JPH08194056A - Range finding radar - Google Patents

Range finding radar

Info

Publication number
JPH08194056A
JPH08194056A JP7006482A JP648295A JPH08194056A JP H08194056 A JPH08194056 A JP H08194056A JP 7006482 A JP7006482 A JP 7006482A JP 648295 A JP648295 A JP 648295A JP H08194056 A JPH08194056 A JP H08194056A
Authority
JP
Japan
Prior art keywords
output
signal
amplitude
intermediate frequency
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7006482A
Other languages
Japanese (ja)
Other versions
JP3009334B2 (en
Inventor
Hidehiko Kubo
英彦 久保
Akira Fukuyama
明 福山
Kazuhisa Okamoto
和久 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Electric Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP7006482A priority Critical patent/JP3009334B2/en
Publication of JPH08194056A publication Critical patent/JPH08194056A/en
Application granted granted Critical
Publication of JP3009334B2 publication Critical patent/JP3009334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE: To synchronously acquire a target in a short period of time without enlarging a current hardware even in the case a comparatively large error is included in a synchronous initial value in a range finding radar using spectrum spread. CONSTITUTION: A first switching circuit 17 to switch demodulation signals at target acquisition and synchronous maintenance over to each other is installed on a synchronous maintenance circuit, a precise synchronous initial value is found by a mode controller 22 by way of comparing amplitude of a first amplitude comparator 9 and a second amplitude comparator 18 with each other at the time of synchronous acquisition by an amplitude comparator 19, and a mode is transferred. The demodulation signals select output of a second phase modulator 18 by a second switching circuit 21 by way of applying delay of a pulse duration repetion period by a delay circuit 20 at the time of synchronous acquisition and select output of a third phase modulator 15 by the second switching circuit 21 at the time of synchronous maintenance and demodulate it by a second demodulator 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、目標に電波を照射し、
反射してくる電波を受信して目標までの距離を計測する
ことを目的とする測距レーダに関するものである。
TECHNICAL FIELD The present invention irradiates a target with radio waves,
The present invention relates to a range-finding radar that receives reflected radio waves and measures the distance to a target.

【0002】[0002]

【従来の技術】図4は測距レーダの従来例であり、図に
おいて、1は送信源、2は送信信号に疑似ランダム符号
系列を使用して0,πの2位相変調あるいは平衡変調を
かける第1の位相変調器、3は前記変調された信号を増
幅する送信機、4は送信機3で増幅された信号を送信す
る送信アンテナ、5は目標からの反射した信号を受信す
る受信アンテナ、6は受信信号を分配する電力分配器、
7は電力分配器6により分配された受信信号と第2の位
相変調器14より出力された復調用信号との掛け算操作
を実施し自己相関関数を振幅とする中間周波信号を出力
する第1の復調器、8は第1の復調器7で復調された信
号を増幅する第1の中間周波増幅器、9は第1の中間周
波増幅器8で増幅された信号を振幅検波する振幅検波
器、10は電力分配器6により分配された受信信号と第
3の位相変調器15より出力された復調用信号との掛け
算操作を実施し自己直交相関関数を振幅とする中間周波
信号を出力する第2の復調器、11は第2の復調器10
で復調された信号を増幅する第2の中間周波増幅器、1
2は自己相関関数の出力である中間周波増幅器8と自己
直交相関関数の出力である第2の中間周波増幅器11の
信号より掛け算検波あるいはFET検波によって得られ
る同期誤差信号を求める同期検波器、13は変復調用信
号を発生させる変復調用信号発生器、14は変復調用信
号発生器13で作られる疑似ランダム符号系列を用いて
第1の復調器7への復調信号を出力する第2の位相変調
器、15は目標との同期を維持するために変復調用信号
発生器13で作られる疑似ランダム符号系列と直交して
いる疑似ランダム符号系列を用いて第2の復調器10へ
の復調信号を出力する第3の位相変調器、16は局部発
振器である。
2. Description of the Related Art FIG. 4 shows a conventional example of a range-finding radar. In the figure, 1 is a transmission source, and 2 is a pseudo-random code sequence for a transmission signal to apply two-phase modulation of 0, π or balanced modulation. The first phase modulator, 3 is a transmitter for amplifying the modulated signal, 4 is a transmitting antenna for transmitting the signal amplified by the transmitter 3, 5 is a receiving antenna for receiving the reflected signal from the target, 6 is a power distributor for distributing received signals,
Reference numeral 7 denotes a first output for outputting an intermediate frequency signal having an autocorrelation function as an amplitude by performing a multiplication operation of the reception signal distributed by the power distributor 6 and the demodulation signal output by the second phase modulator 14. A demodulator, 8 is a first intermediate frequency amplifier for amplifying the signal demodulated by the first demodulator 7, 9 is an amplitude detector for amplitude detecting the signal amplified by the first intermediate frequency amplifier 8, and 10 is Second demodulation for performing an operation of multiplying the reception signal distributed by the power distributor 6 and the demodulation signal output by the third phase modulator 15 to output an intermediate frequency signal having an amplitude of a self-quadrature correlation function And 11 is the second demodulator 10
A second intermediate frequency amplifier for amplifying the signal demodulated by
Reference numeral 2 is a synchronous detector for obtaining a synchronous error signal obtained by multiplication detection or FET detection from the signals of the intermediate frequency amplifier 8 which is the output of the autocorrelation function and the second intermediate frequency amplifier 11 which is the output of the self-quadrature correlation function, 13 Is a modulation / demodulation signal generator that generates a modulation / demodulation signal, and 14 is a second phase modulator that outputs a demodulation signal to the first demodulator 7 using the pseudo-random code sequence generated by the modulation / demodulation signal generator 13. , 15 output a demodulation signal to the second demodulator 10 by using a pseudo-random code sequence that is orthogonal to the pseudo-random code sequence created by the modulation / demodulation signal generator 13 in order to maintain synchronization with the target. The third phase modulator 16 is a local oscillator.

【0003】従来の測距レーダは上記のように構成され
ている。送信源1の出力信号である送信源出力111は
第1の位相変調器2において変復調用信号発生器13の
出力である変調用信号112を用いて2位相変調あるい
は平衡変調されて第1の位相変調器出力113となり、
送信機3に入力され増幅されて送信機出力114とな
り、送信アンテナ4により送信信号115となって目標
に送信される。目標よりの反射波である受信信号116
は受信アンテナ5で受信され受信アンテナ出力117と
なり、電力分配器6に入力され、受信信号の電力が分配
されて電力分配器の第1の出力118及び電力分配器の
第2の出力122となる。
The conventional distance measuring radar is constructed as described above. The transmission source output 111, which is the output signal of the transmission source 1, is two-phase modulated or balanced-modulated using the modulation signal 112, which is the output of the modulation / demodulation signal generator 13, in the first phase modulator 2 to obtain the first phase. It becomes the modulator output 113,
The signal is input to the transmitter 3 and amplified to become a transmitter output 114, and a transmission signal 115 is transmitted by the transmission antenna 4 to the target. Received signal 116 that is a reflected wave from the target
Is received by the receiving antenna 5 and becomes the receiving antenna output 117, is input to the power distributor 6, and the power of the received signal is distributed to become the first output 118 of the power distributor and the second output 122 of the power distributor. .

【0004】電力分配器の第1の出力118は第1の復
調器7において第2の位相変調器14の出力である第1
の復調用信号128を復調用信号として掛け算操作をさ
れて自己相関関数を振幅とする中間周波信号である第1
の復調器出力119となり、第1の中間周波増幅器8に
入力され増幅されて、第1の中間周波増幅器出力120
となり、第1の中間周波増幅器出力120の一方の出力
は同期検波器12に入力される。電力分配器6の他方の
出力である電力分配器の第2の出力122は第2の復調
器10において第3の位相変調器15の出力である第2
の復調用信号129を復調用信号として掛け算操作され
て自己直交相関関数を振幅とする中間周波信号である第
2の復調器出力123となり、第2の中間周波増幅器1
1に入力され増幅されて第2の中間周波増幅器出力12
4となり、第2の中間周波増幅器出力124は同期検波
器12に入力され第1の中間周波増幅器出力120と掛
け算検波あるいはFET検波によって得られる同期のた
めの誤差信号である同期検波出力125となり、変復調
用信号発生器13に入力される。
The first output 118 of the power divider is the output of the second phase modulator 14 in the first demodulator 7
Which is an intermediate frequency signal having an autocorrelation function as an amplitude, which is subjected to a multiplication operation using the demodulation signal 128 of 1.
Output to the first intermediate frequency amplifier 8 and is amplified by the first intermediate frequency amplifier 8 to output the first intermediate frequency amplifier output 120.
Therefore, one output of the first intermediate frequency amplifier output 120 is input to the synchronous detector 12. The second output 122 of the power distributor, which is the other output of the power distributor 6, is the second output of the third phase modulator 15 in the second demodulator 10.
Is demodulated as a demodulation signal 129 to be a second demodulator output 123 which is an intermediate frequency signal having an amplitude of the auto-orthogonal correlation function, and the second intermediate frequency amplifier 1
The second intermediate frequency amplifier output 12
4 and the second intermediate frequency amplifier output 124 is input to the synchronous detector 12 and becomes the synchronous detection output 125 which is an error signal for synchronization obtained by multiplication detection or FET detection with the first intermediate frequency amplifier output 120, The signal is input to the modulation / demodulation signal generator 13.

【0005】変復調用信号発生器13の出力である復調
用第1の信号126は局部発振器16の出力である局部
発振器出力130の変調用信号となり、第2の位相変調
器14において位相変調されて第1の復調用信号128
となる。変復調用信号発生器13の他方の出力である復
調用第2の信号127は局部発振器出力130の変調用
信号となり、第3の位相変調器15において位相変調さ
れて第2の復調用信号129となる。第1の中間増幅器
出力120の他方の出力は振幅検波器9に入力され、こ
こで振幅検波されて振幅検波器出力121となり、目標
の検出に使用される。
The demodulation first signal 126 which is the output of the modulation and demodulation signal generator 13 becomes a modulation signal of the local oscillator output 130 which is the output of the local oscillator 16 and is phase-modulated in the second phase modulator 14. First demodulation signal 128
Becomes The second demodulation signal 127, which is the other output of the modulation / demodulation signal generator 13, becomes a modulation signal of the local oscillator output 130, and is phase-modulated by the third phase modulator 15 to generate the second demodulation signal 129. Become. The other output of the first intermediate amplifier output 120 is input to the amplitude detector 9, where it is amplitude-detected to become the amplitude detector output 121, which is used for detecting the target.

【0006】[0006]

【発明が解決しようとする課題】従来の測距レーダは以
上のように構成されているので、目標との同期捕捉のた
めに外部から初期距離を必要とする。特に高繰り返しド
ップラレーダにおいては、目標からのエコーの折り返し
が狭い間隔で発生するために特に正確な距離情報を必要
とする。符号変調をかけた測距レーダの場合、目標のエ
コーの折り返しは符号長間隔で現れるが、パルス幅おき
にサイドローブが発生する。このサイドローブが目標検
出レベルよりも大きい場合は、虚像の目標に誤ロックオ
ンする場合が存在する。それを防止するためには符号長
分の目標検出を実施しその中で最大振幅のものを選択し
同期をとる方法がある。しかし、この場合、符号長分の
目標検出を必要とするために同期捕捉に時間がかかると
いう問題点があった。
Since the conventional range-finding radar is constructed as described above, it requires an initial distance from the outside for synchronous acquisition with the target. Particularly in a high-repetition Doppler radar, particularly accurate distance information is required because the echoes from the target are reflected at narrow intervals. In the case of a ranging radar with code modulation, target echoes appear at code length intervals, but side lobes occur at every pulse width. When this side lobe is larger than the target detection level, there is a case where the lock-on is erroneously performed on the virtual image target. In order to prevent this, there is a method in which target detection for the code length is carried out and the one with the maximum amplitude is selected for synchronization. However, in this case, there is a problem that it takes time for the synchronization acquisition because the target detection for the code length is required.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、現状のハードウェアをもとにし
ているために小型でかつ、同期捕捉のための時間が上記
の半分以下にすることを目的としている。
The present invention has been made in order to solve the above problems, and is small in size because it is based on the current hardware, and the time for synchronization acquisition is less than half of the above. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】この発明に係る測距レー
ダは、目標検出系と同期維持系を同期捕捉時には、同期
維持系も目標検出系として使用することにより目標検出
系を2系統としたものである。
In the ranging radar according to the present invention, when the target detection system and the synchronization maintenance system are synchronously captured, the synchronization maintenance system is also used as the target detection system so that the target detection system has two systems. It is a thing.

【0009】[0009]

【作用】この発明における測距レーダは、同期捕捉時に
目標検出系を2系統とし、同期捕捉後は、1系統を目標
検出系もう1系統を同期維持系にしようすることにより
目標検出系の系を増やすことなしに同期捕捉時間を半分
以下とする。
The range finding radar according to the present invention uses two target detection systems at the time of synchronous acquisition, and after the synchronous acquisition, one system is used as the target detection system and the other system is used as the synchronization maintaining system. The acquisition time is reduced to less than half without increasing.

【0010】[0010]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図について説明
する。図1において、1〜16は上記従来装置と全く同
一のものである。17は第2の中間周波増幅器出力信号
をモード制御器22の信号により第2の振幅検波器18
に出力するか同期検波器12に出力するかを切り換える
第1の切り換え回路、18は同期捕捉時に振幅検波する
第2の振幅検波器、19は第1の振幅検波器9と第2の
振幅検波器18からの出力を比較する振幅比較器、20
は第2の位相変調器14からの復調信号にパルス幅繰り
返し周期のディレイをかけるディレイ回路、21はモー
ド制御器22の信号によりディレイ回路20の信号また
は第3の位相変調器15の信号かを切り換えて第2の復
調器に出力する第2の切り換え回路、22は振幅比較器
19によって比較された振幅が最大でかつ目標検出レベ
ル以上のものがある場合、距離ゲートの位置を出力し、
モードを追随に移行させ第1、第2の切り換え回路1
7,21に同期維持信号を出力するモード制御器であ
る。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 1 to 16 are exactly the same as those of the conventional device. Reference numeral 17 designates a second intermediate frequency amplifier output signal as a second amplitude detector 18 by a signal of the mode controller 22.
To a synchronous detector 12 or a first switching circuit for switching to the synchronous detector 12, a reference numeral 18 for a second amplitude detector for amplitude detection at the time of synchronous acquisition, and a reference numeral 19 for a first amplitude detector 9 and a second amplitude detector. An amplitude comparator for comparing the output from the comparator 18, 20
Is a delay circuit for delaying the demodulated signal from the second phase modulator 14 with a pulse width repetition period, and 21 is a signal of the delay circuit 20 or a signal of the third phase modulator 15 depending on the signal of the mode controller 22. A second switching circuit for switching and outputting to the second demodulator, 22 outputs the position of the distance gate when the amplitude compared by the amplitude comparator 19 is maximum and is higher than the target detection level,
First and second switching circuit 1 for switching modes
This is a mode controller that outputs a synchronization maintaining signal to 7, 21.

【0011】前記のように構成された測距レーダにおい
て、送信源1の出力信号である送信源出力111は第1
の位相変調器2において変復調用信号発生器13の出力
である変調用信号112を用いて2位相変調あるいは平
衡変調されて第1の位相変調器出力113となり、送信
機3に入力され増幅されて送信機出力114となり、送
信アンテナ4より送信信号115となって目標に送信さ
れる。目標よりの反射波である受信信号116は受信ア
ンテナ5で受信され受信アンテナ出力117となり、電
力分配器6に入力され、受信信号の電力が分配されて電
力分配器の第1の出力118及び電力分配器の第2の出
力122となる。
In the distance measuring radar configured as described above, the transmission source output 111, which is the output signal of the transmission source 1, is the first
In the phase modulator 2, the modulation signal 112, which is the output of the modulation / demodulation signal generator 13, is used for two-phase modulation or balanced modulation to become the first phase modulator output 113, which is input to the transmitter 3 and amplified. It becomes the transmitter output 114 and becomes the transmission signal 115 from the transmission antenna 4 and is transmitted to the target. The reception signal 116, which is a reflected wave from the target, is received by the reception antenna 5 and becomes the reception antenna output 117, is input to the power distributor 6, and the power of the reception signal is distributed to the first output 118 and the power of the power distributor. This is the second output 122 of the distributor.

【0012】電力分配器の第1の出力118は第1の復
調器7において第2の位相変調器14の出力である第1
の復調用信号128を復調用信号として掛け算操作を実
施し、自己相関関数を振幅とする中間周波信号である第
1の復調器出力119となり、第1の中間周波増幅器8
に入力され増幅されて、第1の中間周波増幅器出力12
0となり、第1の中間周波増幅器出力120の一方の出
力は同期検波器12に入力される。電力分配器6の他方
の出力である電力分配器の第2の出力122は第2の復
調器10において第2の切り換え回路21の出力である
第2の復調用信号138を復調用信号として掛け算操作
を実施し、自己直交相関関数を振幅とする中間周波信号
である第2の復調器出力123となり、第2の中間周波
増幅器出力11に入力され増幅されて第2の中間周波増
幅器出力124となり、第2の中間周波増幅器出力12
4は第1の切り換え回路17に入力される。
The first output 118 of the power distributor is the output of the second phase modulator 14 in the first demodulator 7
The demodulation signal 128 is used as a demodulation signal to perform a multiplication operation, and the first demodulator output 119 which is an intermediate frequency signal having an autocorrelation function as an amplitude is obtained.
Is input to and amplified by the first intermediate frequency amplifier output 12
It becomes 0, and one output of the first intermediate frequency amplifier output 120 is input to the synchronous detector 12. The second output 122 of the power distributor, which is the other output of the power distributor 6, is multiplied by the second demodulation signal 138, which is the output of the second switching circuit 21, in the second demodulator 10 as a demodulation signal. The second demodulator output 123, which is an intermediate frequency signal having an amplitude of the auto-orthogonal correlation function, is obtained by performing the operation, is input to the second intermediate frequency amplifier output 11, is amplified, and becomes the second intermediate frequency amplifier output 124. , Second intermediate frequency amplifier output 12
4 is input to the first switching circuit 17.

【0013】第1の切り換え回路17ではモード制御器
22の信号により同期捕捉時には、第2の振幅検波器1
8に第2の中間周波増幅器捕捉出力131として出力
し、同期維持時には同期検波器12に第2の中間増幅器
同期出力132として出力する。同期検波器12は同期
維持時に第1の切り換え回路17から出力される第2の
中間増幅器同期出力132を第1の中間周波増幅器出力
120と掛け算検波あるいはFET検波によって得られ
る同期のための誤差信号である同期検波出力125とな
り変復調用信号発生器13に入力される。
The first switching circuit 17 uses the signal from the mode controller 22 to acquire the second amplitude detector 1 when synchronization is acquired.
8 as a second intermediate frequency amplifier capture output 131, and outputs to the synchronous detector 12 as a second intermediate amplifier synchronization output 132 when maintaining synchronization. The synchronous detector 12 is an error signal for synchronization obtained by multiplication detection or FET detection of the second intermediate amplifier synchronization output 132 output from the first switching circuit 17 when the synchronization is maintained and the first intermediate frequency amplifier output 120. Is output as the synchronous detection output 125 and is input to the modulation / demodulation signal generator 13.

【0014】変復調用信号発生器13の出力である復調
用第1の信号126は第2の位相変調器14において局
部発振器16の出力である局部発振器出力130の変調
用信号となり、第2の位相変調器14において位相変調
されて第1の復調用信号128となる。第1の復調用信
号128の一方は第1の復調器へ、他方の出力はディレ
イ回路20に入力される。ディレイ回路20はパルス繰
り返し周期だけディレイをかける。復調用第2の信号1
27は局部発振器出力130の変調用信号となり、第3
の位相変調器15において位相変調されて第3の位相変
調器出力129となる。第2の切り換え回路21はモー
ド制御器22の信号により同期捕捉時にはディレイ回路
出力138を、同期維持時には第3の位相変調器出力1
29を第2の復調器10に入力させる。
The demodulation first signal 126 which is the output of the modulation and demodulation signal generator 13 becomes the modulation signal of the local oscillator output 130 which is the output of the local oscillator 16 in the second phase modulator 14, and the second phase is obtained. The phase is modulated in the modulator 14 to become the first demodulation signal 128. One of the first demodulation signals 128 is input to the first demodulator, and the output of the other is input to the delay circuit 20. The delay circuit 20 delays by a pulse repetition period. Second signal for demodulation 1
27 is the modulation signal of the local oscillator output 130,
Is phase-modulated by the phase modulator 15 of FIG. The second switching circuit 21 uses the signal from the mode controller 22 to output the delay circuit output 138 when the synchronization is acquired, and the third phase modulator output 1 when the synchronization is maintained.
29 is input to the second demodulator 10.

【0015】第1の中間増幅器出力120の他方の出力
は第1の振幅検波器9に入力され、ここで振幅検波され
て第1の振幅検波器出力121となり、目標の検出に使
用される。同期捕捉時、第1の切り換え回路出力131
は第2の振幅検波器18に入力され振幅検波され振幅比
較器19に入力される。振幅比較器19は第1の振幅検
波器出力121と第2の振幅検波器出力133を比較し
振幅比較器出力134としてモード制御器22に出力す
る。モード制御器22は所定の捕捉パターン終了時、振
幅結果が最大でかつ目標検出レベルを越えるものが存在
した場合、モードを捕捉から追随にかえモード制御信号
135として第1の切り換え回路17及び第2の切り換
え回路21に入力する。また振幅の大きいゲートを真の
距離からの目標のエコーとして選択し、距離ゲートの位
置を振幅比較器出力136として変復調用信号発生器1
3に出力する。以上の説明を簡易のタイミングチャート
で示すと図2のようになる。
The other output of the first intermediate amplifier output 120 is input to the first amplitude detector 9, where it is amplitude-detected to become the first amplitude detector output 121, which is used for detecting the target. The first switching circuit output 131 during synchronization acquisition
Is input to the second amplitude detector 18, which is subjected to amplitude detection and input to the amplitude comparator 19. The amplitude comparator 19 compares the first amplitude detector output 121 and the second amplitude detector output 133 and outputs it as the amplitude comparator output 134 to the mode controller 22. At the end of the predetermined capture pattern, the mode controller 22 changes the mode from capture to follow and outputs the first switching circuit 17 and the second switching circuit 17 when the amplitude result is maximum and exceeds the target detection level. Input to the switching circuit 21. Also, a gate with a large amplitude is selected as a target echo from the true distance, and the position of the distance gate is used as the amplitude comparator output 136 for the modulation / demodulation signal generator 1.
Output to 3. The above explanation is shown in FIG. 2 by a simple timing chart.

【0016】ここで図3のように、2位相変調の符号系
列をMコード3ビットの場合を考える。符号長3の受信
信号に対してa,b,cのように3パターンの復調が考
えられ、そのときの目標の振幅はa1,b1,c1のよ
うになる。このとき、従来の測距レーダにおいては、同
期捕捉時a,b,cの3回の復調を実施しなければなら
ないのの対して、この発明においては、1回の復調で
a,bを実施することができ、第1の振幅検波器9と第
2の振幅検波器18の振幅を比較して振幅が約3倍の差
であれば大きい方の振幅が真の距離を表しており、ほぼ
等しければcが真の距離であるというように1回の復調
で真の距離を捕捉することができる。
Here, as shown in FIG. 3, let us consider a case where the code sequence for two-phase modulation is M code 3 bits. It is conceivable to demodulate three patterns such as a, b, and c for a received signal of code length 3, and the target amplitudes at that time are a1, b1, and c1. At this time, in the conventional range-finding radar, demodulation a, b, and c must be performed three times at the time of synchronous acquisition, whereas in the present invention, a and b are performed once in the demodulation. It is possible to compare the amplitudes of the first amplitude detector 9 and the second amplitude detector 18, and if the amplitude is a difference of about 3 times, the larger amplitude represents the true distance, and If they are equal, it is possible to capture the true distance in one demodulation, such that c is the true distance.

【0017】ところで上記説明では、疑似ランダム符号
をMコード3ビットで述べたが、符号系列は何でもよ
く、かつ符号長も捕捉時間が許せば、いくつでもよい。
By the way, in the above description, the pseudo random code is described as the M code of 3 bits, but the code sequence may be any number and the code length may be any number as long as the acquisition time is allowed.

【0018】[0018]

【発明の効果】この発明は、以上説明したように構成さ
れているので、同期維持系及び目標検出系の2系統を持
っている従来の測距レーダの構成に切り換え回路等の付
加により、ハードウェアを大型にすることなく同期捕捉
を従来のものより高速にすることができる。
Since the present invention is constructed as described above, a hardware such as a switching circuit is added to the construction of a conventional range-finding radar having two systems, a synchronization maintaining system and a target detecting system. The synchronization acquisition can be made faster than the conventional one without increasing the size of the wear.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す構成ブロック図であ
る。
FIG. 1 is a configuration block diagram showing an embodiment of the present invention.

【図2】図1における主要構成のタイミングチャートで
ある。
FIG. 2 is a timing chart of the main configuration in FIG.

【図3】この発明をMコード3ビットで使用した場合の
同期捕捉パターンの説明図である。
FIG. 3 is an explanatory diagram of a synchronization acquisition pattern when the present invention is used with M code of 3 bits.

【図4】従来の測距レーダを示す構成ブロック図であ
る。
FIG. 4 is a block diagram showing a configuration of a conventional distance measuring radar.

【符号の説明】[Explanation of symbols]

1 送信源 2 第1の位相変調器 3 送信機 4 送信アンテナ 5 受信アンテナ 6 電力分配器 7 第1の復調器 8 第1の中間周波増幅器 9 第1の振幅検波器 10 第2の復調器 11 第2の中間周波増幅器 12 同期検波器 13 変復調用信号発生器 14 第2の位相変調器 15 第3の位相変調器 16 局部発振器 17 第1の切り換え回路 18 第2の振幅検波器 19 振幅比較器 20 ディレイ回路 21 第2の切り換え回路 22 モード制御器 1 Transmission Source 2 1st Phase Modulator 3 Transmitter 4 Transmission Antenna 5 Reception Antenna 6 Power Divider 7 First Demodulator 8 First Intermediate Frequency Amplifier 9 First Amplitude Detector 10 Second Demodulator 11 Second intermediate frequency amplifier 12 Synchronous detector 13 Modulator / demodulator signal generator 14 Second phase modulator 15 Third phase modulator 16 Local oscillator 17 First switching circuit 18 Second amplitude detector 19 Amplitude comparator 20 delay circuit 21 second switching circuit 22 mode controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 送信信号を生成する送信源と、変復調用
信号を発生する変復調用信号発生器と、上記変復調用信
号発生器より出力される疑似ランダム符号系列により、
上記送信信号に0,πの2位相変調あるいは平衡変調を
発生する第1の位相変調器と、上記第1の位相変調器出
力を増幅する送信機と、上記送信機出力を空中に送信す
る送信アンテナと、目標よりの反射波を受信する受信ア
ンテナと、上記受信アンテナで受信された受信信号を2
分配する電力分配器と、上記変復調用信号発生器より出
力される疑似ランダム符号系列により復調信号を発生す
る第2の位相変調器と、上記電力分配器の一方の出力
を、上記第2の位相変調器の出力を復調用信号として掛
け算操作を実施し自己相関関数を振幅とする中間周波数
信号を出力する第1の復調器と、上記中間周波数信号を
増幅する第1の中間周波数増幅器と、上記第2の位相変
調器の出力にパルス幅繰り返し周期だけディレイをかけ
るディレイ回路と、上記変復調用信号発生器より出力さ
れる疑似ランダム符号系列と直交している疑似ランダム
符号系列により同期に必要な直交復調信号を発生する第
3の位相変調器と、同期捕捉時には捕捉する距離を2カ
所にするため第2の復調器に上記ディレイ回路の出力
を、同期維持時には上記第3の位相変調器の出力を出力
する第2の切り換え回路と、上記電力分配器の他方の出
力を前記第2の切り換え回路の出力を復調用信号として
掛け算操作を実施し同期捕捉時には自己相関関数を振幅
とする中間周波信号を、同期維持時には自己直交相関関
数を振幅とする中間周波信号を出力する第2の復調器
と、上記中間周波信号を増幅する第2の中間周波増幅器
と、同期捕捉時には上記第2の中間周波増幅器の出力信
号を第2の振幅検波器へ同期維持時には同期検波器へ出
力する第1の切り換え回路と、上記第1の中間周波増幅
器の出力を振幅検波する第1の振幅検波器と、上記第1
の切り換え回路の出力を振幅検波する第2の振幅検波器
と、上記第1、第2の振幅検波器の出力を比較する振幅
検波器と、同期捕捉時には上記振幅検波器の出力により
目標検出の判定及び目標の距離を算出し、上記変復調用
信号発生器へ復調タイミングを出力しモードを同期維持
モードに切り換えるモード制御器と、同期維持時に上記
第1の切り換え回路の出力と上記第1の中間周波増幅器
の出力により掛け算検波あるいはFET検波によって得
られる誤差信号を発生する同期検波器と、上記第2、第
3の位相変調器で発生する復調用信号のキャリア信号を
上記第2、第3の位相変調器へ発生する局部発振器とを
備えたことを特徴とする測距レーダ。
1. A transmission source for generating a transmission signal, a modulation / demodulation signal generator for generating a modulation / demodulation signal, and a pseudo-random code sequence output from the modulation / demodulation signal generator,
A first phase modulator that generates 0, π two-phase modulation or balanced modulation on the transmission signal, a transmitter that amplifies the first phase modulator output, and a transmission that transmits the transmitter output to the air. An antenna, a receiving antenna for receiving a reflected wave from the target, and a receiving signal received by the receiving antenna.
A power distributor for distributing, a second phase modulator for generating a demodulated signal by a pseudo-random code sequence output from the modulation / demodulation signal generator, and one output of the power distributor for the second phase A first demodulator that outputs an intermediate frequency signal whose amplitude is an autocorrelation function by performing a multiplication operation using the output of the modulator as a demodulation signal; a first intermediate frequency amplifier that amplifies the intermediate frequency signal; A delay circuit for delaying the output of the second phase modulator by a pulse width repetition period and a pseudo-random code sequence orthogonal to the pseudo-random code sequence output from the modulation / demodulation signal generator. The output of the delay circuit is output to the third phase modulator that generates the demodulated signal and to the second demodulator in order to set the capture distances at two points during synchronization capture A second switching circuit that outputs the output of the third phase modulator, and the other output of the power distributor are multiplied by using the output of the second switching circuit as a demodulation signal, and autocorrelation is performed at the time of synchronous acquisition. A second demodulator for outputting an intermediate frequency signal having an amplitude of a function, an intermediate frequency signal having an amplitude of a self-orthogonal correlation function for maintaining synchronization, and a second intermediate frequency amplifier for amplifying the intermediate frequency signal; A first switching circuit for outputting the output signal of the second intermediate frequency amplifier to the second amplitude detector at the time of acquisition, and a first switching circuit for outputting the output signal of the first intermediate frequency amplifier to the synchronous detector at the time of maintaining synchronization; 1 amplitude detector and the first
A second amplitude detector that amplitude-detects the output of the switching circuit, an amplitude detector that compares the outputs of the first and second amplitude detectors, and a target detection by the output of the amplitude detector during synchronous acquisition. A mode controller for calculating the judgment and target distances, outputting demodulation timing to the modulation / demodulation signal generator and switching the mode to the synchronization maintaining mode, and the output of the first switching circuit and the first intermediate when maintaining synchronization. A synchronous detector that generates an error signal obtained by multiplication detection or FET detection by the output of the frequency amplifier, and a carrier signal of a demodulation signal that is generated by the second and third phase modulators are added to the second and third A ranging radar comprising: a local oscillator for generating a phase modulator.
JP7006482A 1995-01-19 1995-01-19 Ranging radar Expired - Fee Related JP3009334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7006482A JP3009334B2 (en) 1995-01-19 1995-01-19 Ranging radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7006482A JP3009334B2 (en) 1995-01-19 1995-01-19 Ranging radar

Publications (2)

Publication Number Publication Date
JPH08194056A true JPH08194056A (en) 1996-07-30
JP3009334B2 JP3009334B2 (en) 2000-02-14

Family

ID=11639702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7006482A Expired - Fee Related JP3009334B2 (en) 1995-01-19 1995-01-19 Ranging radar

Country Status (1)

Country Link
JP (1) JP3009334B2 (en)

Also Published As

Publication number Publication date
JP3009334B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
US10855328B1 (en) Interference suppression for multi-radar coexistence
US6801153B2 (en) Spread spectrum radar with leak compensation at baseband
JP2990097B2 (en) Continuous-wave wide-band precision ranging radar equipment.
US7109916B2 (en) Device for, in particular bistatic radar applications
US7528768B2 (en) Radar device
EP2045612A2 (en) Detection and ranging apparatus and detection and ranging method
US4357610A (en) Waveform encoded altitude sensor
US7158077B2 (en) Radar device and method for suppressing interference with a radar device
US10908272B2 (en) Reduced complexity FFT-based correlation for automotive radar
AU2002333123A1 (en) Spread spectrum radar with leak compensation at baseband
JP2004503788A (en) Low intercept possibility coherent radar altimeter
US20190018127A1 (en) Radar system
US4053888A (en) Arrangement for measuring the lag between two timed signals by electronic correlation
US9568601B1 (en) Successive-MFCW modulation for ultra-fast narrowband radar
US6624783B1 (en) Digital array stretch processor employing two delays
JPH07104063A (en) Ultrasonic object measuring device
JP3056579B2 (en) In-vehicle radar device
US5109231A (en) Radar arrangement
US7064703B2 (en) Methods and apparatus for randomly modulating radar altimeters
JP2002014159A (en) Fm-cw radar apparatus
JPH08146124A (en) Radar device
JPH08194056A (en) Range finding radar
JP2003114274A (en) Range finder and radar device provide therewith
EP2597484A1 (en) Active FMCW radar system and method for data transfer using the same
JP2933454B2 (en) Radio altimeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees