manufacturing the same
JPH08102359A (en) Manufacture of electroluminescent element
JPH08162273A (en) Thin film el element
JPH04363893A (en) El display device and manufacture thereof
JPH08162269A (en) Thin film white el element and full color display using this
JPH07130471A (en) Electroluminescent element
JPH07235381A (en) Thin film type electroluminescent element
JPH08106983A (en) Thin film electroluminescent element
JP3976892B2 (en) Thin film EL device
JPH0460317B2 (en)
JPH0878160A (en) Thin film electroluminescent element and its manufacture
JPH0888089A (en) Thin film electric field light-emitting device
JPH0266867A (en) Color el display device and manufacture thereof
WO2003098976A1 (en) Organic el luminescence device
JPH01204394A (en) Thin film el element