JPH08189732A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPH08189732A
JPH08189732A JP7001201A JP120195A JPH08189732A JP H08189732 A JPH08189732 A JP H08189732A JP 7001201 A JP7001201 A JP 7001201A JP 120195 A JP120195 A JP 120195A JP H08189732 A JPH08189732 A JP H08189732A
Authority
JP
Japan
Prior art keywords
oil
compressor
flow rate
accumulator
adjusting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7001201A
Other languages
Japanese (ja)
Inventor
Shigeki Ozeki
茂樹 大関
Masahiko Sasakura
正彦 佐々倉
Ichiro Matsui
一郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7001201A priority Critical patent/JPH08189732A/en
Publication of JPH08189732A publication Critical patent/JPH08189732A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To ensure the oil level heights for respective compressors, and make the oil returning quantities suitable. CONSTITUTION: An oil-separator 2 is provided on a collecting pipe of the discharging pipes of respective compressors 1A, 1B. Then, a first oil-returning circuit with flow rate-regulating means 9a, 9b is connected between the oil- separator 2 and the suction pipes of respective compressors 1A, 1B. Then, a second oil-returning circuit with a switching valve and flow rate-regulating means is connected to the first oil-returning circuit to the inverter-driving compressor. At the same time, a third oil-returning circuit with flow rate-regulating means 12a, 12b is connected between the lower part of an accumulator and the suction pipes of respective compressors 1A, 1B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷凍サイクルに関するも
のである。
FIELD OF THE INVENTION The present invention relates to a refrigeration cycle.

【0002】[0002]

【従来の技術】図3は従来の冷凍サイクルの回路図であ
る。図において、1A,1Bは圧縮機、1a,1bは吐
出管、2A,2Bは油分離器、19a,19bは逆止
弁、6は室外熱交換器、5は膨張機構、4は室内熱交換
器、7はアキュムレータ、7bはU字管、7cは油戻し
穴、8はアキュムレータの出口管、8a,8bは圧縮機
の吸入管、13は均油管、18a,18bはキャピラリ
チューブあるいはオリフィス等からなる流量調整手段で
ある。
2. Description of the Related Art FIG. 3 is a circuit diagram of a conventional refrigeration cycle. In the figure, 1A and 1B are compressors, 1a and 1b are discharge pipes, 2A and 2B are oil separators, 19a and 19b are check valves, 6 is an outdoor heat exchanger, 5 is an expansion mechanism, 4 is indoor heat exchange. A container, 7 is an accumulator, 7b is a U-shaped pipe, 7c is an oil return hole, 8 is an accumulator outlet pipe, 8a and 8b are compressor suction pipes, 13 is an oil equalizing pipe, and 18a and 18b are capillary tubes or orifices. It is a flow rate adjusting means.

【0003】上記冷凍サイクルにおいて、圧縮機1A,
1Bが同時運転された時、圧縮機1A,1Bから吐出さ
れた冷凍機油を含む高温・高圧のガス冷媒は、吐出管1
a,1bから油分離器2A,2Bに入る。ここで大部分
の冷凍機油を分離する。そして、冷凍機油を含んだガス
冷媒は室外熱交換器6に入る。ここで放熱・凝縮して高
圧の液となり、膨張機構5に入る。ここで減圧され低圧
の冷媒となって室内熱交換器4に入る。ここで吸熱・蒸
発して冷凍機油を含んだ冷媒はアキュムレータ7に入
り、冷凍機油は分離され、アキュムレータ底部に溜ま
る。アキュムレータ7内のガス冷媒はU字管7bを通
り、アキュムレータ出口管8、吸入管8a,8bを通り
圧縮機1A,1Bへ戻り圧縮される。アキュムレータ7
で分離された冷凍機油は油戻し穴7CからU字管7bに
小量づつ吸い込まれ、アキュムレータ出口管8、吸入管
8a,8bを通り圧縮機1A,1Bに戻り潤滑の作用を
する。
In the above refrigeration cycle, the compressor 1A,
When 1B is operated at the same time, the high-temperature and high-pressure gas refrigerant containing the refrigerating machine oil discharged from the compressors 1A and 1B is discharged from the discharge pipe 1.
The oil separators 2A and 2B enter from a and 1b. Most of the refrigerating machine oil is separated here. Then, the gas refrigerant containing the refrigerating machine oil enters the outdoor heat exchanger 6. Here, heat is radiated and condensed to become a high-pressure liquid, which enters the expansion mechanism 5. Here, the refrigerant is decompressed and becomes a low-pressure refrigerant and enters the indoor heat exchanger 4. Here, the refrigerant that has absorbed the heat and evaporated and contains the refrigerating machine oil enters the accumulator 7, and the refrigerating machine oil is separated and collected at the bottom of the accumulator. The gas refrigerant in the accumulator 7 passes through the U-shaped pipe 7b, passes through the accumulator outlet pipe 8 and the suction pipes 8a, 8b, and returns to the compressors 1A, 1B to be compressed. Accumulator 7
The refrigerating machine oil separated in (1) is sucked into the U-shaped pipe 7b by a small amount from the oil return hole 7C, passes through the accumulator outlet pipe 8 and the suction pipes 8a, 8b, and returns to the compressors 1A, 1B for lubrication.

【0004】一方、油分離器2A,2Bで分離された冷
凍機油は流量調整手段18a,18bを通り、吸入管8
a,8bを経て圧縮機1A,1B内に戻される。油上り
量の異なる圧縮機1A,1Bの組合せで運転した場合、
油分離器2A,2Bで分離できなかった冷凍機油が適正
比率で吸入管8a,8bから圧縮機1A,1Bに戻らず
油面低下又は不均一が生じた場合に、圧縮機1A,1B
を停止させて、均油管13を介して圧縮機1A,1Bを
均油させ油面を確保する。また、逆止弁19a,19b
は、圧縮機1A,1Bの片方が停止している時に高圧ガ
スの逆流を防止し、圧縮機の吐出管と吸入管内の圧力を
バランスさせ、再起動時の負荷を軽減する。
On the other hand, the refrigerating machine oil separated by the oil separators 2A and 2B passes through the flow rate adjusting means 18a and 18b, and is sucked into the suction pipe 8.
It is returned to the compressors 1A and 1B via a and 8b. When operating with a combination of compressors 1A and 1B with different oil rises,
When the refrigerating machine oil that cannot be separated by the oil separators 2A and 2B does not return to the compressors 1A and 1B from the suction pipes 8a and 8b at an appropriate ratio, and the oil level is lowered or uneven, the compressors 1A and 1B are
Is stopped, and the compressors 1A and 1B are oil-equalized via the oil equalizing pipe 13 to secure the oil level. Also, the check valves 19a and 19b
Prevents backflow of high-pressure gas when one of the compressors 1A and 1B is stopped, balances the pressure in the discharge pipe and the suction pipe of the compressor, and reduces the load at restart.

【0005】[0005]

【発明が解決しようとする課題】上記従来の冷凍サイク
ルにおいては、 (1)容量の異なる圧縮機1A,1Bが同時運転された
場合、たとえば圧縮機1Bがインバータ機で圧縮機1A
より容量が小さい運転では、圧縮機1B内の圧力は圧縮
機1A内より高くなるため、圧縮機1B内の油は均油管
13を介して圧縮機1A内に引き込まれ、圧縮機1B内
の油面は均油管13の位置まで低下する。さらに圧縮機
1B内の油を含んだガスも一部、均油管13を通して圧
縮機1Aへ流れ出すため、圧縮機1Bの油面は、均油管
13の位置より低下する。
In the conventional refrigeration cycle described above, (1) when the compressors 1A and 1B having different capacities are simultaneously operated, for example, the compressor 1B is an inverter and the compressor 1A is used.
In a smaller capacity operation, the pressure in the compressor 1B becomes higher than that in the compressor 1A, so the oil in the compressor 1B is drawn into the compressor 1A via the oil equalizing pipe 13, and the oil in the compressor 1B is drawn. The surface is lowered to the position of the oil equalizing pipe 13. Further, a part of the gas containing oil in the compressor 1B flows out to the compressor 1A through the oil equalizing pipe 13, so that the oil level of the compressor 1B is lower than the position of the oil equalizing pipe 13.

【0006】これにより圧縮機1A側の油量は増加し、
油上り量も増えるため、油分離器2A内の油量も増加す
る。一方、圧縮機1B側は、油面が低下するため、油上
り量も低下する。このため、油分離器2B内の油量は低
下し、圧縮機1B側へ戻す油量は減少する。これによ
り、ますます圧縮機1B内の油面は低下し危険油面にな
る。
As a result, the amount of oil on the compressor 1A side increases,
Since the oil rise amount also increases, the oil amount in the oil separator 2A also increases. On the other hand, on the side of the compressor 1B, the oil level decreases, so the amount of oil rise also decreases. Therefore, the amount of oil in the oil separator 2B decreases, and the amount of oil returned to the compressor 1B side decreases. As a result, the oil level in the compressor 1B further decreases and becomes a dangerous oil level.

【0007】圧縮機1Bへの油は油分離器2Bから戻る
油と、油分離器2Bで分離できずに流れアキュムレータ
7を経て吸入管8bから戻る油で確保するようになって
いるが、従来の回路では、アキュムレータ7からの油戻
り量が吸入管8a,8bで安定して分岐される構造とな
っていなかった。このため、圧縮機1Bの油上り量が変
化する低周波数から高周波数への運転変化や、低負荷か
ら高負荷に至る広範囲な運転条件下では、圧縮機1Bへ
戻る油が不足し、油面が低下し、危険油面に達するとい
う不具合があった。
The oil for the compressor 1B is secured by the oil returning from the oil separator 2B and the oil returning from the suction pipe 8b via the flow accumulator 7 which cannot be separated by the oil separator 2B. In the above circuit, the amount of oil returned from the accumulator 7 was not stably branched by the suction pipes 8a and 8b. Therefore, under low-frequency to high-frequency operation changes in which the amount of oil rise of the compressor 1B changes, and in a wide range of operating conditions from low load to high load, the oil returning to the compressor 1B becomes insufficient and the oil level There was a problem that the oil level dropped and reached the dangerous oil level.

【0008】(2)油分離器2Bからの油戻り量は、流
量調整手段18bの固定絞りで決まっているので、圧縮
機1Bの油上り量の少い低周波数運転では、油の他に圧
縮機吐出冷媒の吸入例へのバイパス量が過大となるた
め、圧縮機の過熱や性能低下が生じることがあった。
(2) Since the amount of oil returned from the oil separator 2B is determined by the fixed throttle of the flow rate adjusting means 18b, in the low frequency operation of the compressor 1B where the amount of oil rise is small, it is compressed in addition to oil. Since the bypass amount of the refrigerant discharged from the machine to the suction example becomes excessively large, the compressor may overheat or the performance may deteriorate.

【0009】本発明は上記従来技術の欠点を解消し、各
圧縮機の油面高さを適正に確保すること、および各圧縮
機へ安定な比率で油を戻すことを図ろうとするものであ
る。
The present invention is intended to solve the above-mentioned drawbacks of the prior art, to properly secure the oil level of each compressor, and to return the oil to each compressor at a stable ratio. .

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
したものであって、少なくとも1台のインバータ駆動圧
縮機を含む複数台の圧縮機を冷媒回路に対して並列に接
続し、各圧縮機を均油管で接続すると共に、その吐出側
に油分離器、吸入側にアキュムレータをそれぞれ設けて
なる冷凍サイクルにおいて、次の特徴を有する冷凍サイ
クルに関するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and a plurality of compressors including at least one inverter-driven compressor are connected in parallel to a refrigerant circuit, and each compressor is compressed. The present invention relates to a refrigeration cycle having the following features in a refrigeration cycle in which the machines are connected by an oil equalizing pipe, an oil separator is provided on the discharge side, and an accumulator is provided on the suction side.

【0011】(1)前記油分離器を各圧縮機の吐出管の
集合管に設け、同油分離器と各圧縮機の吸入管との間に
流量調整手段を有する第1油戻し回路を接続し、前記イ
ンバータ駆動圧縮機への第1油戻し回路に対して並列に
開閉弁及び流量調整手段を有する第2油戻し回路を接続
すると共に、前記アキュムレータの下部と各圧縮機の吸
入管との間に流量調整手段を有する第3油戻し回路を接
続した。
(1) The oil separator is provided in the collecting pipe of the discharge pipe of each compressor, and the first oil return circuit having a flow rate adjusting means is connected between the oil separator and the suction pipe of each compressor. Then, a second oil return circuit having an on-off valve and a flow rate adjusting means is connected in parallel to the first oil return circuit to the inverter driven compressor, and the lower part of the accumulator and the suction pipe of each compressor are connected. A third oil return circuit having a flow rate adjusting means was connected therebetween.

【0012】(2)前記油分離器を各圧縮機の吐出管の
集合管に設けると共に、前記アキュムレータの圧縮機側
に第2アキュムレータを設け、前記油分離器と第2アキ
ュムレータの入口側との間に流量調整手段を有する第4
油戻し回路を接続し、同第2アキュムレータと各圧縮機
の吸入管との間に流量調整手段を有する第5油戻し回路
を接続し、前記インバータ駆動圧縮機への第5油戻し回
路に対して並列に開閉弁及び流量調整手段を有する第6
油戻し回路を接続した。
(2) The oil separator is provided on the collecting pipe of the discharge pipes of the compressors, and the second accumulator is provided on the compressor side of the accumulator so that the oil separator and the inlet side of the second accumulator are connected to each other. Fourth having a flow rate adjusting means between
An oil return circuit is connected, a fifth oil return circuit having a flow rate adjusting means is connected between the second accumulator and the suction pipe of each compressor, and a fifth oil return circuit to the inverter-driven compressor is connected. 6 having an on-off valve and a flow rate adjusting means in parallel with each other
The oil return circuit was connected.

【0013】(3)前記(1)項および(2)項に記載
の冷凍サイクルにおいて、流量調整手段をキャピラリチ
ューブとなした。
(3) In the refrigeration cycle described in the items (1) and (2), the flow rate adjusting means is a capillary tube.

【0014】(4)前記(1)項および(2)項に記載
の冷凍サイクルにおいて、各圧縮機の吐出管にそれぞれ
逆止弁を設けた。
(4) In the refrigeration cycle described in the items (1) and (2), check valves are provided in the discharge pipes of the compressors.

【0015】[0015]

【作用】上記(1)項の手段においては、各圧縮機から
吐出された冷凍機油は、油分離器で大部分分離される。
この油は各圧縮機の油上り量に応じた流量調整手段によ
り、各圧縮機に戻される。一部の圧縮機に対しては、開
閉弁を開とすることで、油上り量が多くなる運転時に油
戻し量を増加させる。油上り量が少い運転では、開閉弁
を閉として、吐出側からのバイパス量を減らす。一方、
油分離器を通りぬけた油はアキュムレータに溜まる。ア
キュムレータからは各圧縮機の油上り量に応じた流量調
整手段により安定した比率で油を各圧縮機に戻す。
In the means of the above item (1), most of the refrigerating machine oil discharged from each compressor is separated by the oil separator.
This oil is returned to each compressor by the flow rate adjusting means according to the oil rising amount of each compressor. For some compressors, the opening / closing valve is opened to increase the oil return amount during the operation in which the oil rise amount is large. In operation with a small amount of oil rise, the on-off valve is closed to reduce the amount of bypass from the discharge side. on the other hand,
Oil that has passed through the oil separator accumulates in the accumulator. From the accumulator, the oil is returned to each compressor at a stable ratio by the flow rate adjusting means according to the oil rising amount of each compressor.

【0016】上記(2)項の手段においては、各圧縮機
から吐出された冷凍機油は、油分離器で大部分分離され
る。この油は流量調整手段によって第2のアキュムレー
タへ溜められる。油分離器を通りぬけた油は第1のアキ
ュムレータに溜まり、底部の油戻し管から流量調整手段
によって第2のアキュムレータに溜められる。油が集め
られた第2のアキュムレータからは各圧縮機の油上り量
に応じた流量調整手段にて安定した比率で油を各圧縮機
に戻す。
In the means of the above item (2), most of the refrigerating machine oil discharged from each compressor is separated by the oil separator. This oil is stored in the second accumulator by the flow rate adjusting means. The oil that has passed through the oil separator is accumulated in the first accumulator and is accumulated in the second accumulator from the oil return pipe at the bottom by the flow rate adjusting means. From the second accumulator in which the oil is collected, the oil is returned to each compressor at a stable ratio by the flow rate adjusting means according to the amount of oil rising of each compressor.

【0017】上記(3)項の手段において、キャピラリ
チューブは流量を調整する。
In the means of the above item (3), the capillary tube adjusts the flow rate.

【0018】上記(4)項の手段において、逆止弁は、
複数の圧縮機のうちの1個または複数個が停止された時
において、高圧ガスの逆流を防止する。
In the means of the above item (4), the check valve is
Prevents back flow of high pressure gas when one or more of the plurality of compressors are shut down.

【0019】[0019]

【実施例】図1は本発明の第1実施例に係る冷凍サイク
ルの回路図である。図において、1A,1Bは圧縮機で
あるが、1Bはインバータ駆動圧縮機である。2は油分
離器であり、従来2個設けられていたものが1個にまと
められている。19a,19bは逆止弁であり、本実施
例においては油分離器2より上流側に設けてある。9
a,9bは、油分離器2から各圧縮機の吸入管8a,8
bに連る第1油戻し回路Aにそれぞれ設けられた流量調
整手段、10はインバータ駆動圧縮機側の第1油戻し回
路Aに対して並列に設けられた第2油戻し回路B上の開
閉弁、11は同回路に設けられた流量調整手段、7aは
アキュムレータ7の底部に設けられた油戻し管、12
a,12bは同管から各圧縮機の吸入管に連る第3油戻
し回路Cにそれぞれ設けられた流量調整手段である。上
記以外の部分は従来技術と同じであるから構成の説明は
省略する。上記流量調整手段9a,9b,12a,12
b,11はキャピラリチューブあるいはオリフィス等か
らなるものであり、それぞれ異なる流量抵抗を有するも
のである。
1 is a circuit diagram of a refrigerating cycle according to a first embodiment of the present invention. In the figure, 1A and 1B are compressors, but 1B is an inverter drive compressor. Reference numeral 2 is an oil separator, which has been conventionally provided in two pieces and is combined into one piece. Check valves 19a and 19b are provided upstream of the oil separator 2 in this embodiment. 9
a, 9b are suction pipes 8a, 8 of the compressors from the oil separator 2
Flow rate adjusting means 10 provided in each of the first oil return circuits A connected to b are open / close on a second oil return circuit B provided in parallel with the first oil return circuit A on the inverter-driven compressor side. A valve, 11 is a flow rate adjusting means provided in the same circuit, 7 a is an oil return pipe provided at the bottom of the accumulator 7, and 12
Reference numerals a and 12b are flow rate adjusting means provided in the third oil return circuit C connected from the same pipe to the suction pipe of each compressor. Since the other parts than the above are the same as those of the conventional technique, the description of the configuration is omitted. The flow rate adjusting means 9a, 9b, 12a, 12
Reference numerals b and 11 each include a capillary tube, an orifice, or the like, and have different flow resistances.

【0020】上記冷凍サイクルにおいて、圧縮機1A,
1Bが共に運転された場合は、圧縮機1A,1Bから吐
出された冷凍機油を含んだ高温・高圧のガス冷媒は、吐
出管1a,1b、逆止弁19a,19bを通り油分離器
2に入る。ここで冷凍機油の大部分は分離される。油分
離器2に溜まった油は、圧縮機1A,1Bそれぞれの油
上り量に応じた流量調整手段9a,9bにより吸入管8
a,8bから圧縮機1A,1Bに戻される。圧縮機1B
がインバータ機で低周波数から高周波数まで運転される
時、油上り量の多い高周波数時は開閉弁10を開とし
て、流量調整手段11,9bを経て吸入管8bから圧縮
機1Bに油を補給する。一方、油分離器を通りぬけた油
を含むガス冷媒は、室外熱交換器6で放熱・凝縮して高
圧の液冷媒となり、膨張機構5に入る。ここで減圧され
低圧冷媒となって室内熱交換器4に入り、吸熱・蒸発し
てアキュムレータ7に入る。ここで油を含む未蒸発液冷
媒は分離され、ガス冷媒はアキュムレータ出口管8、吸
入管8a,8bを通り圧縮機1A,1Bへ戻り圧縮され
る。アキュムレータ7に溜まった油を含む液冷媒は、油
戻し管7aから、各圧縮機1A,1Bの油上り量に応じ
た流量調整手段12A,12Bで圧縮機1A,1Bに分
配され給油される。
In the above refrigeration cycle, the compressor 1A,
When both 1B are operated, the high-temperature and high-pressure gas refrigerant containing the refrigerating machine oil discharged from the compressors 1A and 1B passes through the discharge pipes 1a and 1b and the check valves 19a and 19b to the oil separator 2. enter. Most of the refrigerating machine oil is separated here. The oil accumulated in the oil separator 2 is sucked into the suction pipe 8 by the flow rate adjusting means 9a and 9b according to the oil rising amount of the compressors 1A and 1B.
It is returned to the compressors 1A and 1B from a and 8b. Compressor 1B
When the inverter is operated from a low frequency to a high frequency, the open / close valve 10 is opened at a high frequency with a large amount of oil rise, and oil is supplied from the suction pipe 8b to the compressor 1B via the flow rate adjusting means 11 and 9b. To do. On the other hand, the gas refrigerant containing the oil that has passed through the oil separator radiates and condenses in the outdoor heat exchanger 6 to become a high-pressure liquid refrigerant, and enters the expansion mechanism 5. Here, it is decompressed and becomes a low-pressure refrigerant, enters the indoor heat exchanger 4, absorbs heat and evaporates, and enters the accumulator 7. Here, the non-evaporated liquid refrigerant containing oil is separated, and the gas refrigerant passes through the accumulator outlet pipe 8 and the suction pipes 8a, 8b and returns to the compressors 1A, 1B for compression. The liquid refrigerant containing the oil accumulated in the accumulator 7 is distributed from the oil return pipe 7a to the compressors 1A and 1B by the flow rate adjusting means 12A and 12B according to the oil rising amount of the compressors 1A and 1B to be supplied with oil.

【0021】ここで、圧縮機1Bがインバータ機で圧縮
機1Aより容量が小さい場合の運転では、圧縮機1B内
の圧力が圧縮機1Aより高くなるため、圧縮機1B内の
油は均油管13を通り圧縮機1A内へ引き込まれる。こ
の時、圧縮機1B内の油面が均油管13の位置まで低下
する。圧縮機1A内の油量は逆に増加し、油分離器2へ
の油上り量も増す。一方、油面低下している圧縮機1B
は油上り量が低下するが、油分離器2は圧縮機1A,1
Bの共用となるため、油上り量が増加する圧縮機1Aか
らの油量によって油分離器2内の油は確保される。この
油は、流量調整手段9bを介して圧縮機1Bに戻る。油
上り量の多い高周波数運転時には、開閉弁10を開とし
て、油を流量調整手段11にも通す。このため油面は均
油管以下にはならない。
When the compressor 1B is an inverter and has a smaller capacity than the compressor 1A, the pressure in the compressor 1B is higher than that in the compressor 1A. And is drawn into the compressor 1A. At this time, the oil level in the compressor 1B is lowered to the position of the oil equalizing pipe 13. On the contrary, the amount of oil in the compressor 1A increases, and the amount of oil rising to the oil separator 2 also increases. On the other hand, the compressor 1B whose oil level is lowered
The oil rise amount decreases, but the oil separator 2 is
Since B is shared, oil in the oil separator 2 is secured by the amount of oil from the compressor 1A that increases the amount of oil rise. This oil returns to the compressor 1B via the flow rate adjusting means 9b. During high frequency operation with a large amount of oil rise, the on-off valve 10 is opened and the oil is also passed through the flow rate adjusting means 11. Therefore, the oil level does not fall below the oil level pipe.

【0022】一方、停止する圧縮機がある場合、例えば
圧縮機が停止する場合は、逆止弁19aの作用によっ
て、高圧ガスの逆流が防止され、圧縮機1Aの吐出管1
a、吸入管8aの圧力をバランスさせ、再起動時の負荷
を軽減する。
On the other hand, when there is a compressor to be stopped, for example, when the compressor is stopped, the check valve 19a prevents backflow of high-pressure gas, and the discharge pipe 1 of the compressor 1A is prevented.
a, the pressure of the suction pipe 8a is balanced to reduce the load at the time of restart.

【0023】図2は本発明の第2実施例に係る冷凍サイ
クルの回路図である。図において、1A,1Bは圧縮
機、特に1Bはインバータ駆動圧縮機である。2は油分
離器、7は第1のアキュムレータ、17は第2のアキュ
ムレータ、16は、油分離器2から第2のアキュムレー
タ17に連る第4油戻し回路Dに設けられた流量調整手
段、7aは第1のアキュムレータ7の底部に設けられた
油戻し管、7bは同アキュムレータの上部に設けられた
出口管であり、前記の油戻し管7aと合流して第2のア
キュムレータ17に流入する。20は油戻し管7aに連
なって設けられた流量調整手段、17aは第2のアキュ
ムレータ17の底部に設けられた油戻し管、17bは第
2のアキュムレータ17の上部に設けられた出口管、1
2a,12bは油戻し管17aから各圧縮機の吸入管8
a,8bに連る第5油戻し回路Eに設けられた流量調整
手段、14はインバータ駆動圧縮機に連る側の第5油戻
し回路Eと並列に設けられた第6油戻し回路F上の開閉
弁、15は同油戻し回路Fに設けられた流量調整手段で
ある。上記流量調整手段はキャピラリチューブあるいは
オリフィス等からなるものである。
FIG. 2 is a circuit diagram of a refrigeration cycle according to the second embodiment of the present invention. In the figure, 1A and 1B are compressors, especially 1B is an inverter drive compressor. 2 is an oil separator, 7 is a first accumulator, 17 is a second accumulator, 16 is a flow rate adjusting means provided in a fourth oil return circuit D connected from the oil separator 2 to the second accumulator 17, 7a is an oil return pipe provided at the bottom of the first accumulator 7, and 7b is an outlet pipe provided at the top of the accumulator, which joins the oil return pipe 7a and flows into the second accumulator 17. . Reference numeral 20 is a flow rate adjusting means provided in series with the oil return pipe 7a, 17a is an oil return pipe provided at the bottom of the second accumulator 17, and 17b is an outlet pipe provided above the second accumulator 17.
2a and 12b are the oil return pipe 17a to the suction pipe 8 of each compressor.
Flow control means provided in the fifth oil return circuit E connected to a and 8b, and 14 on the sixth oil return circuit F provided in parallel with the fifth oil return circuit E on the side connected to the inverter-driven compressor. The on-off valve 15 is a flow rate adjusting means provided in the oil return circuit F. The flow rate adjusting means comprises a capillary tube or an orifice.

【0024】上記冷凍サイクルにおいて、圧縮機1A,
1Bから吐出された冷凍機油を含むガス冷媒は吐出管1
a,1b、逆止弁19a,19bを通り、油分離器2に
入る。ここで大部分の油は分離される。油分離器2を通
りぬけた油は、第1のアキュムレータ7に入り分離され
る。分離した油は油戻し管7aから油戻しキャピラリ2
0を介して、第2のアキュムレータ17の入口管7bを
通り第2のアキュムレータ17に溜まる。一方、油分離
器2で分離された油は、流量調整手段16を介して、第
2のアキュムレータ17の入口管7bを通り第2のアキ
ュムレータ17に溜まる。第2のアキュムレータの出口
管17bはガス冷媒のみ流れ、吸入管8a,8bで分岐
され各圧縮機1A,1Bへ戻り圧縮される。第2のアキ
ュムレータ17に溜まった油は、油戻し管17aから各
圧縮機1A,1Bの油上り量に対応した流量調整手段1
2a,12b、吸入管8a,8bを介して各圧縮機1
A,1Bに給油される。圧縮機1Bがインバータ機で油
上り量が多い高周波数運転ではアキュムレータ17から
の油戻り量が不足するので開閉弁14を開として、第2
のアキュムレータ17内の油を、流量調整手段15を介
して吸入管8bから圧縮機1Bに補給する。圧縮機1
A,1Bから出た油は全て、第2のアキュムレータに集
められ、流量調整手段で安定した分配比率で各圧縮機1
A,1Bに給油される。
In the above refrigeration cycle, the compressor 1A,
The gas refrigerant containing the refrigerating machine oil discharged from 1B is the discharge pipe 1
A, 1b and check valves 19a, 19b are passed to enter the oil separator 2. Most of the oil is separated here. The oil that has passed through the oil separator 2 enters the first accumulator 7 and is separated. The separated oil is returned from the oil return pipe 7a to the oil return capillary 2
0 through the inlet pipe 7b of the second accumulator 17 and accumulated in the second accumulator 17. On the other hand, the oil separated by the oil separator 2 passes through the inlet pipe 7b of the second accumulator 17 via the flow rate adjusting means 16 and accumulates in the second accumulator 17. Only the gas refrigerant flows through the outlet pipe 17b of the second accumulator, is branched by the suction pipes 8a and 8b, and is returned to the compressors 1A and 1B and compressed. The oil accumulated in the second accumulator 17 flows from the oil return pipe 17a to the flow rate adjusting means 1 corresponding to the oil rising amount of each compressor 1A, 1B.
Each compressor 1 through 2a, 12b and suction pipes 8a, 8b
Refueled to A and 1B. Since the amount of oil returned from the accumulator 17 is insufficient in high frequency operation in which the compressor 1B is an inverter machine and the amount of oil rises is large, the opening / closing valve 14 is opened and the second
The oil in the accumulator 17 is replenished to the compressor 1B from the suction pipe 8b via the flow rate adjusting means 15. Compressor 1
All the oils output from A and 1B are collected in the second accumulator, and each compressor 1 has a stable distribution ratio by the flow rate adjusting means.
Refueled to A and 1B.

【0025】第1のアキュムレータ7と第2のアキュム
レータ17の違いは、第1のアキュムレータ7は主に液
冷媒とガス冷媒を分離し、ガス冷媒を圧縮機1A,1B
に戻す作用であり、第2のアキュムレータ17は油分離
器2の油と油分離器2を通り抜け冷媒サイクル内に回っ
た油を集める役割がある。油分離器2からの油戻しを第
1のアキュムレータ7に戻さないのは、同アキュムレー
タ7内の液冷媒によって油が希釈されるのを防止するた
めである。
The difference between the first accumulator 7 and the second accumulator 17 is that the first accumulator 7 mainly separates the liquid refrigerant and the gas refrigerant, and the gas refrigerant is compressed by the compressors 1A and 1B.
The second accumulator 17 has a role of collecting the oil of the oil separator 2 and the oil that has passed through the oil separator 2 and turned into the refrigerant cycle. The reason why the oil returned from the oil separator 2 is not returned to the first accumulator 7 is to prevent the oil from being diluted by the liquid refrigerant in the accumulator 7.

【0026】油分離器2の役割には、圧縮機1A,1B
から出た油を冷媒サイクル内に回すと、油によって凝縮
器、蒸発器で伝熱効率が低下するため、性能低下を防止
するために油を圧縮機側に戻すことと、圧縮機における
油を確保するという役割がある。
The role of the oil separator 2 includes the compressors 1A and 1B.
When the oil that comes out of the compressor is turned into the refrigerant cycle, the heat transfer efficiency in the condenser and evaporator decreases due to the oil, so return the oil to the compressor side to prevent performance deterioration and secure the oil in the compressor. There is a role to do.

【0027】以上詳述した実施例の効果をまとめると次
のようになる。
The effects of the embodiments described in detail above can be summarized as follows.

【0028】第1実施例;各圧縮機から出た油は、1つ
の油分離器とアキュムレータに集められ、これらから各
圧縮機の油上り量に応じて油が戻るので、圧縮機の油面
が確保できる。
First Embodiment: The oil discharged from each compressor is collected in one oil separator and accumulator, and the oil returns from them in accordance with the amount of oil rising of each compressor. Can be secured.

【0029】第2実施例;各圧縮機から出た油は、第2
のアキュムレータに集められ、ここから各圧縮機の油上
り量に応じて油が戻るので、圧縮機の油面が確保でき
る。
Second embodiment: The oil discharged from each compressor is the second
The oil is collected in the accumulator and the oil returns from here in accordance with the oil rising amount of each compressor, so that the oil level of the compressor can be secured.

【0030】第1、第2実施例に共通して、インバータ
圧縮機のように油上り量が変化する圧縮機に対し、油戻
り量を開閉弁で切換えることができるため、圧縮機性能
が低下するような過剰な油戻しはなくなる。
In common with the first and second embodiments, the oil return amount can be switched by the on-off valve for a compressor such as an inverter compressor whose oil rising amount changes, so that the compressor performance is deteriorated. Excessive oil replenishment is eliminated.

【0031】[0031]

【発明の効果】本発明の冷凍サイクルにおいては、油分
離器を各圧縮機の吐出管の集合管に設け、同油分離器と
各圧縮機の吸入管との間に流量調整手段を有する第1油
戻し回路を接続し、インバータ駆動圧縮機への第1油戻
し回路に対して並列に開閉弁及び流量調整手段を有する
第2油戻し回路を接続すると共に、アキュムレータの下
部と各圧縮機の吸入管との間に流量調整手段を有する第
3油戻し回路を接続し、あるいは、油分離器を各圧縮機
の吐出管の集合管に設けると共に、前記アキュムレータ
の圧縮機側に第2アキュムレータを設け、前記油分離器
と第2アキュムレータの入口側との間に流量調整手段を
有する第4油戻し回路を接続し、同第2アキュムレータ
と各圧縮機の吸入管との間に流量調整手段を有する第5
油戻し回路を接続し、インバータ駆動圧縮機への第5油
戻し回路に対して並列に開閉弁及び流量調整手段を有す
る第6油戻し回路を接続してあるので、各圧縮機の油面
の確保と、各圧縮機への油戻し量の適正化安定化が可能
である。
In the refrigeration cycle of the present invention, the oil separator is provided in the collecting pipe of the discharge pipe of each compressor, and the flow control means is provided between the oil separator and the suction pipe of each compressor. One oil return circuit is connected, a second oil return circuit having an on-off valve and a flow rate adjusting means is connected in parallel to the first oil return circuit to the inverter-driven compressor, and the lower part of the accumulator and each compressor are connected. A third oil return circuit having a flow rate adjusting means is connected to the suction pipe, or an oil separator is provided in the collecting pipe of the discharge pipe of each compressor, and a second accumulator is provided on the compressor side of the accumulator. A fourth oil return circuit having a flow rate adjusting means is provided between the oil separator and the inlet side of the second accumulator, and the flow rate adjusting means is provided between the second accumulator and the suction pipe of each compressor. Have 5th
Since the oil return circuit is connected and the sixth oil return circuit having an on-off valve and a flow rate adjusting means is connected in parallel to the fifth oil return circuit to the inverter-driven compressor, the oil level of each compressor is It is possible to secure and optimize and stabilize the amount of oil returned to each compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る冷凍サイクルの回路
図。
FIG. 1 is a circuit diagram of a refrigeration cycle according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る冷凍サイクルの回路
図。
FIG. 2 is a circuit diagram of a refrigeration cycle according to a second embodiment of the present invention.

【図3】従来の冷凍サイクルの回路図。FIG. 3 is a circuit diagram of a conventional refrigeration cycle.

【符号の説明】[Explanation of symbols]

1A,1B 圧縮機 1a,1b 吐出管 2 油分離器 9a,9b 流量調整手段 10 開閉弁 11 流量調整手段 12a,12b 流量調整手段 13 均油管 14 開閉弁 15 流量調整手段 16 流量調整手段 20 流量調整手段 1A, 1B Compressor 1a, 1b Discharge pipe 2 Oil separator 9a, 9b Flow rate adjusting means 10 Open / close valve 11 Flow rate adjusting means 12a, 12b Flow rate adjusting means 13 Oil level pipe 14 Open / close valve 15 Flow rate adjusting means 16 Flow rate adjusting means 20 Flow rate adjusting means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも1台のインバータ駆動圧縮機
を含む複数台の圧縮機を冷媒回路に対して並列に接続
し、各圧縮機を均油管で接続すると共に、その吐出側に
油分離器、吸入側にアキュムレータをそれぞれ設けてな
る冷凍サイクルにおいて、前記油分離器を各圧縮機の吐
出管の集合管に設け、同油分離器と各圧縮機の吸入管と
の間に流量調整手段を有する第1油戻し回路を接続し、
前記インバータ駆動圧縮機への第1油戻し回路に対して
並列に開閉弁及び流量調整手段を有する第2油戻し回路
を接続すると共に、前記アキュムレータの下部と各圧縮
機の吸入管との間に流量調整手段を有する第3油戻し回
路を接続したことを特徴とする冷凍サイクル。
1. A plurality of compressors including at least one inverter-driven compressor are connected in parallel to a refrigerant circuit, each compressor is connected by an oil equalizing pipe, and an oil separator is provided on the discharge side thereof. In a refrigeration cycle in which an intake side is provided with an accumulator, the oil separator is provided in a collecting pipe of discharge pipes of each compressor, and a flow rate adjusting means is provided between the oil separator and the suction pipe of each compressor. Connect the first oil return circuit,
A second oil return circuit having an on-off valve and a flow rate adjusting means is connected in parallel to the first oil return circuit to the inverter-driven compressor, and between the lower part of the accumulator and the suction pipe of each compressor. A refrigeration cycle characterized in that a third oil return circuit having a flow rate adjusting means is connected.
【請求項2】 少なくとも1台のインバータ駆動圧縮機
を含む複数台の圧縮機を冷媒回路に対して並列に接続
し、各圧縮機を均油管で接続すると共に、その吐出側に
油分離器、吸入側にアキュムレータをそれぞれ設けてな
る冷凍サイクルにおいて、前記油分離器を各圧縮機の吐
出管の集合管に設けると共に、前記アキュムレータの圧
縮機側に第2アキュムレータを設け、前記油分離器と第
2アキュムレータの入口側との間に流量調整手段を有す
る第4油戻し回路を接続し、同第2アキュムレータと各
圧縮機の吸入管との間に流量調整手段を有する第5油戻
し回路を接続し、前記インバータ駆動圧縮機への第5油
戻し回路に対して並列に開閉弁及び流量調整手段を有す
る第6油戻し回路を接続したことを特徴とする冷凍サイ
クル。
2. A plurality of compressors including at least one inverter-driven compressor are connected in parallel to a refrigerant circuit, each compressor is connected by an oil equalizing pipe, and an oil separator is provided on the discharge side thereof. In a refrigeration cycle in which accumulators are respectively provided on the suction side, the oil separators are provided on the collecting pipes of the discharge pipes of the compressors, and a second accumulator is provided on the compressor side of the accumulators, and the oil separators and A fourth oil return circuit having flow rate adjusting means is connected to the inlet side of the two accumulators, and a fifth oil return circuit having flow rate adjusting means is connected between the second accumulator and the suction pipe of each compressor. A sixth oil return circuit having an on-off valve and a flow rate adjusting means is connected in parallel to the fifth oil return circuit to the inverter-driven compressor.
【請求項3】 前記流量調整手段をキャピラリチューブ
となしたことを特徴とする請求項1及び請求項2に記載
の冷凍サイクル。
3. The refrigeration cycle according to claim 1 or 2, wherein the flow rate adjusting means is a capillary tube.
【請求項4】 前記各圧縮機の吐出管にそれぞれ逆止弁
を設けたことを特徴とする請求項1及び請求項2に記載
の冷凍サイクル。
4. The refrigeration cycle according to claim 1, wherein the discharge pipe of each compressor is provided with a check valve.
JP7001201A 1995-01-09 1995-01-09 Refrigeration cycle Withdrawn JPH08189732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7001201A JPH08189732A (en) 1995-01-09 1995-01-09 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7001201A JPH08189732A (en) 1995-01-09 1995-01-09 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPH08189732A true JPH08189732A (en) 1996-07-23

Family

ID=11494855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7001201A Withdrawn JPH08189732A (en) 1995-01-09 1995-01-09 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPH08189732A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152196A1 (en) * 2000-05-02 2001-11-07 Linde Aktiengesellschaft Refrigeration system
KR100352432B1 (en) * 2000-05-24 2002-09-11 엘지전자 주식회사 A separative air-conditioner
EP1686333A3 (en) * 2005-01-11 2009-04-22 Samsung Electronics Co., Ltd. Air conditioner
JP2014119122A (en) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp Refrigeration cycle device
CN105579787A (en) * 2013-09-24 2016-05-11 三菱电机株式会社 Refrigeration cycle device
CN105805986A (en) * 2016-04-27 2016-07-27 田幼华 Heat pump system with auxiliary oil return
WO2018110331A1 (en) * 2016-12-13 2018-06-21 三菱重工サーマルシステムズ株式会社 Compressor unit and outdoor unit provided therewith

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1152196A1 (en) * 2000-05-02 2001-11-07 Linde Aktiengesellschaft Refrigeration system
KR100352432B1 (en) * 2000-05-24 2002-09-11 엘지전자 주식회사 A separative air-conditioner
EP1686333A3 (en) * 2005-01-11 2009-04-22 Samsung Electronics Co., Ltd. Air conditioner
JP2014119122A (en) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp Refrigeration cycle device
CN105579787A (en) * 2013-09-24 2016-05-11 三菱电机株式会社 Refrigeration cycle device
CN105805986A (en) * 2016-04-27 2016-07-27 田幼华 Heat pump system with auxiliary oil return
WO2018110331A1 (en) * 2016-12-13 2018-06-21 三菱重工サーマルシステムズ株式会社 Compressor unit and outdoor unit provided therewith

Similar Documents

Publication Publication Date Title
KR100833441B1 (en) Freezing apparatus
US7484374B2 (en) Flash tank design and control for heat pumps
AU2005278347B2 (en) Refrigeration system
JP2004183913A (en) Air conditioner
KR20030001275A (en) Multiform gas heat pump type air conditioning system
WO2019134492A1 (en) Circulation system for air conditioner, air conditioner, and air conditioner control method
KR100984215B1 (en) Refrigerating system
JP2007093017A (en) Refrigerating apparatus
JP2012132586A (en) Refrigeration cycle device
JP2012145251A (en) Heat pump device
JPH08189732A (en) Refrigeration cycle
JPH07280378A (en) Heat pump type air conditioner
CN112178966A (en) Self-adaptive variable flow control multistage self-cascade refrigeration system
JPH07120086A (en) Heat pump
JP3848098B2 (en) Air conditioner
JP5934931B2 (en) Tank for refrigeration cycle apparatus and refrigeration cycle apparatus including the same
JPH09145167A (en) Air conditioner
JP2001349629A (en) Heat pump device
JP2001280719A (en) Refrigerating system
JPH062963A (en) Air conditioner
KR100675797B1 (en) Air conditioner
JP2997598B2 (en) Multifunctional heat pump system
JPH11304265A (en) Air conditioner
JPS6230690Y2 (en)
JPH0784955B2 (en) Screw refrigerator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402