JPH08192244A - Sprue and riser type products for casting - Google Patents

Sprue and riser type products for casting

Info

Publication number
JPH08192244A
JPH08192244A JP539695A JP539695A JPH08192244A JP H08192244 A JPH08192244 A JP H08192244A JP 539695 A JP539695 A JP 539695A JP 539695 A JP539695 A JP 539695A JP H08192244 A JPH08192244 A JP H08192244A
Authority
JP
Japan
Prior art keywords
casting
sprue
granular material
sand
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP539695A
Other languages
Japanese (ja)
Inventor
Ryutoku Sakata
龍徳 佐方
Makoto Matsubara
眞 松原
Shogo Yasukawa
昇吾 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAIGAI CERAMICS CO Ltd
NAIGAI CERAMICS KK
Original Assignee
NAIGAI CERAMICS CO Ltd
NAIGAI CERAMICS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAIGAI CERAMICS CO Ltd, NAIGAI CERAMICS KK filed Critical NAIGAI CERAMICS CO Ltd
Priority to JP539695A priority Critical patent/JPH08192244A/en
Publication of JPH08192244A publication Critical patent/JPH08192244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE: To obtain sprue and riser type products for casting with which the deterioration at the time of recycling of molding sand is suppressed and which produce castings having stable quality by compounding an org. binder with a granular material consisting essentially of refractories and molding the mixture. CONSTITUTION: Aluminate shale and aluminum bydroxide are compounded at specific ratios. The compd. is pulverized and mixed for a prescribed time under addition of water thereto in a ball mill and the mixture is palletized to specific particle sizes by a spray direr. High aluminous powder is mixed with these pellets at a specific ratio and the pellets are burnt for a specific time at a specific temp. in a rotary kiln. The burnt matter is put into an agitating machine where the massive matter is disintegrated and thereafter, the high aluminous powder is removed and spherical mullite ceramics particles are obtd. These particles are adjusted by sieving to specific particle sizes. A novolak type phenol resin charged into the resultant granular material and the mixture is kneaded by a mixer. A hexamethylene tetramine is charged in the form of an aq. soln. thereto. Further, a calcium stearate is added to the mixture and the mixture is kneaded. The resulted resin coated sand is compression molded under heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、鋳造用湯口・押湯系製品、具体
的には鋳造用の鋳型に使用される副資材である、予め所
定の形状に成形されてなる湯口、湯道、ストレーナ、堰
等の湯口系製品や、押湯関連製品に関するものである。
TECHNICAL FIELD The present invention relates to a casting sprue / feeder system product, specifically, a sprue, a runner, a strainer, which is an auxiliary material used in a casting mold, which is molded in a predetermined shape in advance. The present invention relates to spout-related products such as weirs, and feeder-related products.

【0002】[0002]

【背景技術】従来から、鋳物の製造において、鋳物砂と
共に、鋳造用鋳型を構成する、副資材たるこれ等の湯口
系製品や押湯系製品については、湯冷めの少ない絶縁性
のセラミック成形製品が使用されてきた。そして、この
ような副資材の鋳造使用後は、破壊されて、廃棄する方
式がとられているが、近来、そのような鋳造副資材の破
砕物の廃棄は、処分場所の問題に加えて、環境破壊の点
からも大きな問題となり、簡単に処分することが非常に
難しくなってきている。
2. Description of the Related Art Conventionally, in the production of castings, with regard to these sprue-based products and feeder-type products, which are the auxiliary materials that compose the casting mold together with the foundry sand, insulating ceramic molded products with little hot water cooling are used. Has been used. And, after the casting and use of such auxiliary material, it is destroyed, and the method of discarding is adopted, but recently, the disposal of the crushed material of such a casting auxiliary material, in addition to the problem of the disposal site, It has become a big problem from the viewpoint of environmental destruction, and it is becoming very difficult to dispose of it easily.

【0003】その上に、鋳造後の鋳型の型ばらしの際
に、かかるセラミック成形製品からなる副資材から発生
するセラミックの微細粉粒が鋳物砂中に混入し、その分
離が困難であるところから、鋳物砂の再生上の問題も惹
起している。
In addition, when the mold is removed from the mold after casting, fine powder particles of ceramics generated from the auxiliary material composed of the ceramic molded product are mixed in the foundry sand, and it is difficult to separate them. However, it also causes problems in the regeneration of foundry sand.

【0004】しかしながら、そのような湯口系副資材や
押湯系副資材は、鋳物の品質及びコストに大きく影響す
るため、上記した問題には、早急な解決が望まれている
のである。
However, since the sprue-type auxiliary material and the feeder-type auxiliary material have a great influence on the quality and cost of the casting, an urgent solution to the above problems is desired.

【0005】[0005]

【解決課題】ここにおいて、本発明は、上記の如き事情
に鑑みて為されたものであって、その解決課題とすると
ころは、耐熱性、熱絶縁性、浸水強度等の面で、鋳造用
副資材として十分な特性を有し、且つ鋳造使用後は廃棄
破砕物の量を可及的に減少せしめ得ると共に、破砕物の
鋳物砂への混入による再生使用時における鋳物砂の品質
劣化を抑制し得る鋳造用湯口・押湯系製品を提供するこ
とにある。
The present invention has been made in view of the circumstances as described above, and the problem to be solved is that it is suitable for casting in terms of heat resistance, thermal insulation, water immersion strength, and the like. It has sufficient properties as an auxiliary material and can reduce the amount of waste crushed material after casting as much as possible, and suppresses the deterioration of the quality of the molding sand during recycling due to mixing of the crushed material into the molding sand. It is to provide a casting sprue / rise-type product that can be cast.

【0006】[0006]

【解決手段】そして、本発明者らは、かかる課題を解決
すべく鋭意研究を重ねた結果、耐火物を主成分とする粒
状体を硬化型の有機粘結剤によって結合せしめて成形し
た鋳造用湯口・押湯系製品を用いれば、鋳造時の熱で該
有機粘結剤の分解が進み、該有機粘結剤による粒状体間
の結合力が弱まり、鋳造後の型ばらしの際に、鋳造用湯
口・押湯系製品は、主に破砕や磨耗等の損傷の殆ど無い
若しくは少ない粒状体から成る塊状物に容易に崩壊され
得、更に適当な手段により該塊状物を再生処理すれば、
粒状体若しくは鋳物砂として再利用することができ、従
来のものにおいて惹起されていた問題を悉く解消し得る
ことを見出したのである。
SOLUTION: As a result of intensive studies to solve the above problems, the present inventors have found that granules containing a refractory as a main component are bonded by a curable organic binder and molded. If a sprue / feeder-based product is used, the heat of casting causes decomposition of the organic binder, weakening the binding force between the particles due to the organic binder, and removing the mold after casting. The sprue / feeder system product can be easily disintegrated into an agglomerate mainly composed of granules having little or little damage such as crushing and abrasion, and if the agglomerate is recycled by a suitable means,
They have found that they can be reused as granules or foundry sand, and can solve the problems caused by the conventional ones.

【0007】即ち、本発明は、このような知見に基づい
て完成されたものであって、その特徴とするところは、
耐火物を主成分とする粒状体に対して、該粒状体を結合
せしめ得る硬化型の有機粘結剤を配合せしめてなる配合
物を用い、該配合物を所定の形状に成形して得られる成
形体にて構成した鋳造用湯口・押湯系製品にある。
That is, the present invention has been completed on the basis of such knowledge, and its characteristic features are as follows.
Obtained by using a composition obtained by mixing a curable organic binding agent capable of binding the granules with a granule containing a refractory as a main component, and molding the mixture into a predetermined shape. It is a casting sprue and riser type product that is composed of a molded body.

【0008】なお、かかる本発明に従う鋳造用湯口・押
湯系製品の好ましい第1の態様においては、前記粒状体
として、135%以下の破砕率とSK35以上の耐火度
を有する耐火物粒子が用いられることとなる。
In the first preferred embodiment of the casting sprue / feeder structure according to the present invention, refractory particles having a crushing ratio of 135% or less and a fire resistance of SK 35 or more are used as the granular material. Will be done.

【0009】また、本発明の好ましい第2の態様におい
ては、前記粒状体として、実質的に球状のアルミナ質若
しくはムライト質のセラミックス粒子が用いられること
となる。
In the second preferred aspect of the present invention, substantially spherical alumina-based or mullite-based ceramic particles are used as the particles.

【0010】[0010]

【具体的構成】ところで、本発明では、耐火物を主成分
とする粒状体を用いることにより、高温の金属溶湯との
接触に耐え得る耐熱性を、鋳造用湯口・押湯系製品に与
えるものであるが、そのような耐火物を主成分とする粒
状体には、従来から鋳物用として使用されている天然ま
たは人工の耐火物粒子、例えば珪砂、オリビンサンド、
クロマイトサンドや、所定の形状、粒度に調整されてな
る人工のセラミックス粒子等が、それぞれ単独で、或い
は、種々組み合わされて、用いられ得る。
[Concrete composition] By the way, in the present invention, by using a granular material containing a refractory as a main component, heat resistance that can withstand contact with a high-temperature molten metal is imparted to a casting sprue / rise-type product. However, in the granular body containing such a refractory as a main component, natural or artificial refractory particles conventionally used for casting, such as silica sand, olivine sand,
Chromite sand, artificial ceramic particles adjusted to a predetermined shape and particle size, etc. may be used alone or in various combinations.

【0011】そして、かかる粒状体の再利用の回数を高
めて、その経済性をより向上するために、本発明にあっ
ては、有利には、後述する破砕率が135%以下、特に
115%以下の粒状体が用いられることとなる。何故な
ら、破砕率が135%を越える粒状体にあっては、加熱
や衝撃等に対する耐破砕性や耐摩耗性に劣るため、鋳込
み時や再生処理時等における破砕若しくは摩耗が著し
く、該粒状体の再利用可能な回数が低減するからであ
る。しかも、そのような粒状体は、SK35以上の耐火
度を有するものであることが望ましいのである。けだ
し、SK35未満の耐火度を有するものにあっては、高
温になると、破砕率が急激に上昇して、耐破砕性や耐摩
耗性が著しく低下し、該粒状体の再利用可能な回数が低
減すると共に、高温での鋳造用湯口・押湯系製品の機械
的強度も低くなってしまうからである。
In order to increase the number of times of reuse of the granular material and further improve the economical efficiency thereof, in the present invention, the crushing rate described later is advantageously 135% or less, particularly 115%. The following granules will be used. This is because the granular material having a crushing rate of more than 135% is inferior in crush resistance and abrasion resistance against heating, impact, etc., so that the crushing or abrasion during casting or regenerating treatment is remarkable, and the granular material is This reduces the number of reusable times. Moreover, it is desirable that such a granular material has a fire resistance of SK35 or higher. In the case of those having a fire resistance of less than SK35, the crushing rate sharply increases at high temperatures, and the crushing resistance and wear resistance are remarkably reduced, and the number of times the granular material can be reused is increased. This is because the mechanical strength of the casting sprue / rise-type product at high temperature becomes low as well as the decrease.

【0012】また、本発明において用いられる粒状体に
あっては、そのような粒状体の粒子形状が特に限定され
るものではないが、丸味を帯びた形状とされていること
が好ましく、また球形状とされることがより好ましい。
これによって、他の部位に比して、比較的破砕し易い粒
状体表面上の鋭角部が予め除去され得て、粒状体の耐破
砕性や耐摩耗性が有利に高められ得るのである。また、
アルミナ質若しくはムライト質のセラミックス粒子であ
れば、更に好ましい。けだし、該セラミックス粒子によ
る湯口・押湯系製品が多孔質の構造を持つために、鋳造
用湯口・押湯系製品に高い保温性及び通気性を持たせ得
るからである。
Further, in the granular material used in the present invention, the particle shape of such a granular material is not particularly limited, but it is preferable that the granular material has a rounded shape, and a spherical shape. More preferably, it is shaped.
As a result, the sharp corners on the surface of the granular material, which are relatively easy to crush, can be removed in advance as compared with other parts, and the crush resistance and wear resistance of the granular material can be advantageously enhanced. Also,
Alumina or mullite ceramic particles are more preferable. This is because, since the sprue / gate-shaped product made of the ceramic particles has a porous structure, the sprue / gate-shaped product for casting can have high heat retention and air permeability.

【0013】ここにおいて、本発明において規定する耐
火物を主成分とする粒状体の破砕率とは、JACT(Ja
panese Association of Casting Technology:鋳造技術
普及協会)試験法S−6−IIに規定される鋳物砂の熱的
処理及び機械的処理による破砕性試験法に準じて、繰り
返し3回の破砕試験を行なうことによって得られる、該
破砕試験後の砂のAFS(American Fundry Society)粒
度指数:Fの平均値の、破砕試験前の元砂のAFS粒度
指数:Fに対する比(%)をもって表したものである。
Here, the crushing rate of the granules containing a refractory as a main component as defined in the present invention means JACT (Ja
Panese Association of Casting Technology: Repeat the crushing test three times in accordance with the crushability test method by thermal treatment and mechanical treatment of foundry sand specified in Test Method S-6-II. It is represented by the ratio (%) of the average value of AFS (American Fundry Society) particle size index: F of the sand after the crushing test to the AFS particle size index: F of the original sand before the crushing test obtained by the above.

【0014】そして、そのような破砕率は、具体的に
は、以下の如くして求められることとなる。即ち、JA
CT試験法S−6−IIに規定される粒状体の熱的処理及
び機械的処理による破砕性試験法に基づいて、先ず、所
定量の試料を加熱容器内にて所定の温度にて所定時間加
熱し、その後、空冷して、室温まで冷却する。次いで、
加熱容器から試料を取り出して、該試料を規定量のボー
ルと共にボールミル中に投入する。その後、これらを1
時間回転処理した後、試料をボールミル中から取り出し
て、縮分、分割することにより、粒度分布測定用の試料
として、50gを採取する。そして、このような操作を
3回繰り返し、各回毎に粒度分布測定用の試料を採取
し、その後、かくして得られた3種類の粒度分布測定用
の試料と、破砕試験を実施する前の元砂とに対して、1
4メッシュ〜36メッシュの篩を用いて、篩分け試験を
実施して、それぞれの粒度分布を測定する。
Then, such a crushing rate is specifically determined as follows. That is, JA
Based on the crushability test method by thermal treatment and mechanical treatment of the granular material specified in CT test method S-6-II, first, a predetermined amount of sample is heated in a heating container at a predetermined temperature for a predetermined time. Heat, then air cool to room temperature. Then
A sample is taken out of the heating container and put into a ball mill together with a specified amount of balls. Then these 1
After rotating for a period of time, the sample is taken out from the ball mill, shrunk and divided to obtain 50 g as a sample for particle size distribution measurement. Then, such an operation is repeated three times, and a sample for particle size distribution measurement is sampled each time, and thereafter, three kinds of samples for particle size distribution measurement thus obtained and the original sand before the crushing test are carried out. And for 1
A sieving test is performed using a 4-mesh to 36-mesh screen to measure the particle size distribution of each.

【0015】なお、かかる破砕試験及び篩分け試験にお
ける装置条件等は、以下の如きものとする。 加熱容器:試料を約500g入れることのできる磁製容
器。 加熱装置:約1000℃に保温することができ、上記の
加熱容器を入れることのできる加熱炉。 ボールミル用磁製ポット:外径90〜300mm(容量5
〜6l)のもの。 ボールミル用回転機:回転数33〜333rpm 程度のも
の。 篩:JIS Z 8801「標準篩」に合格したもの。 篩分け試験機:回転数240〜280回/分,打数13
0〜150回/分のもの。 上皿天秤:秤量100g,感量100mgのもの。
The apparatus conditions and the like in the crushing test and the sieving test are as follows. Heating container: A porcelain container capable of containing about 500 g of a sample. Heating device: A heating furnace capable of keeping the temperature at about 1000 ° C. and containing the above heating container. Porcelain pot for ball mill: outer diameter 90-300mm (capacity 5
~ 6l). Rotating machine for ball mill: Rotating speed is about 33 to 333 rpm. Sieve: Those that have passed JIS Z 8801 "Standard Sieve". Sieving tester: rotation speed 240-280 times / min, striking number 13
0 to 150 times / minute. Fine balance: 100 g weighed, 100 mg sensitive.

【0016】次いで、上述の如くして得られた3種類の
粒度分布測定用試料と元砂の各粒度分布の測定値とを下
記式に代入して、それぞれのAFS粒度指数:Fを算出
し、更に、該3種類の粒度分布測定用試料のAFS粒度
指数:Fの平均値を算出する。 F=Σ(Wn ×Sn )/ΣWn 但し、Wn :篩分け試験において、各篩面上に残った砂
の重量(g) Sn :粒度係数
Next, the three types of samples for particle size distribution measurement obtained as described above and the measured values of each particle size distribution of the original sand are substituted into the following formulas to calculate the respective AFS particle size index: F. Further, the average value of the AFS particle size index: F of the three types of samples for particle size distribution measurement is calculated. F = Σ (W n × S n) / ΣW n where, W n: In sieve analysis, the weight of the remaining sand on each sieve surface (g) S n: particle size coefficient

【0017】そして、その得られた算出値をもって、元
砂のAFS粒度指数:Fに対する破砕試験後の砂のAF
S粒度指数:Fの平均値の比を百分率にて求め、これを
破砕率とするのである。要するに、本発明において規定
する破砕率とは、加熱や摩耗によって、耐火物粒子に惹
起せしめられる破砕に対する抵抗性を表す指標となるも
のなのである。
Then, with the obtained calculated value, the AF of the sand after the crushing test with respect to the AFS particle size index of the original sand: F
The ratio of the average particle size of S: F is calculated as a percentage, and this is taken as the crushing rate. In short, the crushing rate specified in the present invention is an index showing the resistance to crushing caused by refractory particles due to heating or abrasion.

【0018】一方、本発明に従う鋳造用湯口・押湯系製
品を構成する成形体を、上記した粒状体と共に、与える
粘結剤としては、硬化型の有機粘結剤が用いられ、この
ような有機粘結剤にて上記した粒状体を結合せしめて、
所定の成形体とすることにより、鋳造用湯口・押湯系製
品に、少量で十分な強度を持たせ得ると共に、鋳造使用
後においては良好な崩壊性を持たせることが、可能とな
る。この有機粘結剤としては、一般に鋳型用樹脂として
使用されている熱硬化性樹脂、通気硬化性樹脂及び常温
硬化性樹脂が何れも適宜に選択して使用され得る。具体
的には、熱硬化性樹脂としては、ノボラック型若しくは
レゾール型フェノール樹脂、尿素樹脂等が、また通気硬
化性樹脂としては、フェノール・イソシアネート樹脂、
フラン樹脂等が、更に常温硬化性樹脂としては、フェノ
ール樹脂、フラン樹脂、フェノール・イソシアネート系
樹脂等が使用され得ることとなる。また、これら樹脂の
配合物、または、これら樹脂に崩壊性を上げる為に添加
剤を入れたり、塩素化、臭素化等の変性を加えた樹脂
も、同様に使用可能である。この有機粘結剤の使用量
は、使用する粒状体の種類に依存し、目的とする成形体
が成形されるべく適宜に決定されることとなるが、一般
に、粒状体の全重量に基づき、0.5〜10重量%であ
る。しかし、緻密に焼成された気孔率の低い粒状体を使
用し、十分な成形製品強度が得られるのであれば、有機
粘結剤の使用量の低い方が、鋳造用湯口・押湯系製品の
鋳造使用後の崩壊性を上昇せしめ得て、より効果的であ
る。
On the other hand, a curable organic binder is used as a binder for giving the molded product constituting the casting sprue / rise-up product according to the present invention together with the above-mentioned granular material. Combine the above-mentioned granules with an organic binder,
By forming the molding into a predetermined shape, it is possible to make the casting sprue / rise-type product have a sufficient strength with a small amount and to have a good disintegration property after use in casting. As the organic binder, any of thermosetting resin, air-curable resin and room temperature curable resin, which are generally used as a mold resin, can be appropriately selected and used. Specifically, as the thermosetting resin, novolac type or resol type phenol resin, urea resin and the like, and as the air-curing resin, phenol / isocyanate resin,
As the furan resin and the like, and as the room temperature curable resin, a phenol resin, a furan resin, a phenol / isocyanate resin, and the like can be used. Further, a blend of these resins, or a resin in which an additive is added to these resins to improve disintegration or a modification such as chlorination or bromination is added, can be similarly used. The amount of the organic binder used depends on the type of the granular material to be used and will be appropriately determined so that the desired molded article is molded, but generally, based on the total weight of the granular material, It is 0.5 to 10% by weight. However, if a finely fired granular material with low porosity is used and sufficient molded product strength can be obtained, the lower the amount of organic binder used, the lower the amount of the casting sprue / rise-type product. It is more effective because it can increase the disintegration after casting.

【0019】なお、本発明に従う鋳造用湯口・押湯系製
品を製造する方法としては、公知の各種の成形手法が採
用され、例えば適当な混練機を用いて、耐火物を主成分
とする粒状体と硬化型の有機粘結剤を混合して配合物を
造り、その後該配合物を加熱圧縮成形によって成形する
方法等が用いられる。
As a method for producing a casting sprue / rise product according to the present invention, various known forming methods are adopted. For example, an appropriate kneading machine is used to form granules containing a refractory as a main component. A method is used in which a body and a curable organic binder are mixed to prepare a compound, and then the compound is molded by heat compression molding.

【0020】このようにして得られる本発明に従う鋳造
用湯口・押湯系製品にあっては、耐火物を主成分とする
粒状体に対して、該粒状体を結合せしめ得る硬化型の有
機粘結剤を配合せしめてなる配合物を用い、該配合物を
所定の形状に成形して得られる成形体にて構成されてい
ることから、鋳込み時においては十分な強度を持つと共
に、鋳造時の熱で該有機粘結剤の分解が進み、該有機粘
結剤による粒状体間の結合力が弱まり、鋳造後の型ばら
しの際に、該鋳造用湯口・押湯系製品は、主に破砕や磨
耗等の損傷の殆ど無い若しくは少ない粒状体から成る塊
状物に容易に崩壊するのである。
In the cast sprue / rise product according to the present invention thus obtained, a hardening type organic viscous material capable of binding the granules to the granules containing a refractory as a main component. Since it is composed of a molded product obtained by molding the compound into a predetermined shape by using a compound obtained by mixing a binder, it has sufficient strength at the time of casting, and at the time of casting. The decomposition of the organic binder progresses due to heat, the bonding force between the particulates due to the organic binder is weakened, and when the mold is released after casting, the casting sprue and feeder products are mainly crushed. It easily disintegrates into agglomerates consisting of granules with little or no damage such as abrasion.

【0021】そして、その得られた塊状物においては、
それを構成する粒状体の破砕や磨耗が効果的に低減せし
められ得ることから、ロータリークレイマー等の適当な
手段により該塊状物を再生処理して、粒状体若しくは鋳
物砂として再利用することが可能となるのであり、以て
廃棄物の量が著しく低減され得、破砕物の廃棄の問題が
解決され得るのである。また、それとともに、粒状体の
破砕や摩耗によって生ずる微細粉粒の量が減少され得
て、該粒状体の微細粉粒の鋳物砂への混入量を低減せし
め得、更に該粒状体が耐火物を主成分とし、鋳物砂とし
ても使用できることから、混入した該粒状体の微細粉粒
は、該鋳物砂の特性を殆ど変えることがなく、破砕物の
鋳物砂への混入による再生使用時における鋳物砂の品質
劣化の問題も解決され得ることとなる。
And, in the obtained lump,
Since crushing and abrasion of the granules constituting it can be effectively reduced, it is possible to recycle the agglomerate by an appropriate means such as a rotary clayer and reuse it as granules or foundry sand. Therefore, the amount of waste can be significantly reduced, and the problem of waste of crushed material can be solved. At the same time, the amount of fine powder particles generated by crushing or abrasion of the granules can be reduced, and the amount of the fine powder particles of the granules mixed into the foundry sand can be reduced. Since it can be used also as a molding sand, the fine powder particles of the mixed granules hardly change the characteristics of the molding sand, and a casting at the time of recycling by mixing the crushed material into the molding sand. The problem of sand quality deterioration can also be solved.

【0022】なお、本発明の好ましい第1の態様におい
ては、前記粒状体として、135%以下の破砕率とSK
35以上の耐火度を有する、耐火物を主成分とする粒状
体が用いられることから、該粒状体が加熱や衝撃等に対
する耐破砕性や耐磨耗性に優れ、且つ、該粒状体の、高
温における、破砕率の急激な上昇による耐摩耗性や耐破
砕性の著しい低下がなく、該粒状体の鋳込み時や再生処
理時等における破砕や磨耗が一層低減され、以て上述し
た粒状体の再利用回数及び鋳物砂の再生使用時における
品質劣化の抑制効果を更に高め得ると共に、高温での鋳
造用湯口・押湯系製品の機械的強度の低下が効果的に防
止乃至は抑制され得るのである。また、粒状体として十
分に高耐火度のものを使用すれば、鋳造用湯口・押湯系
製品の耐火度を更に上昇せしめ得、鋳鋼製品等、高温鋳
造も容易となる。
In the first preferred embodiment of the present invention, the crushing rate of 135% or less and SK are used as the granular material.
Since a granular material having a refractory content of 35 or more and having a refractory material as a main component is used, the granular material is excellent in crush resistance and abrasion resistance against heat, impact, etc., and of the granular material, At high temperature, there is no significant decrease in wear resistance or crush resistance due to a sharp increase in crushing rate, and crushing and abrasion during casting or regeneration treatment of the granular material is further reduced, and thus the above-mentioned granular material Since it is possible to further enhance the effect of suppressing the deterioration of quality when reusing the number of times of reuse and the foundry sand, it is possible to effectively prevent or suppress the deterioration of the mechanical strength of the sprue / feeder system product for casting at high temperature. is there. Further, if a granular material having a sufficiently high refractory degree is used, the refractory degree of the sprue / rise-type product for casting can be further increased, and high temperature casting such as cast steel products becomes easy.

【0023】また、本発明の好ましい第2の態様におい
ては、前記粒状体として、実質的に球状のアルミナ質若
しくはムライト質のセラミックス粒子が用いられるとこ
ろから、他の部位に比して比較的破砕し易い粒状体表面
上の鋭角部が予め除去され得て、粒状体の耐破砕性や耐
摩耗性が有利に高められ得、該粒状体の鋳込み時や再生
処理時等における破砕や磨耗が一層低減され、以て上述
した粒状体の再利用回数及び鋳物砂の再生使用時におけ
る品質劣化の抑制効果をより高め得ることとなる。それ
とともに、該セラミックス粒子による鋳造用湯口・押湯
系製品が多孔質の構造を持つために、そのような鋳造用
湯口・押湯系製品は、高い保温性及び通気性を持ち、湯
冷めし難いと共に、ガス抜けも容易であり、ガス溜まり
による傷害を起こさず、鋳造用副資材として十分な特性
を具備しているのである。特に、ムライト質の場合にあ
っては、熱膨張率が低く、更に効果を上げることが可能
となる特徴がある。
Further, in the second preferred aspect of the present invention, since substantially spherical alumina-based or mullite-based ceramic particles are used as the granular material, they are relatively crushed compared to other parts. The sharp corners on the surface of the granules that can be easily removed can be removed in advance, and the crush resistance and wear resistance of the granules can be advantageously increased, and the crushing and abrasion during the casting of the granules or the regeneration treatment can be further improved. As a result, the number of times the granular material is reused and the effect of suppressing the quality deterioration during the reuse of the molding sand can be further enhanced. At the same time, since the casting sprue and riser system products made of the ceramic particles have a porous structure, such casting sprue and riser system products have high heat retention and air permeability and are difficult to cool. At the same time, it is easy to release gas, does not cause damage due to gas accumulation, and has sufficient characteristics as a secondary material for casting. In particular, in the case of mullite, there is a characteristic that the coefficient of thermal expansion is low and the effect can be further enhanced.

【0024】[0024]

【実施例】以下に、本発明の実施例を示し、本発明を更
に具体的に明らかにすることとするが、本発明が、その
ような実施例の記載によって、何等の制約をも受けるも
のでないことは言うまでもないところである。また、本
発明には、以下の実施例の他にも、更には上記の具体的
記述以外にも、本発明の趣旨を逸脱しない限りにおい
て、当業者の知識に基づいて種々なる変更、修正、改良
等を加え得るものであることが、理解されるべきであ
る。
The present invention will be described in more detail below by showing examples of the present invention, but the present invention is subject to any restrictions due to the description of such examples. It goes without saying that this is not the case. In addition, in addition to the following examples, the present invention, in addition to the above-described specific description, various changes, corrections, and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention. It should be understood that improvements can be made.

【0025】先ず、本発明において使用される耐火物を
主成分とする粒状体として、球状ムライト質セラミック
ス粒子、クロマイトサンド、ジルコンサンド、輸入珪砂
を選択し、それぞれを粒状体1、2、3、4とした。そ
れら粒状体の物性値を表1に示す。この内、球状ムライ
ト質粒状体は人工セラミックス粒子であり、クロマイト
サンド、ジルコンサンド、輸入珪砂は、自然物の整粒品
である。なお、粒状体1〜4の物性において、粉体嵩密
度については、粉体嵩密度測定器を用いて3分間の振動
後(重装)に測定し、また曝熱膨張率については、球状
ムライト質セラミックス粒子及び珪砂にはレジンを2%
づつ、クロマイト及びジルコンにはレジンを1%づつ、
それぞれ添加した後、これら試料を電気炉に入れ、10
00℃において300秒後における該試料の熱膨張率
を、RCS曝熱式熱膨張測定器を用いて測定した。な
お、ここでは、レジンとしてフェノール樹脂が用いられ
ている。
First, spherical mullite ceramic particles, chromite sand, zircon sand, and imported silica sand are selected as granules containing a refractory as a main component used in the present invention. It was set to 4. Table 1 shows the physical properties of the granules. Among them, the spherical mullite particles are artificial ceramic particles, and chromite sand, zircon sand, and imported silica sand are natural sized products. In the physical properties of Granules 1 to 4, the powder bulk density was measured after vibration (heavy equipment) for 3 minutes using a powder bulk density measuring instrument, and the thermal expansion coefficient was measured with a spherical mullite. 2% resin for fine ceramic particles and silica sand
1% resin for chromite and zircon,
After each addition, place these samples in an electric furnace for 10
The coefficient of thermal expansion of the sample after 300 seconds at 00 ° C. was measured using an RCS heat exposure type thermal expansion measuring device. Here, a phenol resin is used as the resin.

【0026】[0026]

【表1】 [Table 1]

【0027】なお、ここで用いられている球状ムライト
質粒状体の製造方法は、下記の通りである。
The method for producing the spherical mullite granular material used here is as follows.

【0028】先ず、原料として、ばんど頁岩と水酸化ア
ルミニウムを所定量準備し、それらを、ばんど頁岩:9
3重量%、水酸化アルミニウム:7重量%の割合にて配
合して、配合物を得た。そして、この配合物をボールミ
ル中に投入し、更にこれに水を加えて、湿式法により、
2時間粉砕、混合を行ない、泥漿を得た。その後、かく
して得られる泥漿をボールミル中から取り出して、スプ
レードライヤーにより、粒径が0.15〜1.0mmであ
る球状粒子となるように造粒した。
First, a predetermined amount of band shale and aluminum hydroxide was prepared as raw materials, and these were used as band shale: 9
3 wt% and aluminum hydroxide: 7 wt% were blended to obtain a blend. Then, this mixture is put into a ball mill, water is further added thereto, and the mixture is wet-processed.
The mixture was pulverized and mixed for 2 hours to obtain a slurry. Then, the thus obtained sludge was taken out from the ball mill and granulated by a spray dryer so as to be spherical particles having a particle diameter of 0.15 to 1.0 mm.

【0029】次いで、かくして得られた球状造粒物が互
いに接着するのを防止するために、かかる球状造粒物の
100重量部に対して、高アルミナ質粉末を0.5重量
部添加、混合して、混合物を得、更にその後、かかる混
合物をロータリーキルン中に投入して、1680℃の温
度で2.5時間焼成し、一部塊状物を有する焼成物を得
た。そして、この焼成物を攪拌機に入れて、塊状物を解
砕した後、高アルミナ質粉末を除去して、全べての粒子
が孤立化した球状ムライト質セラミックス粒子を得た。
引き続き、かくして得られた球状ムライト質セラミック
ス粒子を篩分けして、粒度でAFS65になる如く調整
した。
Next, in order to prevent the spherical granules thus obtained from adhering to each other, 0.5 part by weight of high-alumina powder was added to 100 parts by weight of the spherical granules and mixed. Then, a mixture was obtained, and thereafter, the mixture was put into a rotary kiln and fired at a temperature of 1680 ° C. for 2.5 hours to obtain a fired product having some lumps. Then, the fired product was put into a stirrer to disintegrate the lump, and then the high-alumina powder was removed to obtain spherical mullite ceramic particles in which all the particles were isolated.
Subsequently, the spherical mullite ceramic particles thus obtained were sieved and adjusted to have a particle size of AFS65.

【0030】本発明に係る鋳造用湯口・押湯系製品の、
鋳造使用後における粒状体若しくは鋳物砂としての再利
用の可能性は、耐火物を主成分とする粒状体の特性に依
存するものである。このため、これらの特性を把握すべ
く、前述したJACT試験法S─6─IIに規定される粒
状体の熱的処理及び機械的処理による破砕性試験法に基
づいて、破砕性の試験を行った。なお、この際の曝熱温
度としては常温、700℃、1000℃、及び1300
℃を使用した。各サンプルの3回目(60分後)の破砕
率(%)を表2に示す。
Of the casting sprue / feeder system product according to the present invention,
The possibility of reuse as granules or foundry sand after use in casting depends on the characteristics of the granules containing a refractory as a main component. Therefore, in order to understand these characteristics, a crushability test is performed based on the crushability test method by thermal treatment and mechanical treatment of the granular material specified in JACT test method S-6-II described above. It was The heat exposure temperature at this time is room temperature, 700 ° C, 1000 ° C, and 1300 ° C.
C was used. Table 2 shows the crushing rate (%) of the third time (after 60 minutes) of each sample.

【0031】[0031]

【表2】 [Table 2]

【0032】かかる表2の結果から明らかなように、球
状ムライト質粒子からなる粒状体1の破砕率は非常に小
さく、該粒状体が加熱や摩耗に対する耐破砕性に優れ、
以て多数回の再生及び再利用が可能なことを示してい
る。続いて、ジルコンサンドの粒状体3、クロマイトサ
ンドの粒状体2の順序となり、輸入珪砂粒状体4の破砕
率は、これらを大きく上回り、加熱や摩耗に対する耐破
砕性においてやや劣る。一方、曝熱温度特性の面より見
ると、試料の耐火度がSK35より高い粒状体1、2、
3については、曝熱温度による影響は殆ど認められない
が、耐火度がSK33と低い粒状体4、即ち輸入珪砂に
ついては、曝熱温度が高くなると、破砕率は増大する。
As is clear from the results of Table 2, the crushing rate of the granules 1 made of spherical mullite particles is very small, and the granules are excellent in crush resistance against heating and abrasion,
Therefore, it shows that it can be recycled and reused many times. Subsequently, the zircon sand granules 3 and the chromite sand granules 2 come in this order, and the crushing rate of the imported silica sand granules 4 greatly exceeds those, and the crush resistance to heating and abrasion is slightly inferior. On the other hand, in terms of the heat exposure temperature characteristics, the granular materials 1, 2 having a higher fire resistance than the sample SK35,
As for No. 3, the influence of the heat exposure temperature is hardly recognized, but for the granular material 4 having low fire resistance of SK33, that is, imported silica sand, the crushing rate increases as the heat exposure temperature increases.

【0033】以上を総合すると、最も適性の高いもの
は、粒状アルミナ質若しくはムライト質の粒状体で、次
いで、耐火性が同じくSK35以上で、破砕率が135
以下のジルコンサンド、クロマイトサンドがこれに続く
ことが分かる。珪砂は、これら4種類の試料中では、最
も適性が少ない。しかしながら、鋳造使用後において破
砕片のすべてが廃棄処分となり、また崩壊時の微細粉粒
が鋳物砂中に混入してトラブルとなる、従来から使用さ
れている素焼陶管に比較すれば、珪砂を粒状体として用
いた場合においても、鋳造使用後に、ロータリークレー
マー等で再生処理し、その後、篩分して微細粉粒を除く
ことにより、歩留りとしては悪いが、まだ十分にこれら
の鋳造用湯口・押湯系製品の粒状体として、若しくは、
鋳物砂として再利用が可能であり、なお非常に効果があ
る。
Summarizing the above, the most suitable one is granular alumina or mullite granular material, followed by fire resistance of SK35 or more and crushing rate of 135.
It can be seen that the following zircon sand and chromite sand follow. Quartz sand is the least suitable of these four types of samples. However, after the use of casting, all of the crushed pieces are discarded, and fine powder particles at the time of disintegration are mixed into the foundry sand, which causes a problem. Even when it is used as a granular material, after casting, it is regenerated with a rotary clayer or the like, and then removed by sieving to remove fine powder particles. As granules of feeder products, or
It can be reused as foundry sand and is still very effective.

【0034】続いて、湯口系製品の一つである湯道に適
用した場合の効果について確認するために、上記で用い
た球状ムライト質粒状体にフェノール樹脂を配合した組
成物より成形した円筒状スリーブをスリーブ1、及び該
スリーブ1を鋳造に使用した後、崩壊させ、破砕片を
得、該破砕片からロータリークレーマーによる再生処理
により得られた粒状体により、再びスリーブを成形する
操作、即ち鋳造、崩壊、再生、成形のサイクルを5回繰
り返して成形した円筒スリーブを、スリーブ2とした。
また、比較例として、素焼陶管のスリーブを用い、これ
をスリーブ3とした。
Subsequently, in order to confirm the effect when applied to a runner, which is one of the sprue-based products, a cylindrical shape formed from a composition obtained by mixing the spherical mullite granular material used above with a phenol resin The sleeve 1 and the sleeve 1 used for casting, and then disintegrated to obtain a crushed piece, and an operation of molding the sleeve again by the granular body obtained by regenerating the crushed piece with a rotary Kramer, that is, casting A cylindrical sleeve formed by repeating the cycle of disintegration, regeneration, and molding 5 times was designated as Sleeve 2.
In addition, as a comparative example, a sleeve made of unglazed ceramic tube was used, and this was used as the sleeve 3.

【0035】なお、上記スリーブ1の製造方法は、以下
の通りである。先ず、試料粒状体の8000重量部を用
い、これをヒーターによって145〜150℃に加熱し
た後、スピードミキサーに投入し、次いで直ちに一定の
製品強度を得るために、粘結剤としてノボラック型フェ
ノール樹脂(旭有機材工業株式会社製SP6905)を
投入し、ミキサーで60秒間混練して、かかる樹脂にて
試料粒状体を被覆した。次いで、これに、該試料粒状体
に対して冷却水1.5重量%と、該樹脂に対してヘキサ
メチレンテトラミン15重量%とを水溶液にして投入し
た。この水溶液の投入から約50〜60秒後、内容物が
乾き、自由流動的になったところで、滑剤としてステア
リン酸カルシウムを試料粒状体に対して0.1重量%投
入し、更に15秒間、混練し、レヂンコーテットサンド
を得た。該レヂンコーテットサンドを加熱圧縮成形にて
硬化させて、スリーブ1を得た。また、このスリーブ1
を鋳造に使用し、そして鋳造使用後のスリーブ1を破砕
し、ロータリークレーマーにより粒状体に再生し、再度
スリーブを形成する処理を5回繰り返し、スリーブ2を
得た。
The method of manufacturing the sleeve 1 is as follows. First, 8000 parts by weight of the sample granules were used, heated to 145 to 150 ° C. by a heater and then put into a speed mixer, and then immediately to obtain a constant product strength, a novolac type phenol resin was used as a binder. (SP6905 manufactured by Asahi Organic Materials Co., Ltd.) was added, and the mixture was kneaded for 60 seconds with a mixer to coat the sample granules with the resin. Next, 1.5% by weight of cooling water was added to the sample granules, and 15% by weight of hexamethylenetetramine was added to the resin as an aqueous solution. Approximately 50 to 60 seconds after the addition of this aqueous solution, when the contents became dry and became free-flowing, 0.1% by weight of calcium stearate as a lubricant was added to the sample granules, and the mixture was further kneaded for 15 seconds. , Resin Coat Sand was obtained. The resin coat sand was cured by heat compression molding to obtain a sleeve 1. In addition, this sleeve 1
Was used for casting, and the sleeve 1 after the casting was crushed, regenerated into granules by a rotary kramer, and a process of forming a sleeve again was repeated 5 times to obtain a sleeve 2.

【0036】また、スリーブ3として、市販の鋳物用陶
管を使用した。これは、SiO2 成分の高い珪質粘土を
円筒スリーブ状に成形した後、相対的に低温度で焼成し
たもので、保温性を高めるために、見掛気孔率を上げた
ものである。焼成後のスリーブ3の化学組成を表3に示
す。この表3の結果から、スリーブ3は珪砂質の多い陶
管であることが分かる。
As the sleeve 3, a commercially available pottery tube for casting was used. This is one in which siliceous clay having a high SiO 2 component is formed into a cylindrical sleeve shape and then fired at a relatively low temperature, and the apparent porosity is increased in order to improve heat retention. Table 3 shows the chemical composition of the sleeve 3 after firing. From the results of Table 3, it can be seen that the sleeve 3 is a porcelain tube with a large amount of silica sand.

【0037】[0037]

【表3】 [Table 3]

【0038】それぞれのスリーブの物性値を測定した結
果を、表4に示す。なお、この物性中、見掛比重、嵩比
重、吸水率、見掛気孔率の測定は、日本学術振興会第1
24委員会試験法分科会による学振法2「マグネシアク
リンカーの測定法」に準じて行い、抗析力の試験法は、
JACT試験法SM─1曲げ強さ試験方法に準拠した。
また、スリーブ1及び2の粘結樹脂量は、対試料粒状体
重量比で、2.1%である。これは、スリーブ1及び2
が、使用粘結樹脂量2.1%で、十分な気孔率、強度を
持つため、鋳造使用後の崩壊性の向上のために粘結樹脂
量を抑えたことによる。
The results of measuring the physical properties of each sleeve are shown in Table 4. Among these physical properties, the apparent specific gravity, bulk specific gravity, water absorption rate, and apparent porosity were measured by the Japan Society for the Promotion of Science No. 1
24 Committee Test Method Subcommittee Gakushin method 2 “Magnesia clinker measurement method”
It was based on the JACT test method SM-1 bending strength test method.
The amount of the caking resin in the sleeves 1 and 2 is 2.1% in terms of the weight ratio of the sample granular material. This is sleeves 1 and 2
However, because the amount of the binder resin used was 2.1% and the porosity and the strength were sufficient, the amount of the binder resin was suppressed in order to improve the disintegration property after casting.

【0039】[0039]

【表4】 [Table 4]

【0040】かかる表4の結果より、本発明例に係る、
球状ムライト粒状体を樹脂バインダーで粘結したスリー
ブ1は、見掛気孔率37.3%と、比較例の市販陶管で
あるスリーブ3の29.2%に比較して十分に高く、そ
のため、保温性及び通気性が高く、湯冷めし難いと共
に、ガス抜けも容易である。それと共に、強度面でも1
19.2kg/cm2 と、比較例の67.5kg/cm
2 に比較して強く、トラブルを起こしにくい。また、鋳
造使用後の崩壊及びロータリークレーマーによる再生処
理も容易であり、崩壊時の微細粉粒の発生も少ないため
に、再利用の際の歩留りも高い。一方、市販陶管のスリ
ーブ3では、崩壊後、微細粉粒の発生が多く、再使用が
不可能であるとともに、微細粉粒が鋳物砂へ混入し、ト
ラブルを起こす可能性が大である。また、成形、鋳造、
崩壊、再生を5回繰り返したスリーブ2の結果より、再
生された球状ムライト質粒状体より成る成形品も、十分
な気孔率及び抗析力を持っており、球状ムライト質粒状
体は多数回の再使用に耐え得ることを示している。
From the results of Table 4, according to the example of the present invention,
The sleeve 1 obtained by binding the spherical mullite particles with a resin binder has an apparent porosity of 37.3%, which is sufficiently higher than that of the sleeve 3 that is a commercially available ceramic tube of Comparative Example, which is 29.2%. It has high heat retention and air permeability, makes it difficult to cool in hot water, and allows easy gas release. At the same time, in terms of strength, 1
19.2 kg / cm 2 and 67.5 kg / cm of the comparative example
Stronger than 2 and less likely to cause trouble. Further, it is easy to disintegrate after casting and to be regenerated by a rotary clayer, and the generation of fine powder particles at the time of disintegration is small, so that the yield in recycling is high. On the other hand, in the sleeve 3 of the commercially available ceramic tube, after being collapsed, many fine powder particles are generated and cannot be reused, and there is a great possibility that the fine powder particles are mixed into the foundry sand to cause a trouble. Also, molding, casting,
From the results of the sleeve 2 in which the disintegration and the regeneration were repeated 5 times, the molded product composed of the regenerated spherical mullite granular material also had sufficient porosity and anti-sedimentation force, and the spherical mullite granular material was regenerated many times. It shows that it can be reused.

【0041】また、本実施例では、鋳造用湯口・押湯系
製品のスリーブの原料への再使用について検討している
が、再生粒状体の形状及び物性から見て、同じく鋳物砂
として使用することも十分可能であることを予測するこ
とが出来る。
Further, in this embodiment, the reuse of the sleeve of the casting sprue / feeder system product as a raw material is examined, but in view of the shape and the physical properties of the regenerated granular material, it is also used as a casting sand. It can be predicted that it is possible enough.

【0042】[0042]

【発明の効果】以上の説明より明らかな如く、本発明に
従う鋳造用湯口・押湯系製品を採用すれば、鋳造用副資
材として十分な特性を持ち、鋳物砂の再生使用時におけ
る品質劣化の問題が解消されて、鋳物砂の劣化による鋳
型性能の劣化が効果的に抑制せしめられ得、以て品質の
安定した鋳物が製造され得ることとなるのであり、また
鋳造使用後、再生処理によって、同じく鋳造用湯口・押
湯系製品の原料である粒状体への再利用若しくは鋳物砂
への転用も可能となり、鋳物の製造における資材の節約
やコストの低減が極めて効果的に図られ得ることとなる
のである。
As is apparent from the above description, when the casting sprue / feeder system product according to the present invention is adopted, it has sufficient characteristics as a secondary material for casting, and the deterioration of quality when the casting sand is recycled is used. The problem can be solved, the deterioration of the mold performance due to the deterioration of the casting sand can be effectively suppressed, and thus a casting of stable quality can be manufactured. Similarly, it is possible to reuse it as a granular material that is a raw material of casting sprue / feeder-type products or convert it to casting sand, and it is possible to save materials and cost in the production of castings very effectively. It will be.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 耐火物を主成分とする粒状体に対して、
該粒状体を結合せしめ得る硬化型の有機粘結剤を配合せ
しめてなる配合物を用い、該配合物を所定の形状に成形
して得られる成形体にて構成したことを特徴とする鋳造
用湯口・押湯系製品。
1. A granular material containing a refractory as a main component,
For casting, characterized by using a composition obtained by mixing a curable organic binder capable of binding the granules, and by forming the composition into a predetermined shape. A sprue and feeder product.
【請求項2】 前記粒状体の破砕率が135%以下であ
り、且つその耐火度がSK35以上であることを特徴と
する請求項1に記載の鋳造用湯口・押湯系製品。
2. The casting sprue / feeder system product according to claim 1, wherein the crushing rate of the granules is 135% or less, and the fire resistance thereof is SK35 or more.
【請求項3】 前記粒状体が、実質的に球状のアルミナ
質若しくはムライト質のセラミックス粒子にて構成され
ている請求項1または請求項2に記載の鋳造用湯口・押
湯系製品。
3. The casting sprue / feeder system product according to claim 1, wherein the granular body is composed of substantially spherical alumina-based or mullite-based ceramic particles.
JP539695A 1995-01-18 1995-01-18 Sprue and riser type products for casting Pending JPH08192244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP539695A JPH08192244A (en) 1995-01-18 1995-01-18 Sprue and riser type products for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP539695A JPH08192244A (en) 1995-01-18 1995-01-18 Sprue and riser type products for casting

Publications (1)

Publication Number Publication Date
JPH08192244A true JPH08192244A (en) 1996-07-30

Family

ID=11609999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP539695A Pending JPH08192244A (en) 1995-01-18 1995-01-18 Sprue and riser type products for casting

Country Status (1)

Country Link
JP (1) JPH08192244A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030089060A (en) * 2002-05-16 2003-11-21 노명호 The Process of Manufacture of an Insulated, Exothermic, Blind Feeder and Feeder Sleeves.
JP2005349428A (en) * 2004-06-09 2005-12-22 Kao Corp Structural body for casting
JP2006346747A (en) * 2005-05-20 2006-12-28 Kao Corp Molded body
US8118974B2 (en) 2004-06-10 2012-02-21 Kao Corporation Structure for producing castings

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030089060A (en) * 2002-05-16 2003-11-21 노명호 The Process of Manufacture of an Insulated, Exothermic, Blind Feeder and Feeder Sleeves.
JP2005349428A (en) * 2004-06-09 2005-12-22 Kao Corp Structural body for casting
JP4672289B2 (en) * 2004-06-09 2011-04-20 花王株式会社 Casting manufacturing structure, manufacturing method thereof, and casting
US8118974B2 (en) 2004-06-10 2012-02-21 Kao Corporation Structure for producing castings
JP2006346747A (en) * 2005-05-20 2006-12-28 Kao Corp Molded body
US7651592B2 (en) 2005-05-20 2010-01-26 Kao Corporation Molded article
JP4675276B2 (en) * 2005-05-20 2011-04-20 花王株式会社 Compact

Similar Documents

Publication Publication Date Title
JP7487037B2 (en) How to reclaim casting sand
UA100853C2 (en) Thermal regeneration of foundry sand
JP2003251434A (en) Sand for mold and production method thereof
JP6462347B2 (en) Mold sand and its manufacturing method
JP4607698B2 (en) How to recycle waste green sand
JP6846318B2 (en) How to regenerate recovered casting sand
JPH05169184A (en) High siliceous spherical molding sand and its production
JP3253579B2 (en) Sand for mold
JPH08192244A (en) Sprue and riser type products for casting
JPH06154941A (en) Reconditioning method for molding sand and production of casting mold
JP3330568B2 (en) Filler for vanishing model mold
JP2965782B2 (en) Manufacturing method of artificial sand using waste silica sand
JPH0716698A (en) Mold structure
JP6595688B2 (en) Mold sand and its manufacturing method
JP6242212B2 (en) Method for producing mold composition and method for producing mold
WO2005021188A2 (en) Compositions and use of sand and powders capable of being heated by microwave or induction energy
JPH0440095B2 (en)
JP2006016213A (en) Concrete solidified body composition, method of producing the same and concrete solidified body
WO2023285482A1 (en) Inorganic binders system
JPH0628773B2 (en) Mold material
JPH04367349A (en) Manufacture of spherical molding sand
JPH10323736A (en) Production of artificial sand for foundry sand mold
JPH02205224A (en) Molding sand and production thereof
JPH069726B2 (en) Resin coated sand
JP2023152693A (en) Method for manufacturing highly collapsible mold