JPH08192029A - Denitrifying and desulfurizing method and device therefor - Google Patents

Denitrifying and desulfurizing method and device therefor

Info

Publication number
JPH08192029A
JPH08192029A JP7021344A JP2134495A JPH08192029A JP H08192029 A JPH08192029 A JP H08192029A JP 7021344 A JP7021344 A JP 7021344A JP 2134495 A JP2134495 A JP 2134495A JP H08192029 A JPH08192029 A JP H08192029A
Authority
JP
Japan
Prior art keywords
catalyst
ammonia
flue
desulfurization
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7021344A
Other languages
Japanese (ja)
Other versions
JP2736962B2 (en
Inventor
Katsumasa Kanekiyo
勝応 金清
Hiroko Yoshida
ひろ子 吉田
Minoru Hirao
実 平尾
Mototsugu Katsuta
基嗣 勝田
Yoji Hara
陽司 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KANKYO ASESUMENTO CENTE
NIPPON KANKYO ASESUMENTO CENTER KK
Original Assignee
NIPPON KANKYO ASESUMENTO CENTE
NIPPON KANKYO ASESUMENTO CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KANKYO ASESUMENTO CENTE, NIPPON KANKYO ASESUMENTO CENTER KK filed Critical NIPPON KANKYO ASESUMENTO CENTE
Priority to JP7021344A priority Critical patent/JP2736962B2/en
Publication of JPH08192029A publication Critical patent/JPH08192029A/en
Application granted granted Critical
Publication of JP2736962B2 publication Critical patent/JP2736962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To unnecessitate a large amount of industrial water and waste water treatment to perform dry denitrification/desulfurization by sticking an ammonia catalytic reduction catalyst which is obtained by treating coal ash on a boiler body or a flue and bringing ammonia mixed waste gas into contact with the catalyst therein. CONSTITUTION: An ammonia catalytic reduction catalyst is obtained by subjecting to ion exchange coal ash which has been made into fine particles and porous after subjected to alkaline treatment under high temp. and high pressure for a long time. In a rear smoke box 11 of a boiler body 10, a catalyst spray port 15 for the catalyst is formed. The catalyst is sprayed from the catalyst spray port 15 to stick the catalyst on the inner surfaces of the rear smoke box 11, smoke tubes 14, a front smoke box 12 and a flue 20 connected to a discharge port 17, and these parts are used as a catalytic reactor. A dry dust removing device 40 is connected on the downstream side of the flue 20, and an economizer 30 is installed in the previous stage thereof. Waste gas from the discharge port 17 is led to the dust removing device 40 by the flue 20 and is discharged from a stack 50 after dust is removed. In this way, the coal ash is made to be good resources and also cost of the catalyst itself is sharply reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、脱硝・脱硫方法及び
装置に関するもので、さらに詳しくは火力発電所や工場
等から産業廃棄物として排出される石炭灰の利用と、ボ
イラ排ガスの脱硝・脱硫に際し、反応空間が狭いため反
応時間がとれず、従来不可能とされた中小型ボイラ等の
排ガスの浄化を可能ならしめ、重油等の価格の安い高N
分、高S分の燃料の使用が可能となり、加えて従来大量
の工業用水と排水処理を必要とした排ガス脱硫装置に代
わり、ランニングコストの安価な乾式の脱硝・脱硫が可
能となる脱硝・脱硫方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration / desulfurization method and device, and more particularly to the use of coal ash discharged as industrial waste from thermal power plants and factories, and denitration / desulfurization of boiler exhaust gas. In this case, the reaction space is narrow and the reaction time cannot be taken. This makes it possible to purify exhaust gas from small and medium-sized boilers, which has been impossible in the past.
Denitrification / desulfurization, which enables the use of high- and low-s-content fuels, and replaces the conventional exhaust gas desulfurization equipment that required a large amount of industrial water and wastewater treatment, and enables dry denitration / desulfurization with low running costs. The present invention relates to a method and an apparatus.

【0002】[0002]

【従来の技術】中小型ボイラをもつ工場は、一般的に工
場敷地も狭く、法律による排出規制が強化されても脱硝
・脱硫装置等の広い空間や敷地を必要とする高額な設備
の導入は不可能であったため、価格の高い低N分、低S
分の軽油・灯油等の軽質油や都市ガス等に燃料転換して
規制値をクリアするよう努力してきた。しかし、C重油
に対し、1.5倍から3.5倍という価格の高い燃料の
使用は、企業経営を圧迫し、今後予想される更なる規制
強化には対応不可能となり、規制の厳しい都市部から規
制値のゆるやかな地方部に移転する工場が続出し始めて
いるのが現状である。
2. Description of the Related Art Generally, factories with small and medium-sized boilers have a small plant site, and even if the emission regulations are tightened by law, it is not possible to introduce expensive equipment such as denitration and desulfurization equipment that requires a wide space and site. Because it was impossible, the price is high, low N, low S
We have endeavored to meet the regulation value by converting fuel to light oil such as mined light oil and kerosene, and city gas. However, the use of fuel that is 1.5 to 3.5 times more expensive than C heavy oil puts pressure on corporate management, making it impossible to cope with the further tightening of regulations that is expected in the future, and cities that are highly regulated. The current situation is that a number of factories are moving from local areas to rural areas where the regulation values are moderate.

【0003】なお、窒素酸化物(以下NOxという)
は、主として自動車や航空機等の移動発生源からの排気
ガス、火力発電所や工場等の固定発生源からの燃焼排ガ
スより排出される。これらのNOxの排出濃度を低減す
るため、自動車のエンジンでは3元触媒(NOx、C
O、HCの3種の汚染物質を分解するための触媒)が開
発され、既に80年代初期から生産されている新車には
その設置が義務づけられ、自動車排ガスによる大気汚染
はディーゼル車を除き時間の経過と共に解決される見通
しとなった。
Nitrogen oxide (hereinafter referred to as NOx)
Is mainly emitted from exhaust gas from mobile sources such as automobiles and aircraft, and combustion exhaust gas from fixed sources such as thermal power plants and factories. In order to reduce these NOx emission concentrations, three-way catalysts (NOx, C
A catalyst for decomposing three kinds of pollutants (O and HC) has been developed, and it is obligatory to install it in new cars that have already been produced since the early 1980s. It will be resolved over time.

【0004】一方、固定発生源では、法律による規制の
強化が年と共に厳しくなり、上記のように良質の軽質
油、天然ガス等に転換するか、もしくは価格の安い重質
油を燃焼する場合は、脱硝・脱硫・集じん装置等の設置
が必要となってきた。脱硫装置は、一般的に広大な敷地
と大量の工業用水を必要とする石灰・石膏法が主流を占
めており、アンモニアによる中和法はSO2と中和の際
に生成する腐蝕性が強く、かつ融点の低い酸性硫安が省
エネ機器である空気予熱器等を腐蝕し、閉塞を起こすと
いう理由から一般には普及していない。
On the other hand, in the case of fixed generation sources, the stricter regulation by law becomes stricter as the years pass, and as described above, when converting to high-quality light oil, natural gas, etc., or burning heavy oil at a low price, However, it has become necessary to install denitration, desulfurization and dust collection equipment. The desulfurization equipment is dominated by the lime / gypsum method, which generally requires a vast site and a large amount of industrial water, and the ammonia neutralization method has a strong corrosive property when it is neutralized with SO 2. In addition, acidic ammonium sulfate having a low melting point corrodes the air preheater, which is an energy-saving device, and causes blockage, so that it is not widely used.

【0005】なお、脱硝装置は、乾式法、湿式法がある
ものの、いずれのケースも相当の空間と多額の投資を必
要とする課題を有している。そして、上記のNOxの乾
式処理技術としては、接触分解法と接触還元法がある
が、前者は未だ研究開発段階にあって実用化されていな
い。また、後者の接触還元法は選択法と非選択法とに分
けられる。
Although the denitration apparatus includes a dry method and a wet method, each case has a problem that it requires a considerable space and a large amount of investment. As the above-mentioned dry treatment technology of NOx, there are a catalytic decomposition method and a catalytic reduction method, but the former is still in the research and development stage and has not been put to practical use. The latter catalytic reduction method is divided into a selective method and a non-selective method.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記接触分解
法については、多くの研究が行われ、さまざまな種類の
触媒の開発が行われたが、いずれもボイラ実排ガスでは
10〜20%程度のNOxが分解された実績がある程度
で、排ガス中にO2、SO2、CO等の存在しない(現実
的でない)場合においては、700℃以上の高温でよう
やく30%前後の分解効率を達成したに過ぎないという
課題を有している。
However, much research has been conducted on the above catalytic cracking method and various kinds of catalysts have been developed. When NOx is decomposed to a certain extent and O 2 , SO 2 , CO, etc. do not exist in the exhaust gas (unrealistic), the decomposition efficiency of about 30% was finally achieved at a high temperature of 700 ° C or higher. It has a problem of not passing.

【0007】また、実機として採用され、改良を重ねら
れてきた接触還元法もV2O5−TiO2系触媒が発明
されたことにより、普及の度を次第に増したが、反応温
度が330〜450℃と狭く、その温度領域空間に大型
の触媒層を設置しなければならないので、中小型ボイラ
用としては一般に普及するに至っていないという課題を
有している。
Further, the catalytic reduction method, which has been adopted as an actual machine and has been continuously improved, has been gradually popularized due to the invention of the V2O5-TiO2 catalyst, but the reaction temperature is narrow at 330 to 450 ° C. However, since a large catalyst layer has to be installed in the temperature region space, there is a problem that it has not become popular for small and medium-sized boilers.

【0008】また、NOx、SOxによる大気汚染の
他、石炭燃焼ボイラから出る産業廃棄物としての石炭灰
の処理は、環境対策上大きな問題となりつつある。我国
では、ほとんどセメント原料や埋め立て材料として処分
されており、今の所あまり大きい社会問題とはなってい
ないが、外国においてはその処分場の確保に困り、現実
に強風の吹くたびごとに周辺住民に多大な迷惑を与える
等、そのために住民の反対運動が起きて苦慮している国
が多いという課題を有している。
In addition to air pollution caused by NOx and SOx, the treatment of coal ash as an industrial waste from a coal-fired boiler is becoming a major environmental problem. In Japan, most of the waste is disposed of as cement raw material or landfill material, and so far it is not a big social problem, but it is difficult to secure the landfill site in foreign countries, and it is actually difficult for the local residents There is a problem that many countries are suffering from the opposition movement of the residents, which causes a great deal of trouble to the people.

【0009】そこで本発明は、以上のような地球環境の
保全という課題に応えようとするもので、石炭灰を主成
分とする使用上の効果の大きい脱硝・脱硫触媒をボイラ
本体並びに煙道内部に付着せしめて反応器とする脱硝・
脱硫方法及び大量の工業用水と排水処理を必要としない
簡易な乾式の脱硝・脱硫装置を提供し、従来反応空間が
狭小なため排ガスの浄化が極めて困難であった中小型ボ
イラの大気汚染対策を容易にすることを目的としたもの
である。
In view of the above, the present invention is intended to meet the above-mentioned problem of global environment conservation. A denitration / desulfurization catalyst containing coal ash as a main component and having a great effect on use is used in the boiler body and the inside of the flue. Denitration to attach as a reactor to a reactor
We provide a simple dry type denitration / desulfurization device that does not require desulfurization method and a large amount of industrial water and wastewater treatment, and measures the air pollution of small and medium-sized boilers where it was extremely difficult to purify exhaust gas due to the narrow reaction space. It is intended to be easy.

【0010】[0010]

【課題を解決するための手段】上記の目的に沿い、先述
特許請求の範囲を要旨とする本発明の構成は前述課題を
解決するために、石炭灰を高温・高圧にて長時間アルカ
リ処理して微粒化され多孔質となった石炭灰をイオン交
換によってアンモニア接触還元用の触媒とし、該触媒を
ボイラ本体の後部煙室からボイラ本体内部に一定時間噴
霧し、ボイラ本体乃至煙道内部にこの触媒を付着せしめ
て触媒反応器となし、特別の脱硝・脱硫装置を設置せ
ず、アンモニア水またはアンモニアガスを燃焼排ガスに
混合して該触媒と接触せしめ、NOxを還元分解すると
共に、高温のSO2をそのままアンモニアと反応せしめ
て触媒機能を高める亜硫酸アンモニウムとなし、効率よ
く脱硝・脱硫を行うことを特徴とする技術的手段を講じ
たものである。
In order to solve the above-mentioned problems, in order to solve the above-mentioned problems, the structure of the present invention, which is based on the above-mentioned claims, is treated with alkali at high temperature and high pressure for a long time. As a catalyst for catalytic reduction of ammonia by ion exchange, the coal ash that has been atomized to become porous is sprayed into the boiler main body from the rear smoke chamber of the boiler main body for a certain period of time, and then the inside of the boiler main body or the flue A catalyst is attached to form a catalytic reactor, and no special denitration / desulfurization device is installed. Ammonia water or ammonia gas is mixed with combustion exhaust gas and brought into contact with the catalyst to reduce NOx and decompose high-temperature SO. 2 is directly reacted with ammonia to form ammonium sulfite that enhances the catalytic function, and the technical measures are taken to efficiently denitrate and desulfurize.

【0011】また、「請求項2」の発明は、ボイラ本体
10の後部煙室11に、石炭灰を高温・高圧にて長時間
アルカリ処理して微粒化され多孔質となった石炭灰をイ
オン交換したアンモニア接触還元用の触媒の触媒噴霧口
15を設け、該触媒噴霧口15より上記触媒を噴霧し
て、後部煙室11、煙管14,14,14・・・、前部
煙室12乃至排気口17に連結される煙道20の内面に
該触媒を付着させて、或は水管式のボイラの場合は燃焼
室側壁の水管その他の熱交換機部位乃至煙道20の内面
に該触媒を付着させて、これらの各部位を触媒反応器と
して利用し、上記煙道20の下流側に耐熱・耐酸用ダス
トフィルタ又は電気集じん機等で構成する乾式のダスト
除去装置40を連結し、その前段に、出口排ガス温度を
水蒸気の凝縮温度(100℃)以上、酸性硫安の融点
(146.9℃)以下の間にコントロールして、水分、
溶融酸性硫安等の湿性物によるダスト除去装置40の腐
蝕並びに閉塞を防止すると共にドライな粉末とし回収す
る熱交換機として、耐熱・耐酸性材質又はファインセラ
ミックス塗料を塗布したエコノマイザ30を設置してな
る技術的手段を講じたものである。
Further, the invention of "Claim 2" uses the coal ash in the rear smoke chamber 11 of the boiler body 10 as an ionized coal ash which has been atomized into porous particles by alkali treatment at high temperature and high pressure for a long time. A catalyst spray port 15 for the replaced catalyst for catalytic reduction of ammonia is provided, and the catalyst is sprayed from the catalyst spray port 15 to form a rear smoke chamber 11, smoke tubes 14, 14, 14, ... The catalyst is attached to the inner surface of the flue 20 connected to the exhaust port 17, or in the case of a water pipe type boiler, the catalyst is attached to the water pipe on the side wall of the combustion chamber or other heat exchanger part or the inner surface of the flue 20. By utilizing each of these parts as a catalytic reactor, a dry type dust removing device 40 composed of a heat / acid resistant dust filter or an electrostatic precipitator is connected to the downstream side of the flue 20, and the preceding stage The outlet exhaust gas temperature to the steam condensation temperature ( 00 ° C.) or higher, and control between the melting point (146.9 ° C.) or less acidic ammonium sulfate, moisture,
A technology in which an economizer 30 coated with a heat-resistant / acid-resistant material or a fine ceramics coating is installed as a heat exchanger for preventing the dust removing device 40 from being corroded and blocked by a wet substance such as molten acid ammonium sulfate and collecting it as a dry powder. It is a measure that has been taken.

【0012】[0012]

【作用】次に本発明の作用を説明する。先ず、本発明は
ボイラ燃焼に先立って、アンモニア接触還元用の触媒を
ボイラ後部煙室からボイラ本体内部に一定時間噴霧す
る。すると、触媒は後部煙室と煙管と後部煙室と煙道内
面に付着する。そして、その後ボイラの燃焼を開始し
て、ボイラ後部よりアンモニアを定量噴霧する。する
と、アンモニア接触還元用の触媒によって下記の反応が
生じ、脱硝・脱硫作用を呈するものである。
Next, the operation of the present invention will be described. First, according to the present invention, prior to combustion of a boiler, a catalyst for catalytic reduction of ammonia is sprayed from the rear smoke chamber of the boiler into the interior of the boiler for a certain period of time. Then, the catalyst adheres to the rear smoke chamber, the smoke pipe, the rear smoke chamber, and the inner surface of the flue. Then, after that, combustion of the boiler is started, and ammonia is quantitatively sprayed from the rear part of the boiler. Then, the following reaction occurs due to the catalyst for catalytic reduction of ammonia, and exhibits a denitration / desulfurization action.

【0013】[0013]

【化1】 Embedded image

【0014】また、「請求項2」の発明は、ダスト除去
装置の前段に、出口排ガス温度を水蒸気の凝縮温度(1
00℃)以上、酸性硫安の融点(146.9℃)以下の
間にコントロールして、水分、溶融酸性硫安等の湿性物
によるダスト除去装置40の腐蝕並びに閉塞を防止する
と共にドライな粉末とし回収する熱交換機として、耐熱
・耐酸性材質又はファインセラミックス塗料を塗布した
エコノマイザ30を設置したので、上記「化1」で生成
される酸性硫安を粉末状で回収できる作用を呈するもの
である。
Further, in the invention of "Claim 2", the outlet exhaust gas temperature is set to the condensation temperature (1) of the steam before the dust removing device.
The temperature is controlled to be not lower than 00 ° C. and not higher than the melting point of acidic ammonium sulfate (146.9 ° C.) to prevent the dust removing device 40 from being corroded and clogged by a wet substance such as water and molten acidic ammonium sulfate, and collected as a dry powder. Since the economizer 30 coated with a heat resistant / acid resistant material or a fine ceramics paint is installed as the heat exchanger, the acid ammonium sulfate produced in the above "Chemical formula 1" can be recovered in powder form.

【0015】[0015]

【実施例】次に、本発明の実施例を添付図面にしたがっ
て説明する。最初に、この発明に使用したアンモニア接
触による同時脱硝・脱硫触媒について説明する。原料と
なる石炭灰は、前述のように石炭を燃料として用いる火
力発電所や工場からの石炭フライアッシュ等をいう。そ
して、この石炭灰に、アルカリ溶液を加え、加圧、加熱
することによって陽イオン交換能を持つ多孔質の石炭灰
超微粒子を得る。なお、この処理された石炭灰微粒子
は、Na型で触媒活性が低いため、これを金属イオン等
で交換して活性の高い所望のアンモニア接触還元用の触
媒を得ることができる。
Embodiments of the present invention will now be described with reference to the accompanying drawings. First, the simultaneous denitration / desulfurization catalyst by contacting ammonia used in the present invention will be described. The coal ash as a raw material refers to coal fly ash from a thermal power plant or factory that uses coal as a fuel as described above. Then, an alkaline solution is added to this coal ash, which is pressurized and heated to obtain porous coal ash ultrafine particles having a cation exchange ability. Since the treated coal ash fine particles are Na type and have low catalytic activity, they can be exchanged with metal ions or the like to obtain a desired highly active catalytic catalyst for ammonia reduction.

【0016】このアンモニア接触還元用の触媒のNOx
分解、同時SO2中和除去に関する実験は、高尾鉄工所
製の蒸発量3t/hの煙管式ボイラを用いて行った。使
用した燃料は、S分1.8%の重質ガスオイルに、高N
Ox源としてトリエチレンテトラミン=H2N(CH2
2NH)3HをN分含有量3500ppmになるよう添
加攪拌し、50〜60℃に保温し、1200リットルの
サービスタンクに保管し、燃焼に供した。テストは3t
/h蒸発量の定格燃焼量の約70%=160リットル/
hと約60%=140リットル/hを燃焼量として、自
己再循環式低NOxバーナを用いて行った。触媒は、後
部煙室(約950〜1050℃)の右下方の特別に設け
られた注入口より140g/分、1時間連続して噴霧注
入した。1時間の噴霧終了後、前後部煙室並びに煙管、
煙道を点検したところ、超微粒の触媒が特にガス温度4
00〜550℃の前部煙室には層状となって付着し、前
部扉の保温材キャスタブルは触媒色に変色していた。
NOx of this catalyst for catalytic reduction of ammonia
Experiments on decomposition and simultaneous neutralization of SO 2 were carried out using a smoke tube type boiler manufactured by Takao Iron Works with an evaporation amount of 3 t / h. The fuel used was heavy gas oil with an S content of 1.8% and high N content.
Triethylenetetramine = H 2 N (CH 2 C as Ox source
H 2 NH) 3 H was added and stirred so that the N content was 3500 ppm, kept at 50 to 60 ° C., stored in a 1200 liter service tank, and burned. The test is 3t
/ H About 70% of the rated combustion amount of evaporation = 160 liters /
h and about 60% = 140 liters / h were used as the combustion amount, and a self-recirculating low NOx burner was used. The catalyst was continuously spray-injected at 140 g / min for 1 hour from a specially provided inlet at the lower right of the rear smoke chamber (about 950 to 1050 ° C.). After the end of spraying for 1 hour, the front and rear smoke chambers and smoke tubes,
When the flue was inspected, it was found that the ultrafine catalyst had a gas temperature of 4
Layers adhered to the front smoke chamber at 00 to 550 ° C. in layers, and the heat insulating material castable on the front door turned into a catalyst color.

【0017】アンモニアは35%水溶液とし、ボイラ後
部煙室の火炎ノゾキ窓周辺を改造し、流量計を通し定量
噴霧を行った。多くの微細空洞を有する触媒は、アンモ
ニア噴霧開始と同時にNOxの接触還元には直ちに効果
を現わすが、SO2の中和反応の開始に優先してアンモ
ニアをその表面及び微細空洞内に貯蔵する。ゼオライト
触媒の貯蔵能力の大きいことは、一般的によく知られて
いる事実である。したがって、アンモニア噴霧開始後3
0分〜1時間は、NOx接触還元に要する以上の量を追
加して注入し、SO2の中和反応が開始されると共に、
NO:NH3のモル比1:0.9、SO2:NH3のモル
比を1:1.9にコントロールし、リークアンモニアが
出ないようコントロールした。その結果「表1」の結果
が得られ、NOx:82.2%、SO2:93%の低減
に成功した。なお、「表1」の試験は、燃焼に供された
燃料はN分0.35%、S分1.8%を含有する重質ガ
スオイルを使用し、通常バーナを自己再循環低NOxバ
ーナに改造し、通常バーナでのNOx値250〜260
ppmを200〜220ppmに低減させた後、同時脱
硝・脱硫試験を行った。
Ammonia was used as a 35% aqueous solution, and the vicinity of the flame nozzi window in the smoke chamber at the rear of the boiler was remodeled and a fixed amount was sprayed through a flow meter. A catalyst having many fine cavities has an immediate effect on catalytic reduction of NOx simultaneously with the start of ammonia spraying, but stores ammonia on the surface and in the fine cavities prior to the initiation of SO 2 neutralization reaction. . It is a well known fact that the storage capacity of zeolite catalysts is large. Therefore, 3
During 0 minutes to 1 hour, an amount more than the amount required for NOx catalytic reduction is additionally injected to start the SO 2 neutralization reaction, and
The molar ratio of NO: NH 3 was controlled to 1: 0.9, and the molar ratio of SO 2 : NH 3 was controlled to 1: 1.9 so as to prevent leakage of ammonia. As a result, the results shown in Table 1 were obtained, and NOx: 82.2% and SO 2 : 93% were successfully reduced. In the test of "Table 1", the fuel used for combustion was a heavy gas oil containing N content of 0.35% and S content of 1.8%, and a normal burner was used as a self-recirculating low NOx burner. NOx value of normal burner 250-260
After reducing the ppm to 200 to 220 ppm, a simultaneous denitration / desulfurization test was conducted.

【0018】[0018]

【表1】 [Table 1]

【0019】翌日、触媒は一切炉内に供給せず、前日の
ボイラ内部に付着したままのものの触媒の持続有効性を
確認するため、前日のテスト終了後約18時間目に燃焼
を開始した。アンモニア水溶液の濃度は前日同様35%
として後部から噴霧した。噴霧量は、NOとSO2の濃
度に対し、合計でNOに対してはモル比で1:0.9、
SO2に対しては同じくモル比で1:1.9を加え、昨
日同様の量としたが、NOxは30分後には37pp
m、その後はあまり大きい変化もなく、1時間後でも3
7ppmであったが、SO2はやや遅れて40分後から
大きく低減を始め、1時間後には5ppmとなった。前
日と同様、コールドスタートであったが、ボイラ内部に
付着した触媒がNH3を吸着して、亜硫酸アンモニウム
となり、さらにこの亜硫酸アンモニウムが触媒の機能を
高めSO2の中和反応を促進したが、脱硫活性が発現す
るまで約30分程度の遅れが生じた。
On the next day, the catalyst was not supplied into the furnace at all, and combustion was started about 18 hours after the end of the test on the previous day in order to confirm the sustaining effectiveness of the catalyst that remained attached to the inside of the boiler on the previous day. The concentration of the aqueous ammonia solution is 35%, the same as the previous day.
As sprayed from the rear. The spray amount is 1: 0.9 in terms of the molar ratio of NO and SO 2 to the total NO.
The same amount was added to SO 2 in a molar ratio of 1: 1.9, and the amount was the same as yesterday, but NOx was 37 pp after 30 minutes.
m, after that there was not much change and it was 3 even after 1 hour
Although it was 7 ppm, SO 2 started to decrease greatly after 40 minutes with a slight delay and became 5 ppm after 1 hour. As with the previous day, it was a cold start, but the catalyst adhering to the inside of the boiler adsorbed NH 3 and became ammonium sulfite, and this ammonium sulfite further enhanced the function of the catalyst and accelerated the neutralization reaction of SO 2 , There was a delay of about 30 minutes until the desulfurization activity appeared.

【0020】したがって、このことは、この触媒を用い
て炉内脱硝・脱硫を行う場合、NOxについてはそのア
ンモニア注入場所が950℃〜1050℃と火炎の先端
であるため、40〜50%程度は無触媒脱硝効果で数分
で低くなるのに対し、SO2は触媒の表面及び細孔内に
アンモニアガスを十分に吸着し、亜硫酸アンモニウムと
なり、さらにこの亜硫酸アンモニウムが触媒の機能を高
めSO2の中和反応を促進したが、触媒活性が発現する
までに30〜60分を要したものと推定される。これ
は、同じようにコールドスタートした場合、5回とも同
じ結果になったことから結論づけられた。また、この方
法では、触媒が自己のの表面及び細孔空洞内にNH3
十分に吸着し、かつ所定の温度に上昇して脱硫活性を発
現するまでは脱硝しか進行しないが、触媒の脱硫活性が
発現してからでも、アンモニアの注入量がNOに対して
そのモル比の1:1以下であれば、多少脱硝率は劣るが
脱硝のみが行われて、脱硫はほとんど行われず、脱硝に
対して選択性のあることが発見された。
Therefore, this means that when performing NOx removal / desulfurization in a furnace using this catalyst, NOx is injected at 950 ° C. to 1050 ° C., which is the tip of the flame, and therefore about 40 to 50% The catalyst-free denitration effect lowers the temperature within a few minutes, whereas SO 2 adsorbs ammonia gas sufficiently on the surface and pores of the catalyst to form ammonium sulfite, and this ammonium sulfite enhances the function of the catalyst to increase the SO 2 content. Although the neutralization reaction was promoted, it is estimated that it took 30 to 60 minutes until the catalytic activity was expressed. This was concluded from the fact that the same results were obtained for all five times when cold starting was performed in the same manner. Further, in this method, only denitration proceeds until the catalyst sufficiently adsorbs NH 3 on its surface and in the pore cavities and reaches a predetermined temperature to exhibit desulfurization activity. Even after the activity is expressed, if the injection amount of ammonia is 1: 1 or less of the molar ratio with respect to NO, the NOx removal rate will be somewhat inferior, but only NOx removal will be performed and almost no desulfurization will be performed. It was discovered to be selective for.

【0021】すなわち、アンモニア注入量によって、脱
硝のみか、或いは脱硝+脱硫か、或いは脱硝+50%脱
硫程度に止めるか、選択可能であることがわかった。触
媒の種類も、石炭灰に金属担持銅(Cu)、鉄(Fe)
等と数多くの試験を繰返したが、NOxの濃度は銅で3
7ppmと水素(H)型の37ppmと大きい変化はな
く、鉄担持触媒ではNOx40ppm、SO2126p
pmが下限となり、前2者にやや劣り触媒活性持続時間
も短時間であった。以上の結論から、脱硫率はやや劣る
が、脱硝率はほとんど同じで、しかも触媒活性がある程
度持続し、金属成分を担持しない無害で安価な水素
(H)型触媒の方が経済的と言える。
That is, it has been found that it is possible to select only denitration, denitration + desulfurization, or denitration + 50% desulfurization depending on the amount of ammonia injection. The type of catalyst is also coal ash and metal-supported copper (Cu), iron (Fe)
Although many tests were repeated, etc., the concentration of NOx was 3 with copper.
There is no significant change from 7 ppm to 37 ppm of hydrogen (H) type, NOx 40 ppm, SO 2 126 p for iron supported catalyst
The pm was the lower limit, which was slightly inferior to the former two and the catalytic activity duration was short. From the above conclusion, it can be said that a harmless and inexpensive hydrogen (H) -type catalyst, which has a slightly lower desulfurization rate but almost the same denitration rate, has a certain level of catalytic activity, and does not carry a metal component, is economical.

【0022】本実施例において使用した測定器は、NO
x(JIS B 7982)、SO2(JIS B 7
981)、O2(JIS B 7983)、CO(JI
SK 0151)、CO2(JIS K 0151)、
排ガス温度(JIS C1601)のJIS規格に基づ
くものである。また、測定は計量証明事業者(東京都第
566号)である本願出願人・株式会社日本環境アセス
メントセンターが行った。
The measuring instrument used in this embodiment is NO
x (JIS B 7982), SO 2 (JIS B 7
981), O 2 (JIS B 7983), CO (JI
SK 0151), CO 2 (JIS K 0151),
It is based on the JIS standard of exhaust gas temperature (JIS C1601). The measurement was performed by the applicant of the present invention, Japan Environmental Assessment Center Co., Ltd., which is a measurement certification business operator (Tokyo No. 566).

【0023】脱硝・脱硫試験終了後、エコノマイザ(耐
熱ガラス製)並びに煙道内部を検査したところ、エコノ
マイザ排ガス入口温度205〜220℃に対し、熱交換
した後の排ガス温度を水蒸気の凝縮温度100℃以上か
ら酸性硫安の融点146.9℃以下の105〜130℃
にコントロールしたため、耐熱ガラスパイプ表面は多量
の粉末状の灰色の硫安・亜硫安・酸性硫安の粉末が付着
していた。煤塵の付着も多少認められたが、この排ガス
出口温度のコントロール(大型軟水タンクとの間の流
通)によってアンモニア注入法においても排ガスの水洗
処理を行わず、完全な乾式法として副生物である硫安等
の回収に成功した。
After the denitration / desulfurization test, the inside of the economizer (made of heat-resistant glass) and the flue were inspected, and the exhaust gas temperature after heat exchange was compared with the exhaust gas inlet temperature of 205 to 220 ° C, and the condensation temperature of steam was 100 ° C. From the above, the melting point of acidic ammonium sulfate is 146.9 ° C or less and 105 to 130 ° C.
As a result, a large amount of powdery gray ammonium sulphate / ammonium sulphite / acidic ammonium sulphate powder adhered to the surface of the heat resistant glass pipe. Although some adhesion of dust was also observed, this exhaust gas outlet temperature control (circulation with a large soft water tank) did not wash the exhaust gas even in the ammonia injection method, and as a complete dry method, ammonium sulfate, a by-product, was used. Etc. were successfully collected.

【0024】次に本発明装置を説明する。図中、10が
ボイラ本体で、このボイラ本体10は、後部煙室11と
前部煙室12とを有し、燃焼室13の外側に該後部煙室
11と前部煙室12とを連通する煙管14,14,14
・・・を設け、排気は後部煙室11より右側の煙管1
4,14,14・・・を通って前部煙室12に導かれた
後、左側の煙管14,14,14・・・を通って後部排
気口17より煙道20に排気される従来公知な煙管式を
使用しているが、無論図示とは別な従来公知な水管式の
ボイラを使用してもよい。
Next, the device of the present invention will be described. In the figure, 10 is a boiler body, and this boiler body 10 has a rear smoke chamber 11 and a front smoke chamber 12, and the rear smoke chamber 11 and the front smoke chamber 12 communicate with each other outside the combustion chamber 13. Smoke pipes 14, 14, 14
... is provided, and the exhaust is a smoke pipe 1 on the right side of the rear smoke chamber 11.
After being guided to the front smoke chamber 12 through 4, 14, 14, ..., Exhausted to the flue 20 from the rear exhaust port 17 through the left smoke pipe 14, 14, 14 ,. Although a simple smoke tube type is used, it goes without saying that a conventionally known water tube type boiler other than the illustrated one may be used.

【0025】そして、ボイラ本体10の後部煙室11
(水管式のボイラの場合は、後部煙室11が無いので直
接燃焼室)に、石炭灰を高温・高圧にて長時間アルカリ
処理して微粒化され多孔質となった石炭灰をイオン交換
したアンモニア接触還元用の触媒の触媒噴霧口15を設
けてある。なお、図示はしていないが、該触媒噴霧口1
5には触媒定量噴射装置が連結されるのは無論である。
The rear smoke chamber 11 of the boiler body 10
(In the case of a water tube type boiler, since the rear smoke chamber 11 is not provided, the direct combustion chamber is used), the coal ash is subjected to alkali treatment at high temperature and high pressure for a long time, and the coal ash that has been atomized to become porous is ion-exchanged. A catalyst spray port 15 for a catalyst for catalytic reduction of ammonia is provided. Although not shown, the catalyst spray port 1
Needless to say, the catalyst fixed amount injection device is connected to 5.

【0026】そして、上記触媒噴霧口15より上記触媒
を噴霧して、後部煙室11、煙管14,14,14・・
・、前部煙室12ないし排気口17に連結される煙道2
0の内面に該触媒を付着させて、或は水管式のボイラの
場合は燃焼室側壁の水管その他の熱交換機部位乃至煙道
20の内面に該触媒を付着させて、これらの各部位を触
媒反応器として利用している。なお、後記するエコノマ
イザ30までにも触媒を付着させて触媒反応器として利
用してもよいものである。
Then, the catalyst is sprayed from the catalyst spray port 15, and the rear smoke chamber 11, the smoke tubes 14, 14, 14 ...
.. Flue 2 connected to front smoke chamber 12 or exhaust port 17
0 on the inner surface, or in the case of a water tube type boiler, the water catalyst on the side wall of the combustion chamber or other heat exchanger parts or the inner surface of the flue 20 to attach the catalyst, and It is used as a reactor. A catalyst may be attached to the economizer 30 described below and used as a catalytic reactor.

【0027】すなわち、従来は大型な触媒反応器を別途
設けていたが、本発明では既存の、後部煙室11、煙管
14,14,14・・・、前部煙室12、排気口17を
触媒反応器として兼用するようになしている。
That is, conventionally, a large catalytic reactor was separately provided, but in the present invention, the existing rear smoke chamber 11, smoke pipes 14, 14, 14, ..., Front smoke chamber 12, exhaust port 17 are provided. It is designed to be used as a catalytic reactor.

【0028】また、上記ボイラ本体10の後部にはアン
モニアを燃焼室13に噴霧するアンモニア注入口16を
単数または複数設け、図示しない定量供給噴射装置を介
して、アンモニア溶液を定量噴霧できるようになしてあ
る。
Further, a single or plural ammonia inlets 16 for spraying ammonia into the combustion chamber 13 are provided at the rear portion of the boiler body 10 so that the ammonia solution can be sprayed quantitatively via a quantitative supply injection device (not shown). There is.

【0029】そして、上記煙道20の下流側に耐熱・耐
酸用ダストフィルタ又は電気集じん機等で構成する乾式
のダスト除去装置40を連結し、その前段に、出口排ガ
ス温度を水蒸気の凝縮温度(100℃)以上、酸性硫安
の融点(146.9℃)以下の間にコントロールして、
水分、溶融酸性硫安等の湿性物によるダスト除去装置4
0の腐蝕並びに閉塞を防止し、ドライな粉末とし回収す
る熱交換機として、耐熱・耐酸性材質又はファインセラ
ミックス塗料を塗布したエコノマイザ30を設置してな
る。
A dry type dust removing device 40 composed of a heat / acid resistant dust filter or an electric dust collector is connected to the downstream side of the flue 20, and the outlet exhaust gas temperature is set to the condensation temperature of water vapor in the preceding stage. The temperature is controlled to be not lower than (100 ° C.) and not higher than the melting point of acidic ammonium sulfate (146.9 ° C.),
Dust removing device 4 with moisture, moistened acid ammonium sulfate, etc.
An economizer 30 coated with a heat resistant / acid resistant material or a fine ceramics coating is installed as a heat exchanger for preventing corrosion and blockage of 0 and recovering it as a dry powder.

【0030】排気口17よりの排気は煙道20でダスト
除去装置40に導かれ、ダストを除去して煙突50より
大気中に排気されるが、従来はダスト及びSOx及びN
Ox等の除去に湿式スクラバーを使用するのが一般的で
あった。しかし、湿式スクラバーは多量の水を使用する
し、後の水処理が煩雑であるので、本発明では乾式のダ
スト除去装置40を使用している。
Exhaust gas from the exhaust port 17 is guided to the dust removing device 40 through the flue 20 to remove the dust and then exhausted into the atmosphere from the chimney 50. Conventionally, dust, SOx and N are discharged.
It was common to use a wet scrubber to remove Ox and the like. However, since the wet scrubber uses a large amount of water and the subsequent water treatment is complicated, the dry dust removing device 40 is used in the present invention.

【0031】しかし、乾式のダスト除去装置40を使用
する場合、SOx及びNOxは捕集困難で、SOxをア
ンモニアと反応させ硫安・亜硫安・酸性硫安として回収
しようとすれば、この酸性硫安は湿潤したり、比較的低
い温度で融解して強い酸性を呈して機器を腐食したり、
閉塞事故を起こす。そこで、本発明は排ガスを耐熱・耐
酸性材質又はファインセラミックス塗料を塗布したエコ
ノマイザ30を設置して、水蒸気の凝縮温度(100
℃)以上、酸性硫安の融点(146.9℃)以下にコン
トロールし、硫安・亜硫安・酸性硫安を粉末状態で回収
するようになしてあるものである。
However, when the dry type dust removing device 40 is used, it is difficult to collect SOx and NOx. If SOx is reacted with ammonia to recover as ammonium sulfate, ammonium sulfite, or acidic ammonium sulfate, the acidic ammonium sulfate will be wet. Or melting at a relatively low temperature and exhibiting strong acidity to corrode the equipment,
Cause a blockage accident. Therefore, in the present invention, an economizer 30 in which the exhaust gas is coated with a heat-resistant / acid-resistant material or a fine ceramics coating is installed, and the condensation temperature of the steam (100
C.) to the melting point of acidic ammonium sulfate (146.9 ° C.) or less, and ammonium sulfate, ammonium sulfite, and acidic ammonium sulfate are collected in a powder state.

【0032】なお、図中、18は燃焼用バーナノズル、
21はガスサンプリング口、31はエコノマイザ30へ
循環する水及びボイラ本体に供給する水のタンクを示す
ものである。また、図中細い矢印は水路系を示し、太い
矢印は酸性硫安の取り出し部位を示し、白抜き矢印は排
ガスの流れ方向を示すものである。
In the figure, 18 is a burner nozzle for combustion,
Reference numeral 21 is a gas sampling port, and 31 is a tank of water circulating to the economizer 30 and water supplied to the boiler body. Also, in the figure, thin arrows indicate the water channel system, thick arrows indicate the extraction site of acidic ammonium sulfate, and white arrows indicate the flow direction of the exhaust gas.

【0033】[0033]

【発明の効果】この発明に係るアンモニア接触による同
時脱硝・脱硫用の触媒及びこれを使用した炉内同時脱硝
・脱硫法によれば、石炭灰の再資源化を図ることがで
き、触媒自体のコストを従来の触媒に比較すると大幅に
低コストとし、使い捨てとすることも可能で、加えて従
来不可能といわれた中小型ボイラの脱硝・脱硫を可能と
することができる脱硝・脱硫方法及び装置を提供できる
ものである。
According to the catalyst for simultaneous denitration / desulfurization by ammonia contact according to the present invention and the simultaneous denitration / desulfurization method in a furnace using the same, it is possible to recycle coal ash and to recover the catalyst itself. The cost is significantly lower than that of conventional catalysts, it can be disposable, and in addition it can denitrify and desulfurize small and medium-sized boilers, which has been said to be impossible in the past. Can be provided.

【0034】特に、本発明は後部煙室11、煙管14,
14,14・・・、前部煙室12ないし排気口17に連
結される煙道20を、触媒反応器として利用しているの
で狭い既存の工場でも利用できるコンパクトな脱硝・脱
硫方法及び装置を提供できるものである。
In particular, the present invention relates to the rear smoke chamber 11, the smoke pipe 14,
A compact denitration / desulfurization method and apparatus that can be used even in a small existing factory because the flue 20 connected to the front smoke chamber 12 or the exhaust port 17 is used as a catalytic reactor. Can be provided.

【0035】また、副生品である硫安・亜硫安・酸性硫
安等の回収は、従来排ガスの水洗処理による以外は不可
能とされたが、熱交換機を耐熱・耐酸性のエコノマイザ
とすることにより、完全な乾式脱硫が可能で、従来の湿
式スクラバの煩雑な水処理が不要であるので、ランニン
グコストが経済的な脱硝・脱硫方法及び装置を提供でき
るものである。
The recovery of the by-products such as ammonium sulfate, ammonium sulfite, and acidic ammonium sulfate was impossible except by washing the exhaust gas with water, but by using a heat exchanger as a heat-resistant and acid-resistant economizer. Since complete dry desulfurization is possible and the complicated water treatment of the conventional wet scrubber is unnecessary, it is possible to provide a denitration / desulfurization method and apparatus with economical running costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施する脱硝・脱硫装置の一実施例
正面図である。
FIG. 1 is a front view of an embodiment of a denitration / desulfurization apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

10 ボイラ本体 11 後部煙室 12 前部煙室 14 煙管 15 触媒噴霧口 17 排気口 20 煙道 30 エコノマイザ 40 ダスト除去装置 10 Boiler Main Body 11 Rear Smoke Chamber 12 Front Smoke Chamber 14 Smoke Tube 15 Catalyst Spraying Port 17 Exhaust Port 20 Flue 30 Economizer 40 Dust Removal Device

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年2月13日[Submission date] February 13, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 脱硝・脱硫方法及び装置Title: Denitration and desulfurization method and device

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、脱硝・脱硫方法及び
装置に関するもので、さらに詳しくは火力発電所や工場
等から産業廃棄物として排出される石炭灰の利用と、ボ
イラ排ガスの脱硝・脱硫に際し、反応空間が狭いため反
応時間がとれず、従来不可能とされた中小型ボイラ等の
排ガスの浄化を可能ならしめ、重油等の価格の安い高N
分、高S分の燃料の使用が可能となり、加えて従来大量
の工業用水と排水処理を必要とした排ガス脱硫装置に代
り、ランニングコストの安価な乾式の脱硝・脱硫が可能
となる脱硝・脱硫方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration / desulfurization method and device, and more particularly to the use of coal ash discharged as industrial waste from thermal power plants and factories, and denitration / desulfurization of boiler exhaust gas. In this case, the reaction space is narrow and the reaction time cannot be taken. This makes it possible to purify exhaust gas from small and medium-sized boilers, which has been impossible in the past.
Denitrification / desulfurization that enables the use of high- and low-s-content fuels, and in addition to the conventional exhaust gas desulfurization equipment that required large amounts of industrial water and wastewater treatment, enables dry denitration / desulfurization with low running costs. The present invention relates to a method and an apparatus.

【0002】[0002]

【従来の技術】中小型ボイラをもつ工場は、一般的に工
場敷地も狭く、法律による排出規制が強化されても脱硝
・脱硫装置等の広い空間や敷地を必要とする高額な設備
の導入は不可能であったため、価格の高い低N分、低S
分の軽油・灯油等の軽質油や天然ガス等に燃料転換して
規制値をクリアするよう努力してきた。しかし、C重油
に対し、1.5倍から3.5倍という価格の高い燃料の
使用は、企業経営を圧迫し、今後予想される更なる規制
強化には対応不可能となり、規制の厳しい都市部から規
制値のゆるやかな地方部に移転する工場が続出し始めて
いるのが現状である。
2. Description of the Related Art Generally, factories with small and medium-sized boilers have a small plant site, and even if the emission regulations are tightened by law, it is not possible to introduce expensive equipment such as denitration and desulfurization equipment that requires a wide space and site. Because it was impossible, the price is high, low N, low S
We have endeavored to meet the regulated value by switching to light oil such as light oil and kerosene and natural gas. However, the use of fuel that is 1.5 to 3.5 times more expensive than C heavy oil puts pressure on corporate management, making it impossible to cope with the further tightening of regulations that is expected in the future, and cities that are highly regulated. The current situation is that a number of factories are moving from local areas to rural areas where the regulation values are moderate.

【0003】なお、窒素酸化物(以下NOxという)
は、主として自動車や航空機等の移動発生源からの排気
ガス、火力発電所や工場等の固定発生源からの燃焼排ガ
スより排出される。これらのNOxの排出濃度を低減す
るため、自動車のエンジンでは3元触媒(NOx、C
O、HCの3種の汚染物質を分解するための触媒)が開
発され、既に80年代初期から生産されている新車には
その設置が義務づけられ、自動車排ガスによる大気汚染
はディーゼル車を除き時間の経過と共に解決される見通
しとなった。
Nitrogen oxide (hereinafter referred to as NOx)
Is mainly emitted from exhaust gas from mobile sources such as automobiles and aircraft, and combustion exhaust gas from fixed sources such as thermal power plants and factories. In order to reduce these NOx emission concentrations, three-way catalysts (NOx, C
A catalyst for decomposing three kinds of pollutants (O and HC) has been developed, and it is obligatory to install it in new cars that have already been produced since the early 1980s. It will be resolved over time.

【0004】一方、固定発生源では、法律による規制の
強化が年と共に厳しくなり、上記のように良質の軽質
油、天然ガス等に転換するか、もしくは価格の安い重質
油を燃焼する場合は、脱硝・脱硫・集じん装置等の設置
が必要となってきた。脱硫装置は、一般的に広大な敷地
と大量の工業用水を必要とする石灰・石膏法が主流を占
めており、アンモニアによる中和法はSOと中和の際
に生成する腐触性があり、かつ融点の低い酸性硫安が省
エネ機器である空気予熱器を腐蝕し、閉塞を起こすとい
う理由から一般には普及していない。
On the other hand, in the case of fixed generation sources, the stricter regulation by law becomes stricter as the years pass, and as described above, when converting to high-quality light oil, natural gas, etc., or burning heavy oil at a low price, However, it has become necessary to install denitration, desulfurization and dust collection equipment. Desulfurization equipment is dominated by the lime / gypsum method, which generally requires a vast site and a large amount of industrial water. The neutralization method with ammonia has a corrosive property that is generated during neutralization with SO 2. However, it is not widely used because acidic ammonium sulfate having a low melting point corrodes the air preheater, which is an energy-saving device, and causes blockage.

【0005】そのうえ、従来のアンモニアによる脱硫法
では、まず高温排ガス中のSOをCuO又はV
x、Cr−TiO系の触媒で酸化してSO
し、生成SOをNHOとのアンモニウム塩化反
応により脱硫する方法 SO+1/2O→SO SO+HO+N
→(NH)HSO(NH)HSO+NH
→(NHSO が主流となっていたが、このSO+SOの酸化率
は、温度条件に大きく依存するため、温度コントロール
が十分に行われても最高で 90%程度、排ガス温度の
変動が大きく触媒反応器の温度コントロールが完全に追
従できない場合は60〜85%と低く、十分に満足でき
るものではなかった。
Furthermore, in the conventional desulfurization method using ammonia, first, SO 2 in high temperature exhaust gas is converted into CuO or V 2 O.
x, a method of oxidizing SO 3 by oxidizing a Cr 2 O 3 —TiO 2 based catalyst and desulfurizing the generated SO 3 by ammonium chlorination reaction with NH 3 H 2 O SO 2 + 1 / 2O 2 → SO 3 SO 3 + H 2 O + N
H 3 → (NH 4 ) HSO 4 (NH 4 ) HSO 4 + NH 3
→ (NH 4 ) 2 SO 4 was the mainstream, but the oxidation rate of this SO 2 + SO 3 largely depends on the temperature conditions, so even if the temperature control is sufficiently performed, it is about 90% at maximum. When the temperature control of the catalytic reactor cannot be completely tracked due to a large temperature fluctuation, it was as low as 60 to 85%, which was not sufficiently satisfactory.

【0006】排ガス中のSOを触媒によりSOに酸
化せず、そのままNHとHOとのアンモニウム塩化
反応で硫安(NHSOとする場合は、HOの
存在下で反応温度を60℃程度の低温に保つ必要があ
り、一般のボイラ排ガスの場合、200℃以上と温度が
高いため冷却と再加熱等による熱損失が大きく、省エネ
ルギーに悪影響を与える。
[0006] not oxidize the SO 2 in the exhaust gas to SO 2 by the catalyst, to the ammonium sulfate (NH 4) 2 SO 4 in it NH 3 and ammonium chloride react with H 2 O, the presence of H 2 O It is necessary to keep the reaction temperature at a low temperature of about 60 ° C., and in the case of general boiler exhaust gas, the temperature is as high as 200 ° C. or more, so that heat loss due to cooling and reheating is large, which adversely affects energy saving.

【0007】なお、脱硝装置は、乾式法、湿式法がある
ものの、いずれのケースも相当の空間と多額の投資を必
要とする課題を有している。そして、上記のNOxの乾
式処理技術としては、接触分解法と接触還元法がある
が、前者は未だ研究開発段階にあって実用化されていな
い。また、後者の接触還元法は選択法と非選択法とに分
けられる。
Although the denitration apparatus includes a dry method and a wet method, each case has a problem that it requires a considerable space and a large amount of investment. As the above-mentioned dry treatment technology of NOx, there are a catalytic decomposition method and a catalytic reduction method, but the former is still in the research and development stage and has not been put to practical use. The latter catalytic reduction method is divided into a selective method and a non-selective method.

【0008】しかし、上記接触分解法については、多く
の研究が行われ、さまざまな種類の触媒の開発が行われ
たが、いずれもボイラ実排ガスでは10〜20%程度の
NOxが分解された実績がある程度で、排ガス中に
、SO、CO等の存在しない(現実的でない)場
合においては、700℃以上の高温でようやく30%前
後の分解効率を達成したに過ぎないという課題を有して
いる。
However, many studies have been carried out on the catalytic cracking method and various kinds of catalysts have been developed. In all cases, about 10 to 20% of NOx is decomposed in boiler actual exhaust gas. However, in a case where O 2 , SO 2 , CO, etc. do not exist in the exhaust gas (unrealistic), the decomposition efficiency of about 30% is finally achieved at a high temperature of 700 ° C. or higher. are doing.

【0009】また、実機として採用され、改良を重ねら
れてきた接触還元法もV−TiO系触媒が発明
されたことにより、普及の度を次第に増したが、反応温
度が330〜450℃と狭く、その温度領域空間に大型
の触媒層を設置しなければならないので、中小型ボイラ
用としては一般に普及するに至っていないという課題を
有している。
Further, the catalytic reduction method, which has been adopted as an actual machine and has been continuously improved, has been gradually popularized due to the invention of the V 2 O 5 —TiO 2 type catalyst, but the reaction temperature is from 330 to Since it is as narrow as 450 ° C. and a large catalyst layer must be installed in the temperature region space, it has a problem that it has not become popular for small and medium-sized boilers.

【0010】また、NOx、SOxによる大気汚染の
他、石炭燃焼ボイラから出る産業廃棄物としての石炭灰
の処理は、環境対策上大きな問題となりつつある。我国
では、ほとんどセメント原料や埋め立て材料として処分
されており、今の所あまり大きい社会問題とはなってい
ないが、外国においてはその処分場の確保に困り、現実
に強風の吹くたびごとに周辺住民に多大な迷惑を与える
等、そのために住民の反対運動が起きて苦慮している国
が多いという課題を有している。
Further, in addition to air pollution by NOx and SOx, treatment of coal ash as industrial waste from a coal burning boiler is becoming a big problem in terms of environmental measures. In Japan, most of the waste is disposed of as cement raw material or landfill material, and so far it is not a big social problem, but it is difficult to secure the disposal site in foreign countries, and in reality every time strong wind blows There is a problem that many countries are suffering from the opposition movement of the residents, which causes a great deal of trouble to the people.

【0011】そこで本発明は、以上のような地球環境の
保全という課題に応えようとするもので、石炭灰を主成
分とする使用上の効果の大きい脱硝・脱硫触媒をボイラ
本体並びに煙道内部に付着せしめて反応器とする脱硝・
脱硫方法及び大量の工業用水と排水処理を必要としない
簡易な乾式の脱硝・脱硫装置を提供し、従来反応空間が
狭小なため排ガスの浄化が極めて困難であった中小型ボ
イラの大気汚染対策を容易にすることを目的としたもの
である。
[0011] Therefore, the present invention is intended to meet the above-mentioned problems of global environment conservation. A denitration / desulfurization catalyst containing coal ash as a main component and having a great effect on use is used in the boiler body and the inside of the flue. Denitration to attach as a reactor to a reactor
We provide a simple dry type denitration / desulfurization device that does not require desulfurization method and a large amount of industrial water and wastewater treatment, and measures the air pollution of small and medium-sized boilers where it was extremely difficult to purify exhaust gas due to the narrow reaction space. It is intended to be easy.

【0012】[0012]

【課題を解決するための手段】上記の目的に沿い、先述
特許請求の範囲を要旨とする本発明の構成は前述課題を
解決するために、石炭灰を高温・高圧にて長時間アルカ
リ処理して微粒化され多孔質となった石炭灰を、イオン
交換によってアンモニア接触還元用の触媒とし、該触媒
をボイラ本体の後部煙室からボイラ本体内部に一定時間
噴霧し、ボイラ本体乃至煙道内部にこの触媒を付着せし
めて触媒反応器となし、特別の脱硝・脱硫装置を設置せ
ず、アンモニア水またはアンモニアガスを燃焼排ガスに
混合して該触媒と接触せしめ、NOxを還元分解すると
共に、高温のSOを予めアンモニアを吸着保持した該
触媒によりそのままアンモニアと反応せしめて亜硫酸ア
ンモニウム、酸性硫酸アンモニウム、硫酸アンモニウム
等となし、効率よく脱硝・脱硫を行うことを特徴とする
技術的手段を講じたものである。
In order to solve the above-mentioned problems, in order to solve the above-mentioned problems, the structure of the present invention, which is based on the above-mentioned claims, is treated with alkali at high temperature and high pressure for a long time. The coal ash, which has been atomized to become porous, is used as a catalyst for ammonia catalytic reduction by ion exchange, and the catalyst is sprayed from the rear smoke chamber of the boiler body into the boiler body for a certain period of time, and then into the boiler body or inside the flue. This catalyst is adhered to form a catalytic reactor, no special denitration / desulfurization device is installed, ammonia water or ammonia gas is mixed with combustion exhaust gas and brought into contact with the catalyst, and NOx is reduced and decomposed. SO 2 is reacted with ammonia as it is by the catalyst that adsorbs and holds ammonia in advance to form ammonium sulfite, acidic ammonium sulfate, ammonium sulfate, etc. It is a technical measure that is characterized by performing denitration and desulfurization.

【0013】また、「請求項2」の発明は、ボイラ本体
10の後部煙室11に、石炭灰を高温・高圧にて長時間
アルカリ処理して微粒化され多孔質となった石炭灰をイ
オン交換したアンモニア接触還元用の触媒の触媒噴霧口
15を設け、該触媒噴霧口15より上記触媒を噴霧し
て、後部煙室11、煙管14,14,14・・・、前部
煙室12乃至排気口17に連結される煙道20の内面に
該触媒を付着させて、或は水管式のボイラの場合は燃焼
室側壁の水管その他の熱交換機部位乃至煙道20の内面
に該触媒を付着させて、これらの各部位を触媒反応器と
して利用し、上記煙道20の下流側に耐熱・耐酸用ダス
トフィルタ又は電気集じん機等で構成する乾式のダスト
除去装置40を連結し、その前段に、出口排ガス温度を
水蒸気の凝縮温度(100℃)以上、酸性硫安の融点
(146.9℃)以下の間にコントロールして、水分、
溶融酸性硫安等の湿性物によるダスト除去装置40の腐
蝕並びに閉塞を防止すると共にドライな粉末とし回収す
る熱交換機として、耐熱・耐酸性材質又はファインセラ
ミックス塗料を塗布したエコノマイザ30を設置してな
る技術的手段を講じたものである。
Further, in the invention of "claim 2", in the rear smoke chamber 11 of the boiler main body 10, the coal ash is treated with alkali at high temperature and high pressure for a long time to be atomized to become porous, and the coal ash is ionized. A catalyst spray port 15 for the replaced catalyst for catalytic reduction of ammonia is provided, and the catalyst is sprayed from the catalyst spray port 15 to form a rear smoke chamber 11, smoke tubes 14, 14, 14, ... The catalyst is attached to the inner surface of the flue 20 connected to the exhaust port 17, or in the case of a water pipe type boiler, the catalyst is attached to the water pipe on the side wall of the combustion chamber or other heat exchanger part or the inner surface of the flue 20. By utilizing each of these parts as a catalytic reactor, a dry type dust removing device 40 composed of a heat / acid resistant dust filter or an electrostatic precipitator is connected to the downstream side of the flue 20, and the preceding stage The outlet exhaust gas temperature to the steam condensation temperature ( 00 ° C.) or higher, and control between the melting point (146.9 ° C.) or less acidic ammonium sulfate, moisture,
A technology in which an economizer 30 coated with a heat-resistant / acid-resistant material or a fine ceramics coating is installed as a heat exchanger for preventing the dust removing device 40 from being corroded and blocked by a wet substance such as molten acid ammonium sulfate and collecting it as a dry powder. It is a measure that has been taken.

【0014】[0014]

【作用】次に本発明の作用を説明する。先ず、本発明は
ボイラ燃焼に先立って、アンモニア接触還元用の触媒を
ボイラ後部煙室からボイラ本体内部に一定時間噴霧す
る。すると、触媒は後部煙室と煙管と前部煙室と煙道内
面に付着する。そして、その後ボイラの燃焼を開始し
て、ボイラ後部よりアンモニアを定量噴霧する。する
と、アンモニア接触還元用の触媒によって下記の反応が
生じ、脱硝・脱硫作用を呈するものである。
Next, the operation of the present invention will be described. First, according to the present invention, prior to combustion of a boiler, a catalyst for catalytic reduction of ammonia is sprayed from the rear smoke chamber of the boiler into the interior of the boiler for a certain period of time. Then, the catalyst adheres to the rear smoke chamber, the smoke pipe, the front smoke chamber, and the inner surface of the flue. Then, after that, combustion of the boiler is started, and ammonia is quantitatively sprayed from the rear part of the boiler. Then, the following reaction occurs due to the catalyst for catalytic reduction of ammonia, and exhibits a denitration / desulfurization action.

【0015】[0015]

【化1】 Embedded image

【0016】また、「請求項2」の発明は、ダスト除去
装置の前段に、出口排ガス温度を水蒸気の凝縮温度(1
00℃)以上、酸性硫安の融点(146.9℃)以下の
間にコントロールして、水分、溶融酸性硫安等の湿性物
によるダスト除去装置40の腐蝕並びに閉塞を防止する
と共にドライな粉末とし回収する熱交換機として、耐熱
・耐酸性材質又はファインセラミックス塗料を塗布した
エコノマイザ30を設置したので、上記「化1」で生成
される酸性硫安を粉末状で回収できる作用を呈するもの
である。
Further, in the invention of "Claim 2", the outlet exhaust gas temperature is set to the condensation temperature (1) of the steam before the dust removing device.
The temperature is controlled to be not lower than 00 ° C. and not higher than the melting point of acidic ammonium sulfate (146.9 ° C.) to prevent the dust removing device 40 from being corroded and clogged by a wet substance such as water and molten acidic ammonium sulfate, and collected as a dry powder. Since the economizer 30 coated with a heat resistant / acid resistant material or a fine ceramics paint is installed as the heat exchanger, the acid ammonium sulfate produced in the above "Chemical formula 1" can be recovered in powder form.

【0017】[0017]

【実施例】次に、本発明の実施例を添付図面にしたがっ
て説明する。最初に、この発明に使用したアンモニア接
触による同時脱硝・脱硫触媒について説明する。原料と
なる石炭灰は、前述のように石炭を燃料として用いる火
力発電所や工場からの石炭フライアッシュ等をいう。そ
して、この石炭灰に、アルカリ溶液を加え、加圧、加熱
することによって陽イオン交換能を持つ多孔質の石炭灰
超微粒子を得る。なお、この処理された石炭灰微粒子
は、Na型で触媒活性が低いため、これを金属イオン等
で交換して活性の高い所望のアンモニア接触還元用の触
媒を得ることができる。
Embodiments of the present invention will now be described with reference to the accompanying drawings. First, the simultaneous denitration / desulfurization catalyst by contacting ammonia used in the present invention will be described. The coal ash as a raw material refers to coal fly ash from a thermal power plant or factory that uses coal as a fuel as described above. Then, an alkaline solution is added to this coal ash, which is pressurized and heated to obtain porous coal ash ultrafine particles having a cation exchange ability. Since the treated coal ash fine particles are Na type and have low catalytic activity, they can be exchanged with metal ions or the like to obtain a desired highly active catalytic catalyst for ammonia reduction.

【0018】このアンモニア接触還元用の触媒のNOx
分解、同時SO中和除去に関する実験は、高尾鉄工所
製の蒸発量3t/hの煙管式ボイラを用いて行った。使
用した燃料は、S分1.8%の重質ガスオイルに、高N
Ox源としてトリエチレンテトラミン=HN(CH
CHNH)HをN分含有量3500ppmになるよ
う添加攪拌し、50〜60℃に保温し、1200リット
ルのサービスタンクに保管し、燃焼に供した。テストは
3t/h蒸発量の定格燃焼量の約70%=160リット
ル/hと約60%=140リットル/hを燃焼量とし
て、自己再循環式低NOxバーナを用いて行った。触媒
は、後部煙室(約950〜1050℃)の右下方の特別
に設けられた注入口より140g/分、1時間連続して
噴霧注入した。1時間の噴霧終了後、前後部煙室並びに
煙管、煙道を点検したところ、超微粒の触媒が特にガス
温度400〜550℃の前部煙室には層状となって付着
し、前部扉の保温材キャスタブルは触媒色に変色してい
た。
NOx as a catalyst for this ammonia catalytic reduction
Experiments on decomposition and simultaneous SO 2 neutralization removal were conducted using a smoke tube boiler manufactured by Takao Iron Works with an evaporation amount of 3 t / h. The fuel used was heavy gas oil with an S content of 1.8% and high N content.
Triethylenetetramine = H 2 N (CH 2 as Ox source
CH 2 NH) 3 H was added and stirred so that the N content was 3500 ppm, the mixture was kept warm at 50 to 60 ° C., stored in a 1200 liter service tank, and burned. The test was carried out using a self-recirculating low NOx burner with combustion amounts of about 70% = 160 liters / h and about 60% = 140 liters / h of the rated combustion amount of 3 t / h evaporation amount. The catalyst was continuously spray-injected at 140 g / min for 1 hour from a specially provided inlet at the lower right of the rear smoke chamber (about 950 to 1050 ° C.). After spraying for one hour, the front and rear smoke chambers, smoke pipes, and flues were inspected. As a result, ultrafine particles of catalyst adhered in layers to the front smoke chamber at a gas temperature of 400 to 550 ° C. The heat insulating material castable had a catalyst color change.

【0019】アンモニアは35%水溶液とし、ボイラ後
部煙室の火炎ノゾキ窓周辺を改造し、流量計を通し定量
噴霧を行った。多くの微細空洞を有する触媒は、アンモ
ニア噴霧開始と同時にNOxの接触還元には直ちに効果
を現わすが、SOの中和反応の開始に優先してアンモ
ニアをその表面及び微細空洞内に貯蔵する。ゼオライト
触媒の貯蔵能力の大きいことは、一般的によく知られて
いる事実である。したがって、アンモニア噴霧開始後3
0分〜1時間は、NOx接触還元に要する以上の量を追
加して注入し、SOの中和反応が開始されると共に、
NO:NHのモル比0.9:1、SO:NHのモ
ル比を1:1.9にコントロールし、リークアンモニア
が出ないようコントロールした。その結果「表1」の結
果が得られ、NOx:82.2%、SO:93%の低
減に成功した。なお、「表1」の試験は、燃焼に供され
た燃料はN分0.35%、S分1.8%を含有する重質
ガスオイルを使用し、通常バーナを自己再循環低NOx
バーナに改造し、通常バーナでのNOx値250〜26
0ppmを200〜220ppmに低減させた後、同時
脱硝・脱硫試験を行った。
Ammonia was used as a 35% aqueous solution, and the area around the flame nozoki window in the smoke chamber at the rear of the boiler was modified and a fixed amount was sprayed through a flow meter. A catalyst having many fine cavities has an immediate effect on the catalytic reduction of NOx simultaneously with the start of ammonia spraying, but stores ammonia on the surface and in the fine cavities prior to the initiation of the SO 2 neutralization reaction. . It is a well known fact that the storage capacity of zeolite catalysts is large. Therefore, 3
During 0 minutes to 1 hour, an amount more than the amount required for NOx catalytic reduction is additionally injected to start the SO 2 neutralization reaction, and
NO: molar ratio NH 3 0.9: 1, SO 2 : the molar ratio of NH 3 1: Controls 1.9 was controlled to ensure that there is leakage of ammonia. As a result, the results shown in Table 1 were obtained, and NOx: 82.2% and SO 2 : 93% were successfully reduced. In the test of "Table 1", the fuel used for combustion was a heavy gas oil containing 0.35% of N content and 1.8% of S content, and the normal burner self-recirculating low NOx.
Converted to burner, NOx value of normal burner 250-26
After reducing 0 ppm to 200 to 220 ppm, a simultaneous denitration / desulfurization test was conducted.

【0020】[0020]

【表1】 [Table 1]

【0021】翌日、触媒は一切炉内に供給せず、前日の
ボイラ内部に付着したままのものの触媒の持続有効性を
確認するため、前日のテスト終了後約18時間目に燃焼
を開始した。アンモニア水溶液の濃度は前日同様35%
として後部から噴霧した。噴霧量は、NOとSOの濃
度に対し、合計でNOに対してはモル比で1:0.9、
SOに対しては同じくモル比で1:1.9を加え、昨
日同様の量としたが、NOxは30分後には37pp
m、その後はあまり大きい変化もなく、1時間後でも3
7ppmであったが、SOはやや遅れて40分後から
大きく低減を始め、1時間後には5ppmとなった。前
日と同様、コールドスタートであったが、ボイラ内部に
付着した触媒がNHを吸着して、亜硫酸アンモニウ
ム、酸性硫酸アンモニウム、硫酸アンモニウム等となっ
たが、脱硫活性が発現するまで脱硝よりも約30分程度
の遅れが生じた。
On the next day, the catalyst was not supplied into the furnace at all, and combustion was started about 18 hours after the end of the test on the previous day in order to confirm the continuous effectiveness of the catalyst that remained attached to the inside of the boiler on the previous day. The concentration of the aqueous ammonia solution is 35%, the same as the previous day.
As sprayed from the rear. The spray amount is 1: 0.9 in terms of the molar ratio with respect to the concentration of NO and SO 2 and the total amount of NO.
A similar molar ratio of 1: 1.9 to SO 2 was added to make it the same amount as yesterday, but NOx was 37 pp after 30 minutes.
m, after that there was not much change and it was 3 even after 1 hour
Although it was 7 ppm, SO 2 started to decrease greatly after 40 minutes with a slight delay and became 5 ppm after 1 hour. As with the previous day, it was a cold start, but the catalyst adhering to the inside of the boiler adsorbed NH 3 and became ammonium sulfite, ammonium acid sulfate, ammonium sulfate, etc., but it took about 30 minutes longer than denitration until desulfurization activity appeared. There was some delay.

【0022】したがって、このことは、この触媒を用い
て炉内脱硝・脱硫を行う場合、NOxについてはそのア
ンモニア注入場所が950℃〜1050℃と火炎の先端
であるため、40〜50%程度は無触媒脱硝効果で数分
で低くなるのに対し、SOは触媒の表面及び細孔内に
アンモニアガスを十分に吸着し、亜硫酸アンモニウム、
酸性硫酸アンモニウム、硫酸アンモニウム等となった
が、触媒活性が発現するまでに30〜60分を要したも
のと推定される。これは、同じようにコールドスタート
した場合、5回とも同じ結果になったことから結論づけ
られた。また、この方法では、触媒が自己の細孔空洞内
にNHを十分に吸着し、かつ所定の温度に上昇して脱
硫活性を発現するまでは脱硝しか進行しないが、触媒の
脱硫活性が発現してからでも、アンモニアの注入量がN
Oに対してそのモル比の1:1以下であれば、多少脱硝
率は劣るが脱硝のみが行われて、脱硫はほとんど行われ
ず、脱硝に対して選択性のあることが発見された。
Therefore, this means that when performing NOx removal / desulfurization in a furnace using this catalyst, NOx is injected at 950 ° C to 1050 ° C, which is the tip of the flame. The catalyst-free denitration effect reduces the temperature in a few minutes, while SO 2 adsorbs ammonia gas sufficiently on the surface and pores of the catalyst, and ammonium sulfite,
Although it became acidic ammonium sulfate, ammonium sulfate, etc., it is estimated that it took 30 to 60 minutes until the catalytic activity was expressed. This was concluded from the fact that the same results were obtained for all five times when cold starting was performed in the same manner. In addition, in this method, only denitration progresses until the catalyst sufficiently adsorbs NH 3 in its own pore cavities and reaches a predetermined temperature to express desulfurization activity, but the desulfurization activity of the catalyst is expressed. Even after that, the injection amount of ammonia is N
It has been discovered that if the molar ratio to O is 1: 1 or less, the denitration rate is somewhat inferior, but only denitration is performed, desulfurization is scarcely performed, and there is selectivity for denitration.

【0023】すなわち、アンモニア注入量によって、脱
硝のみか、或いは脱硝+脱硫か、或いは脱硝+50%脱
硫程度に止めるか、選択可能であることがわかった。触
媒の種類も、石炭灰に銅(Cu++)イオン、鉄(Fe
II)イオン等種類の異なる数種の金属イオンや水素
(H+)イオンを担持したものの試験を繰返したが、N
Oxの濃度は銅で37ppmと水素(H)型の37pp
mと大きい変化はなく、第2鉄担持触媒ではNOx40
ppm、SO126ppmが下限となり、前2者にや
や劣り触媒活性持続時間も短時間であった。以上の結論
から、脱硫率はやや劣るが、脱硝率はほとんど同じで、
しかも触媒活性がある程度持続し、金属成分を担持しな
い無害で安価な水素(H)型触媒の方が経済的と言え
る。
That is, it has been found that it is possible to select only denitration, denitration + desulfurization, or denitration + 50% desulfurization depending on the ammonia injection amount. The type of catalyst is also coal ash, copper (Cu ++) ions, iron (Fe
II) The test was repeated for several metal ions of different kinds such as ions and hydrogen (H +) ions, but N
Ox concentration is 37ppm for copper and 37pp for hydrogen (H) type
There is no significant change with m, and NOx40 for ferric iron supported catalyst
ppm and SO 2 126 ppm were the lower limits, which were slightly inferior to the former two and the catalytic activity duration was short. From the above conclusion, although the desulfurization rate is slightly inferior, the denitration rate is almost the same,
Moreover, it can be said that a harmless and inexpensive hydrogen (H) type catalyst, which has a certain level of catalytic activity and does not carry a metal component, is more economical.

【0024】本実施例において使用した測定器は、NO
x(JIS B 7982)、SO(JIS B 7
981)、O(JIS B 7983)、CO(JI
SK 0151)、 CO(JIS K 015
1)、排ガス温度(JIS C1601)のJIS規格
に基づくものである。また、測定は計量証明事業者(東
京都第566号)である本願出願人・株式会社日本環境
アセスメントセンターが行った。
The measuring instrument used in this embodiment is NO
x (JIS B 7982), SO 2 (JIS B 7
981), O 2 (JIS B 7983), CO (JI
SK 0151), CO 2 (JIS K 015
1), based on the JIS standard of exhaust gas temperature (JIS C1601). The measurement was performed by the applicant of the present invention, Japan Environmental Assessment Center Co., Ltd., which is a measurement certification business operator (Tokyo No. 566).

【0025】脱硝・脱硫試験終了後、エコノマイザ(耐
熱ガラス製)並びに煙道内部を検査したところ、エコノ
マイザ排ガス入口温度205〜220℃に対し、熱交換
した後の排ガス温度を水蒸気の凝縮温度100℃以上か
ら酸性硫安の融点146.9℃以下の105〜130℃
にコントロールしたため、耐熱ガラスパイプ表面は多量
の粉末状の灰色の硫安・亜硫安・酸性硫安の粉末が付着
していた。煤塵の付着も多少認められたが、この排ガス
出口温度のコントロール(大型軟水タンクとの間の流
通)によってアンモニア注入法においても排ガスの水洗
処理を行わず、完全な乾式法として副生物である硫安等
の回収に成功した。
After the denitration / desulfurization test, the inside of the economizer (made of heat-resistant glass) and the flue were inspected. As a result, the exhaust gas temperature after heat exchange was compared with the exhaust gas inlet temperature of 205 to 220 ° C, and the condensation temperature of steam was 100 ° C. From the above, the melting point of acidic ammonium sulfate is 146.9 ° C or less and 105 to 130 ° C.
As a result, a large amount of powdery gray ammonium sulphate / ammonium sulphite / acidic ammonium sulphate powder adhered to the surface of the heat resistant glass pipe. Although some adhesion of dust was also observed, this exhaust gas outlet temperature control (circulation with a large soft water tank) did not wash the exhaust gas even in the ammonia injection method, and as a complete dry method, ammonium sulfate, a by-product, was used. Etc. were successfully collected.

【0026】次に本発明装置を説明する。図中、10が
ボイラ本体で、このボイラ本体10は、後部煙室11と
前部煙室12とを有し、燃焼室13の外側に該後部煙室
11と前部煙室12とを連通する煙管14,14,14
・・・を設け、排気は後部煙室11より右側の煙管1
4,14,14・・・を通って前部煙室12に導かれた
後、左側の煙管14,14,14・・・を通って後部排
気口17より煙道20に排気される従来公知な煙管式を
使用しているが、無論図示とは別な従来公知な水管式の
ボイラを使用してもよい。
Next, the device of the present invention will be described. In the figure, 10 is a boiler body, and this boiler body 10 has a rear smoke chamber 11 and a front smoke chamber 12, and the rear smoke chamber 11 and the front smoke chamber 12 communicate with each other outside the combustion chamber 13. Smoke pipes 14, 14, 14
... is provided, and the exhaust is a smoke pipe 1 on the right side of the rear smoke chamber 11.
After being guided to the front smoke chamber 12 through 4, 14, 14, ..., Exhausted to the flue 20 from the rear exhaust port 17 through the left smoke pipe 14, 14, 14 ,. Although a simple smoke tube type is used, it goes without saying that a conventionally known water tube type boiler other than the illustrated one may be used.

【0027】そして、ボイラ本体10の後部煙室11
(水管式のボイラの場合は、後部煙室11が無いので直
接燃焼室)に、石炭灰を高温・高圧にて長時間アルカリ
処理して微粒化され多孔質となった石炭灰をイオン交換
したアンモニア接触還元用の触媒の触媒噴霧口15を設
けてある。なお、図示はしていないが、該触媒噴霧口1
5には触媒定量噴霧装置が連結されるのは無論である。
Then, the rear smoke chamber 11 of the boiler body 10
(In the case of a water tube type boiler, since the rear smoke chamber 11 is not provided, the direct combustion chamber is used), the coal ash is subjected to alkali treatment at high temperature and high pressure for a long time, and the coal ash that has been atomized to become porous is ion-exchanged. A catalyst spray port 15 for a catalyst for catalytic reduction of ammonia is provided. Although not shown, the catalyst spray port 1
Needless to say, a catalyst metering spray device is connected to 5.

【0028】そして、上記触媒噴霧口15より上記触媒
を噴霧して、後部煙室11、煙管14,14,14・・
・、前部煙室12ないし排気口17に連結される煙道2
0の内面に該触媒を付着させて、或は水管式のボイラの
場合は燃焼室側壁の水管その他の熱交換機部位乃至煙道
20の内面に該触媒を付着させて、これらの各部位を触
媒反応器として利用している。なお、後記するエコノマ
イザ30までにも触媒を付着させて触媒反応器として利
用してもよいものである。
Then, the catalyst is sprayed from the catalyst spray port 15, and the rear smoke chamber 11, the smoke tubes 14, 14, 14 ...
.. Flue 2 connected to front smoke chamber 12 or exhaust port 17
0 on the inner surface, or in the case of a water tube type boiler, the water catalyst on the side wall of the combustion chamber or other heat exchanger parts or the inner surface of the flue 20 to attach the catalyst, and It is used as a reactor. A catalyst may be attached to the economizer 30 described below and used as a catalytic reactor.

【0029】すなわち、従来は大型な触媒反応器を別途
設けていたが、本発明では既存の、後部煙室11、煙管
14,14,14・・・、前部煙室12、排気口17を
触媒反応器として兼用するようになしている。
That is, conventionally, a large catalytic reactor was separately provided, but in the present invention, the existing rear smoke chamber 11, smoke pipes 14, 14, 14, ..., Front smoke chamber 12, exhaust port 17 are provided. It is designed to be used as a catalytic reactor.

【0030】また、上記ボイラ本体10の後部にはアン
モニアを燃焼室13に噴霧するアンモニア注入口16を
単数または複数設け、図示しない定量供給噴射装置を介
して、アンモニア溶液を定量噴霧できるようになしてあ
る。
Further, a single or plural ammonia injection ports 16 for spraying ammonia into the combustion chamber 13 are provided at the rear portion of the boiler body 10 so that the ammonia solution can be sprayed in a fixed amount through a constant amount supply / injection device (not shown). There is.

【0031】そして、上記煙道20の下流側に耐熱・耐
酸用ダストフィルタ又は電気集じん機等で構成する乾式
のダスト除去装置40を連結し、その前段に、出口排ガ
ス温度を水蒸気の凝縮温度(100℃)以上、酸性硫安
の融点(146.9℃)以下の間にコントロールして、
水分、溶融酸性硫安等の湿性物によるダスト除去装置4
0の腐蝕並びに閉塞を防止し、ドライな粉末とし回収す
る熱交換機として、耐熱・耐酸性材質又はファインセラ
ミックス塗料を塗布したエコノマイザ30を設置してな
る。
A dry type dust removing device 40 composed of a heat and acid resistant dust filter or an electric dust collector is connected to the downstream side of the flue 20, and the outlet exhaust gas temperature is adjusted to the condensation temperature of water vapor in the preceding stage. The temperature is controlled to be not lower than (100 ° C.) and not higher than the melting point of acidic ammonium sulfate (146.9 ° C.),
Dust removing device 4 with moisture, moistened acid ammonium sulfate, etc.
An economizer 30 coated with a heat resistant / acid resistant material or a fine ceramics coating is installed as a heat exchanger for preventing corrosion and blockage of 0 and recovering it as a dry powder.

【0032】排気口17よりの排気は煙道20でダスト
除去装置40に導かれ、ダストを除去して煙突50より
大気中に排気されるが、従来はダスト及びSOx及びN
Ox等の除去に湿式スクラバーを使用するのが一般的で
あった。しかし、湿式スクラバーは多量の水を使用する
し、後の水処理が煩雑であるので、本発明では乾式のダ
スト除去装置40を使用している。
The exhaust air from the exhaust port 17 is guided to the dust removing device 40 through the flue 20, removes the dust, and is exhausted into the atmosphere through the chimney 50. Conventionally, the dust, SOx and N are exhausted.
It was common to use a wet scrubber to remove Ox and the like. However, since the wet scrubber uses a large amount of water and the subsequent water treatment is complicated, the dry dust removing device 40 is used in the present invention.

【0033】しかし、乾式のダスト除去装置40を使用
する場合、SOx及びNOxは捕集困難で、SOxをア
ンモニアと反応させ硫安・亜硫安・酸性硫安として回収
しようとすれば、この酸性硫安は上記のとおり融点が低
いので湿潤したり、又は溶融して弱い酸性を呈して機器
を腐蝕したり、閉塞事故を起こす。そこで、本発明は排
ガスを耐熱・耐酸性材質又はファインセラミックス塗料
を塗布したエコノマイザ30を設置して、水蒸気の凝縮
温度(100℃)以上、酸性硫安の融点(146.9
℃)以下にコントロールし、硫安・亜硫安・酸性硫安を
粉末状態で回収するようになしてあるものである。
However, when the dry type dust removing device 40 is used, SOx and NOx are difficult to be collected, and if SOx is reacted with ammonia to recover as ammonium sulfate, ammonium sulfite, or acidic ammonium sulfate, the acidic ammonium sulfate will be the above. As described above, since the melting point is low, it may get wet, or may melt and exhibit weak acidity to corrode the equipment or cause a blockage accident. Therefore, in the present invention, an economizer 30 in which exhaust gas is coated with a heat-resistant / acid-resistant material or a fine ceramics coating is installed, and the condensation temperature of steam (100 ° C.) or higher and the melting point of acidic ammonium sulfate (146.9) are set.
It is controlled so that ammonium sulfate, ammonium sulfite, and acidic ammonium sulfate are recovered in powder form.

【0034】なお、図中、18は燃焼用バーナノズル、
21はガスサンプリング口、31はエコノマイザ30へ
循環する水及びボイラ本体に供給する水のタンクを示す
ものである。また、図中細い矢印は水路系を示し、太い
矢印は酸性硫安の取り出し部位を示し、白抜き矢印は排
ガスの流れ方向を示すものである。
In the figure, 18 is a burner nozzle for combustion,
Reference numeral 21 is a gas sampling port, and 31 is a tank of water circulating to the economizer 30 and water supplied to the boiler body. Also, in the figure, thin arrows indicate the water channel system, thick arrows indicate the extraction site of acidic ammonium sulfate, and white arrows indicate the flow direction of the exhaust gas.

【0035】[0035]

【発明の効果】この発明に係るアンモニア接触による同
時脱硝・脱硫用の触媒及びこれを使用した炉内同時脱硝
・脱硫法によれば、石炭灰の再資源化を図ることがで
き、触媒自体のコストを従来の触媒に比較すると大幅に
低コストとし、使い捨てとすることも可能で、加えて従
来不可能といわれた中小型ボイラの脱硝・脱硫を可能と
することができる脱硝・脱硫方法及び装置を提供できる
ものである。
According to the catalyst for simultaneous denitration / desulfurization by ammonia contact according to the present invention and the simultaneous denitration / desulfurization method in a furnace using the same, it is possible to recycle coal ash and to recover the catalyst itself. The cost is significantly lower than that of conventional catalysts, it can be disposable, and in addition it can denitrify and desulfurize small and medium-sized boilers, which has been said to be impossible in the past. Can be provided.

【0036】特に、本発明は後部煙室11、煙管14,
14,14・・・、前部煙室12ないし排気口17に連
結される煙道20を、触媒反応器として利用しているの
で狭い既存の工場でも利用できるコンパクトな脱硝・脱
硫方法及び装置を提供できるものである。
In particular, the present invention relates to the rear smoke chamber 11, the smoke pipe 14,
A compact denitration / desulfurization method and apparatus that can be used even in a small existing factory because the flue 20 connected to the front smoke chamber 12 or the exhaust port 17 is used as a catalytic reactor. Can be provided.

【0037】また、副生品である硫安・亜硫安・酸性硫
安等の回収は、従来排ガスの水洗処理による以外は不可
能とされたが、熱交換機を耐熱・耐酸性のエコノマイザ
とすることにより、完全な乾式脱硫が可能で、従来の湿
式スクラバの煩雑な水処理が不要であるので、ランニン
グコストが経済的な脱硝・脱硫方法及び装置を提供でき
るものである。
Further, although it has been impossible to recover the by-products such as ammonium sulfate, ammonium sulfite, and acidic ammonium sulfate except by washing the exhaust gas with water, it is possible to use a heat-resistant and acid-resistant economizer as the heat exchanger. Since complete dry desulfurization is possible and the complicated water treatment of the conventional wet scrubber is unnecessary, it is possible to provide a denitration / desulfurization method and apparatus with economical running costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施する脱硝・脱硫装置の一実施例
正面図である。
FIG. 1 is a front view of an embodiment of a denitration / desulfurization apparatus for carrying out the method of the present invention.

【符号の説明】 10 ボイラ本体 11 後部煙室 12 前部煙室 14 煙管 15 触媒噴霧口 17 排気口 20 煙道 30 エコノマイザ 40 ダスト除去装置[Explanation of Codes] 10 Boiler main body 11 Rear smoke chamber 12 Front smoke chamber 14 Smoke pipe 15 Catalyst spray port 17 Exhaust port 20 Flue 30 Economizer 40 Dust remover

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F23J 15/00 F23J 15/00 A B (72)発明者 平尾 実 東京都文京区湯島3丁目8番9号 株式会 社日本環境アセスメントセンター内 (72)発明者 勝田 基嗣 東京都文京区湯島3丁目8番9号 株式会 社日本環境アセスメントセンター内 (72)発明者 原 陽司 東京都文京区湯島3丁目8番9号 株式会 社日本環境アセスメントセンター内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location F23J 15/00 F23J 15/00 AB (72) Inventor Minoru Hirao 3-8 Yushima, Bunkyo-ku, Tokyo No. 9 Inside the Japan Environmental Assessment Center (72) Inventor Mototsugu Katsuta 3-8-9 Yushima, Bunkyo-ku, Tokyo Inside the Japan Environmental Assessment Center (72) Inventor Yoji Hara 3 Yushima, Bunkyo-ku, Tokyo 8th-9th Stock Company Japan Environmental Assessment Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石炭灰を高温・高圧にて長時間アルカリ
処理して微粒化され多孔質となった石炭灰をイオン交換
によってアンモニア接触還元用の触媒とし、該触媒をボ
イラ本体の後部煙室からボイラ本体内部に一定時間噴霧
し、ボイラ本体乃至煙道内部にこの触媒を付着せしめて
触媒反応器となし、特別の脱硝・脱硫装置を設置せず、
アンモニア水またはアンモニアガスを燃焼排ガスに混合
して該触媒と接触せしめ、NOxを還元分解すると共
に、高温のSO2をそのままアンモニアと反応せしめて
触媒機能を高める亜硫酸アンモニウムとなし、効率よく
脱硝・脱硫を行うことを特徴とする脱硝・脱硫方法。
1. A coal ash that has been atomized into a porous form by treating the coal ash with alkali at high temperature and high pressure for a long time is used as a catalyst for ammonia catalytic reduction by ion exchange, and the catalyst is used as a rear smoke chamber of the boiler body. From the inside of the boiler body for a certain period of time, this catalyst is attached to the boiler body or the inside of the flue to form a catalytic reactor, without installing a special denitration / desulfurization device,
Ammonia water or ammonia gas is mixed with combustion exhaust gas and brought into contact with the catalyst to reductively decompose NOx, and at the same time, high-temperature SO 2 reacts with ammonia as it is to form ammonium sulfite, which enhances the catalytic function, to efficiently denitrate and desulfurize. A denitration / desulfurization method characterized by performing
【請求項2】 ボイラ本体(10)の後部煙室(11)
に、石炭灰を高温・高圧にて長時間アルカリ処理して微
粒化され多孔質となった石炭灰をイオン交換したアンモ
ニア接触還元用の触媒の触媒噴霧口(15)を設け、 該触媒噴霧口(15)より上記触媒を噴霧して、後部煙
室(11)、煙管(14,14,14・・・)、前部煙
室(12)乃至排気口(17)に連結される煙道(2
0)の内面に該触媒を付着させて、或は水管式のボイラ
の場合は燃焼室側壁の水管その他の熱交換機部位乃至煙
道(20)の内面に該触媒を付着させて、これらの各部
位を触媒反応器として利用し、 上記煙道(20)の下流側に耐熱・耐酸用ダストフィル
タ又は電気集じん機等で構成する乾式のダスト除去装置
(40)を連結し、その前段に、出口排ガス温度を水蒸
気の凝縮温度(100℃)以上、酸性硫安の融点(14
6.9℃)以下の間にコントロールして、水分、溶融酸
性硫安等の湿性物によるダスト除去装置(40)の腐蝕
並びに閉塞を防止すると共にドライな粉末とし回収する
熱交換機として、耐熱・耐酸性材質又はファインセラミ
ックス塗料を塗布したエコノマイザ(30)を設置して
なる乾式脱硝・脱硫装置。
2. The rear smoke chamber (11) of the boiler body (10).
A catalyst spray port (15) for a catalyst for catalytic reduction of ammonia, which is ion-exchanged with coal ash that has been atomized and made porous by long-term alkali treatment of coal ash at high temperature and high pressure, is provided in the catalyst spray port. The catalyst is sprayed from (15), and the flue (11), the smoke pipes (14, 14, 14 ...), the flue connected to the front smoke chamber (12) to the exhaust port (17) ( Two
0) is attached to the inner surface, or in the case of a water tube type boiler, the catalyst is attached to the water tube on the side wall of the combustion chamber and other heat exchanger parts or the inner surface of the flue (20). Using the part as a catalytic reactor, a dry type dust removing device (40) composed of a heat / acid resistant dust filter or an electrostatic precipitator or the like is connected to the downstream side of the flue (20), and before that, The temperature of the exhaust gas at the outlet is equal to or higher than the condensation temperature of steam (100 ° C.), and the melting point of acidic ammonium sulfate (14
6.9 ° C.) or less to prevent corrosion and blockage of the dust removing device (40) due to moisture and moist substances such as molten acidic ammonium sulfate, and as a heat exchanger to recover as a dry powder, heat and acid resistant. Dry denitration / desulfurization equipment equipped with an economizer (30) coated with a conductive material or fine ceramics paint.
JP7021344A 1995-01-13 1995-01-13 Denitration / desulfurization method and apparatus Expired - Lifetime JP2736962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7021344A JP2736962B2 (en) 1995-01-13 1995-01-13 Denitration / desulfurization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7021344A JP2736962B2 (en) 1995-01-13 1995-01-13 Denitration / desulfurization method and apparatus

Publications (2)

Publication Number Publication Date
JPH08192029A true JPH08192029A (en) 1996-07-30
JP2736962B2 JP2736962B2 (en) 1998-04-08

Family

ID=12052485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7021344A Expired - Lifetime JP2736962B2 (en) 1995-01-13 1995-01-13 Denitration / desulfurization method and apparatus

Country Status (1)

Country Link
JP (1) JP2736962B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618604B2 (en) 2004-07-15 2009-11-17 Ihi Corporation Method and apparatus for removing gaseous mercury in flue gas
CN102172468A (en) * 2011-03-04 2011-09-07 魏新委 Three-pass dedusting devulcanizer
CN104633685A (en) * 2015-01-30 2015-05-20 无锡昊瑜节能环保设备有限公司 Boiler combustion furnace smoke environment-friendly energy-saving recovery device
WO2015186818A1 (en) * 2014-06-06 2015-12-10 三菱日立パワーシステムズ株式会社 Boiler system and electric power generation plant provided with same
CN106277145A (en) * 2016-08-30 2017-01-04 宁波中金石化有限公司 The apparatus and method that a kind of aromatic hydrocarbons cleaning produces
CN106268318A (en) * 2016-09-21 2017-01-04 海南中航特玻科技有限公司 A kind of glass furnace fume integral denitration desulfurization dust-removing technique equipment and technique
JP2017501370A (en) * 2014-01-07 2017-01-12 霍特安▲熱▼能技▲術▼(江▲蘇▼)有限公司 Combined air preheater applied after SCR denitration and method to resist corrosion and clogging
CN109821337A (en) * 2019-04-03 2019-05-31 南京师范大学 A kind of hot gas Integral purifier preventing boiler tail dew point corrosion
CN110449020A (en) * 2018-05-08 2019-11-15 高细平 Denitration depickling integrated apparatus, the burning boiler with it and denitration acid stripping method
CN113083010A (en) * 2021-04-23 2021-07-09 何静 Flue gas desulfurization and denitrification equipment
CN114606026A (en) * 2022-04-26 2022-06-10 北京北科环境工程有限公司 Method for simultaneously desulfurizing and dechlorinating blast furnace gas

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7618604B2 (en) 2004-07-15 2009-11-17 Ihi Corporation Method and apparatus for removing gaseous mercury in flue gas
CN102172468A (en) * 2011-03-04 2011-09-07 魏新委 Three-pass dedusting devulcanizer
JP2017501370A (en) * 2014-01-07 2017-01-12 霍特安▲熱▼能技▲術▼(江▲蘇▼)有限公司 Combined air preheater applied after SCR denitration and method to resist corrosion and clogging
US9851101B2 (en) 2014-06-06 2017-12-26 Mitsubishi Hitachi Power Systems, Ltd. Boiler system and power plant including the same
WO2015186818A1 (en) * 2014-06-06 2015-12-10 三菱日立パワーシステムズ株式会社 Boiler system and electric power generation plant provided with same
JP2015230149A (en) * 2014-06-06 2015-12-21 三菱日立パワーシステムズ株式会社 Boiler system and power generation plant with the same
CN104633685A (en) * 2015-01-30 2015-05-20 无锡昊瑜节能环保设备有限公司 Boiler combustion furnace smoke environment-friendly energy-saving recovery device
CN106277145A (en) * 2016-08-30 2017-01-04 宁波中金石化有限公司 The apparatus and method that a kind of aromatic hydrocarbons cleaning produces
CN106268318A (en) * 2016-09-21 2017-01-04 海南中航特玻科技有限公司 A kind of glass furnace fume integral denitration desulfurization dust-removing technique equipment and technique
CN110449020A (en) * 2018-05-08 2019-11-15 高细平 Denitration depickling integrated apparatus, the burning boiler with it and denitration acid stripping method
CN109821337A (en) * 2019-04-03 2019-05-31 南京师范大学 A kind of hot gas Integral purifier preventing boiler tail dew point corrosion
CN113083010A (en) * 2021-04-23 2021-07-09 何静 Flue gas desulfurization and denitrification equipment
CN114606026A (en) * 2022-04-26 2022-06-10 北京北科环境工程有限公司 Method for simultaneously desulfurizing and dechlorinating blast furnace gas
CN114606026B (en) * 2022-04-26 2023-01-17 北京北科环境工程有限公司 Method for simultaneously desulfurizing and dechlorinating blast furnace gas

Also Published As

Publication number Publication date
JP2736962B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US6162409A (en) Process for removing Nox and Sox from exhaust gas
WO2017059820A1 (en) Reduction and oxidation combined denitration system and denitration method therefor
CN105457486A (en) Coke oven flue gas integrated treatment method
CN107376639B (en) Hazardous waste incineration flue gas purification method
CN103480272A (en) Dust-removing, denitration and desulfurization process and device for flue gas of glass kiln
CN101632897B (en) Method for simultaneously removing sulfur oxides and nitric oxides in flue gas
CA2578048A1 (en) Method and system for reducing ammonia slip after selective reduction of nox
CN105999888A (en) Technique for realizing ultralow emission of glass kiln smoke
JP2736962B2 (en) Denitration / desulfurization method and apparatus
AU594528B2 (en) Method of removing SOx and NOx from effluent gas
CN109985516A (en) A kind of cement kiln flue gas denitration demercuration desulphurization system and method
CN108050850B (en) Yellow phosphorus tail gas boiler flue gas purification system and purification method
CN108543419A (en) A kind of refuse burning system
CN109603538A (en) Kiln exhuast gas desulfurization denitration dust collecting waste heat recycles integrated technology
CN106178877A (en) A kind of coke oven flue waste gas purification waste heat recovery apparatus and technique
CN107051173A (en) One kind utilizes SO in carbide slag removing boiler smoke3Structure and method
CN107420927A (en) A kind of fire coal boiler fume high-efficient purification and UTILIZATION OF VESIDUAL HEAT IN technique
CN106582226B (en) It is a kind of using ammonia-contaminated gas as the Denitration in Boiler technique of denitrfying agent
CN201040229Y (en) Flue gas simultaneous desulfurize denitrate integrated two-stage spraying type absorption reactor
JP3366417B2 (en) Prevention method of ammonium sulfate precipitation in selective reduction denitration method
JP3711490B2 (en) Method and apparatus for oxidizing SO2 in exhaust gas using HO2 radical as OH generating reactive species in radical chain reaction of SO2 oxidation
CN110026082A (en) A kind of ozone injects the kiln gas denitrification apparatus and method of auxiliary SCR before ammonia
JPS5990617A (en) Treatment of waste gas
CN204034567U (en) A kind of application SCR technology equipment for denitrifying flue gas
CN209663039U (en) A kind of cement kiln flue gas denitration demercuration desulphurization system