JPH08188603A - Polymerizer - Google Patents

Polymerizer

Info

Publication number
JPH08188603A
JPH08188603A JP246195A JP246195A JPH08188603A JP H08188603 A JPH08188603 A JP H08188603A JP 246195 A JP246195 A JP 246195A JP 246195 A JP246195 A JP 246195A JP H08188603 A JPH08188603 A JP H08188603A
Authority
JP
Japan
Prior art keywords
temperature
polymerization
reaction
tank
reaction system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP246195A
Other languages
Japanese (ja)
Inventor
Koji Abe
孝司 阿部
Hiroshi Ito
伊藤  博
Seitaro Kajitani
征太郎 梶谷
Takafumi Mori
孝文 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP246195A priority Critical patent/JPH08188603A/en
Publication of JPH08188603A publication Critical patent/JPH08188603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

PURPOSE: To perform an adiabatic reaction in good precision even in a polymerization reaction of a high polymerization speed by markedly improving the response speed by filling the outside of the reaction system with an aqueous medium and using high-frequency for heating this medium. CONSTITUTION: This polymerizer is the one for performing an exothermic polymerization reaction and composed of a polymerization tank 10, a jacket 12 for performing the temperature control of the tank 10 and a pump 18 for withdrawing the aqueous medium 2 from the jacket 12 and recirculating the withdrawn medium to the jacket 12 through a heater 20 and a cooler 19, wherein the heater 20 is a high-frequency heater. In this polymerizer, an aqueous medium is used as the medium outside the reaction system, the aqueous medium is heated by high-frequency while it is being recirculated. Therefore, the temperature of the aqueous medium can be raised instantly in response to the temperature inside the reaction system, and the temperature rise can be stopped instantly by breaking the electric source for high-frequency to maintain easily the temperature constant. Therefore, by controlling only the outside temperature, a polymer different in properties such as a molecular weight can be obtained in good reproducibility.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発熱反応を伴う重合反
応を行う際、反応系外の熱の影響を受けないように、重
合反応を行わせる重合装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymerization apparatus for carrying out a polymerization reaction accompanied by an exothermic reaction so as not to be affected by heat outside the reaction system.

【0002】[0002]

【従来の技術】従来、発熱反応を伴う重合反応を行う場
合において、重合を制御する方法としては、熱の移動を
抑えて断熱状態で重合を行う方法と除熱により重合温度
を一定にして重合を行う方法がある。例えば、アクリル
アミドのような水溶性単量体の重合においては、重合の
進行に伴い重合溶液の粘度が異常に大きくなること、更
にはゲル状になってしまうことから、実質的には除熱す
ることができず重合温度の定温化は不可能となる。この
発熱を伴う重合を断熱状態で重合を行わせると、昇温に
伴い重合速度が速くなり発熱速度が速くなる。かかる現
象を示す重合を反応系外部からの熱の影響を受けないよ
うに断熱状態で重合を進行させる方法としては、一般的
には断熱層を有するデュワ瓶などの断熱容器または発泡
スチロール、発泡ウレタンなどの断熱材の中に重合槽を
セットして重合を行ったり、あるいはこれらを組み合わ
せて重合を行っていた。しかしながら、これらの方法で
は、重合速度、発熱速度の急激な増大を生じ、断熱が不
十分であった。特に反応系内の温度が外気温に対して極
端に低かったり、逆に極端に高い時には、外気温の影響
を受け完全な断熱重合反応が実施できず、再現性ある結
果が得られていない。
2. Description of the Related Art Conventionally, when carrying out a polymerization reaction accompanied by an exothermic reaction, as a method of controlling the polymerization, there are a method of suppressing heat transfer and a polymerization in an adiabatic state, and a method of removing heat to keep the polymerization temperature constant. There is a way to do. For example, in the polymerization of a water-soluble monomer such as acrylamide, the viscosity of the polymerization solution increases abnormally as the polymerization progresses, and further, it becomes a gel, so that the heat is substantially removed. Therefore, it is impossible to keep the polymerization temperature constant. When the polymerization accompanied by the heat generation is carried out in an adiabatic state, the polymerization rate becomes faster and the heat generation rate becomes faster as the temperature rises. As a method of advancing the polymerization showing the above phenomenon in an adiabatic state so as not to be affected by heat from the outside of the reaction system, generally, a heat-insulating container such as a Dewar bottle having a heat-insulating layer, styrene foam, urethane foam, etc. Polymerization was carried out by setting the polymerization tank in the heat insulating material, or by combining these polymerizations. However, these methods cause a rapid increase in the polymerization rate and the heat generation rate, resulting in insufficient heat insulation. In particular, when the temperature in the reaction system is extremely low with respect to the outside air temperature or, on the contrary, extremely high, a complete adiabatic polymerization reaction cannot be carried out due to the influence of the outside air temperature, and reproducible results have not been obtained.

【0003】一方、上記問題を解決すべく外気温の影響
を受けないように反応系内の温度上昇に対応して、その
温度に追随できるように周辺部の温度を上昇させる方法
が考えられるが、温度上昇速度が過大であるので、通常
の加熱装置では加熱容量を過大にしなくてはならず、ま
たそのように過大にすると電源を切断してもその熱容量
のために加熱気味となり十分な断熱状態とはならない。
従って、アクリルアミドのような重合速度の大きな単量
体の重合においては、再現性良く重合を制御する装置は
知られていない。さらに、発熱反応を伴う重合反応を行
う場合において、重合にて上昇する温度に対して、ある
一定の温度差をつけて外温を制御して重合させる重合装
置はなく、分子量等の物性の異なる重合体を外温制御の
みで再現性良く得る方法はなかった。例えば、発熱を伴
う反応系内の温度に対して一定の温度差をつけて反応系
外の温度を高くした状態で重合させて、比較的分子量の
低い重合体を得たり、逆に反応系内の温度に対して反応
系外の温度を一定の温度差をつけて低くした状態で重合
反応を行い、比較的分子量の高い重合体を再現性良く得
ることはできなかった。更には、このような一定温度差
をつけた外温制御を行い重合することができなかったの
で、外温の重合挙動に及ぼす熱の影響について正確に検
討することができなかった。
On the other hand, in order to solve the above-mentioned problem, a method of increasing the temperature of the peripheral portion so as to be able to follow the temperature increase in the reaction system so as not to be affected by the outside air temperature can be considered. Since the temperature rising speed is too high, the heating capacity must be made too large in a normal heating device, and if it becomes too large, even if the power is cut off, it will tend to be heated due to its heat capacity and sufficient heat insulation will be achieved. It does not become a state.
Therefore, in the polymerization of a monomer having a high polymerization rate such as acrylamide, there is no known device for controlling the polymerization with good reproducibility. Further, in the case of carrying out a polymerization reaction accompanied by an exothermic reaction, there is no polymerization apparatus for controlling the outside temperature by giving a certain temperature difference to the temperature rising in the polymerization, and the physical properties such as molecular weight are different. There has been no method for obtaining a polymer with good reproducibility only by controlling the external temperature. For example, a polymer having a relatively low molecular weight may be obtained by polymerizing in a state where the temperature outside the reaction system is raised by making a constant temperature difference with respect to the temperature inside the reaction system which generates heat, and vice versa. It was not possible to obtain a polymer having a relatively high molecular weight with good reproducibility by carrying out the polymerization reaction in a state where the temperature outside the reaction system was lowered with a certain temperature difference with respect to the above temperature. Furthermore, since it was not possible to carry out the polymerization by controlling the outside temperature with such a constant temperature difference, it was not possible to accurately study the effect of heat on the polymerization behavior at the outside temperature.

【0004】[0004]

【発明が解決しようとする課題】発熱反応を伴う反応を
断熱状態で反応させる場合、前記した断熱容器及び断熱
材を利用した方法では、反応系内と反応系外との間に僅
かに温度差が生じてしまい、完全に外部からの熱の影響
を除外することはできない。特に、反応系内と反応系外
の温度差が大きい場合には反応に大きく影響し、反応の
意図せざる促進または抑制等が生じることがしばしばあ
り、外気温によって重合速度が変化し再現性のある結果
を得ることは大変困難であった。このような問題を解決
するために完全断熱に近い系を形成するには、恒温室に
て断熱容器及び断熱材を組み合わせ、かなり大がかりな
ものとしなければならず、設備上、操作上大きな問題と
なる。
When a reaction accompanied by an exothermic reaction is reacted in an adiabatic state, the above-described method utilizing a heat insulating container and a heat insulating material causes a slight temperature difference between the inside and outside of the reaction system. However, the influence of external heat cannot be completely ruled out. In particular, when the temperature difference between the inside of the reaction system and the outside of the reaction system is large, the reaction is greatly affected, and the reaction is often promoted or suppressed unintentionally. It was very difficult to get a certain result. In order to form a system close to complete insulation in order to solve such a problem, it is necessary to combine a heat insulating container and a heat insulating material in a temperature-controlled room, and to make them quite large. Become.

【0005】更に、完全断熱系に近い反応を行うため
に、通常の加熱ヒーターを用いて反応系内の温度上昇に
対応して、その温度に追随できるように周辺部の温度を
上昇さて断熱系を形成させる方法では、反応速度の比較
的遅い反応に対しては概ね良いが、反応速度の速い一般
の重合反応においては、温度上昇速度が過大であるの
で、重合槽外の周辺部を迅速かつ温度むらのない状態で
加熱することが大変困難であり、追随能力が低下し完全
な断熱反応を行うことはできない。追随能力を向上させ
るために迅速な加熱並びに温度むらのない状態を形成さ
せるには過大な熱量を要するうえに、重合槽外の周辺部
を強烈に循環しなければならず、装置、設備の点でまず
問題となる。そのうえ、このように過大にすると、ヒー
ターを切断してもその熱容量のために加熱気味の状態と
なり、やはり完全な断熱状態を形成することはできず、
再現性良く重合を断熱制御することはできない。ヒータ
ーの熱容量並びに加熱能力を考慮して追随性能を向上さ
せるには試料量を少量化して行わなければならないが、
試料量が少ないことから、試料調製時の誤差及び反応系
外からの熱の影響を受け易くなり、再現性ある結果を得
ることは困難となる。このように重合速度の速い単量体
の重合においては、再現性良く重合を断熱制御する重合
装置は知られていない。
Furthermore, in order to carry out a reaction close to that of a completely adiabatic system, the temperature of the peripheral portion is raised by using an ordinary heating heater in response to the temperature rise in the reaction system so as to follow the temperature. In general, a method of forming a polymer is good for a reaction having a relatively slow reaction rate, but in a general polymerization reaction having a fast reaction rate, the temperature rising rate is too high. It is very difficult to heat without temperature unevenness, and the following ability is lowered, and a complete adiabatic reaction cannot be performed. In order to improve the following ability, rapid heating and formation of a state without temperature unevenness require an excessive amount of heat, and must vigorously circulate around the outside of the polymerization tank. First of all, it becomes a problem. Moreover, if it is too large like this, even if the heater is cut off, it will be in a state of heating due to its heat capacity, and again it is not possible to form a complete adiabatic state,
The polymerization cannot be adiabatically controlled with good reproducibility. In order to improve the tracking performance considering the heat capacity and heating capacity of the heater, it is necessary to reduce the amount of sample,
Since the amount of sample is small, it is easily affected by an error during sample preparation and heat from outside the reaction system, and it is difficult to obtain reproducible results. As described above, in the polymerization of a monomer having a high polymerization rate, a polymerization device that adiabatically controls the polymerization with good reproducibility is not known.

【0006】また、重合にて上昇する反応系内の温度に
対して、反応系外の温度を、ある一定の温度差をつける
よう制御して重合できる装置がなく、このような外温制
御のみで再現性良く分子量等の物性の異なる重合体を得
る方法はなかった。更には、反応系外からの熱の出入り
により生じる重合挙動および分子量等への影響を正確に
検討することはできなかった。
Further, there is no device for controlling the temperature outside the reaction system so as to give a certain temperature difference to the temperature inside the reaction system which rises during the polymerization, and only such an external temperature control is possible. There was no method for obtaining a polymer having different physical properties such as molecular weight with good reproducibility. Furthermore, it was not possible to accurately study the influence on the polymerization behavior and the molecular weight, etc., which are caused by the inflow and outflow of heat from the outside of the reaction system.

【0007】従って本発明の目的は、比較的重合速度の
速い重合反応でも対応でき、反応系内と反応系外との間
に温度差が生じないようにさせ、反応系外からの温度の
影響を受けないようにして理想に近い断熱状態を保つこ
とができ、再現性の良い結果を得ることのできる断熱重
合装置を提供することである。更には、重合にて上昇す
る反応系内の温度に対して反応系外の温度を簡単にある
一定の温度差をつけるよう制御して重合が行うことがで
きる重合装置を提供することである。
Therefore, the object of the present invention is to cope with a polymerization reaction having a relatively high polymerization rate, to prevent a temperature difference between the inside of the reaction system and the outside of the reaction system, and the influence of the temperature from the outside of the reaction system. It is an object of the present invention to provide an adiabatic polymerization apparatus capable of maintaining an adiabatic state close to an ideal state by avoiding exposure to heat and obtaining reproducible results. Furthermore, it is another object of the present invention to provide a polymerization apparatus capable of performing polymerization by controlling the temperature outside the reaction system to easily increase a certain temperature difference with respect to the temperature inside the reaction system which rises during the polymerization.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討を重ねた結果、反応系外の媒
体として主に水媒体を用い、この水媒体を循環させなが
ら高周波で加熱することで、驚くべきことに反応系内の
温度に追随して瞬時に昇温できること、および該高周波
の電源を停止させることにより瞬時に昇温が止まり、容
易に一定温度を維持できることを見いだし、本発明に至
ったものである。
The inventors of the present invention have conducted extensive studies to achieve the above object, and as a result, mainly use an aqueous medium as a medium outside the reaction system, and circulate the aqueous medium to produce a high-frequency wave. Surprisingly, it is possible to instantly raise the temperature by following the temperature in the reaction system by heating with, and to stop the temperature rise instantaneously by stopping the high frequency power supply, and to easily maintain a constant temperature. The present invention has been found and has led to the present invention.

【0009】即ち、本発明は、重合槽、重合槽の温度制
御を行うジャケット槽、ジャケット槽内の水媒体を抜き
取り加熱装置並びに冷却装置を経てジャケット槽へ循環
させる送液ポンプからなり、該加熱装置は高周波加熱装
置であることを特徴とする重合装置、である。
That is, the present invention comprises a polymerization tank, a jacket tank for controlling the temperature of the polymerization tank, a liquid feed pump for extracting the aqueous medium in the jacket tank and circulating it to the jacket tank through a heating device and a cooling device. The apparatus is a polymerization apparatus, which is a high-frequency heating apparatus.

【0010】本発明は、重合槽内で発熱反応を伴う重合
反応を行う際、重合にて変化する重合槽内の温度に追随
して、重合槽外の温度を上昇させて断熱系を形成して断
熱重合反応を行ったり、重合槽内の温度に対してある一
定の温度差をつけて重合槽外の温度を上昇させて温度差
のついた状態で重合反応を行うことのできる重合装置で
ある。また、本発明の重合装置は、反応系外の媒体とし
ておもに水媒体を使用し、水媒体の加熱に高周波加熱を
利用しているので、反応系内の温度に対応して効率よく
短時間で加熱することができ、瞬時に断熱系が形成され
比較的反応速度の速い重合においても、追随能力に優れ
極めて断熱性の良い反応を行うことが可能である。
According to the present invention, when a polymerization reaction accompanied by an exothermic reaction is carried out in the polymerization tank, the temperature outside the polymerization tank is increased in accordance with the temperature inside the polymerization tank which changes due to the polymerization to form an adiabatic system. It is possible to perform adiabatic polymerization reaction, or to raise the temperature outside the polymerization tank by making a certain temperature difference with respect to the temperature inside the polymerization tank to carry out the polymerization reaction with the temperature difference. is there. Further, the polymerization apparatus of the present invention mainly uses an aqueous medium as a medium outside the reaction system, and uses high frequency heating to heat the aqueous medium, so that the temperature in the reaction system can be efficiently reduced in a short time. It can be heated, and an adiabatic system is instantly formed, so that even in polymerization in which the reaction rate is relatively fast, it is possible to carry out a reaction with excellent followability and extremely good adiabaticity.

【0011】更には、完全断熱系に近い状態であるの
で、重合に伴う反応温度上昇の時間的変化および最終温
度上昇値を測定することにより、重合過程に関する有効
な知見を得ることもできる。また、外温制御により極め
て精度良く一定温度差をつけた状態での重合が行え、外
温制御により分子量等の物性の異なる重合体を簡単に再
現性良く得ることができ、一定温度差のついた加熱状態
或は放熱状態での重合反応への影響を正確に検討するこ
とも可能である。
Further, since the state is close to that of a completely adiabatic system, effective knowledge about the polymerization process can be obtained by measuring the time change of the reaction temperature rise accompanying the polymerization and the final temperature rise value. In addition, by controlling the external temperature, it is possible to perform polymerization in a state where a constant temperature difference is made with extremely high accuracy, and by controlling the external temperature, a polymer having different physical properties such as molecular weight can be easily obtained with good reproducibility. It is also possible to accurately examine the influence on the polymerization reaction under the heated condition or the heat-dissipated condition.

【0012】以下、図面により本発明を詳細に説明す
る。図1は本発明による重合装置の一例を示す構成図で
ある。ここで示した構成図は、重合槽内の温度に追随し
て重合槽外の温度を上昇させて断熱系を形成させて行う
断熱重合反応並びに重合槽内の温度に対してある一定の
温度差をつけて重合槽外の温度を上昇させて任意の温度
差のある状態を形成させて行う重合反応の両方に対応し
た重合装置の一構成図である。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing an example of a polymerization apparatus according to the present invention. The configuration diagram shown here is an adiabatic polymerization reaction that follows the temperature inside the polymerization tank and raises the temperature outside the polymerization tank to form an adiabatic system, and a certain temperature difference with respect to the temperature inside the polymerization tank. FIG. 1 is a configuration diagram of a polymerization apparatus compatible with both of the polymerization reactions carried out by increasing the temperature outside the polymerization tank to form a state having an arbitrary temperature difference.

【0013】図1において、試料溶液1を、重合させる
重合槽10に入れ、重合槽10の上部は断熱材11で覆
われ水媒体2で満たされたジャケット槽12の内部に設
置される。試料溶液1を撹拌して重合を行う場合には重
合槽10に回転磁子13を入れ、ジャケット槽12をマ
グネチック・スターラー14の上部に設置して撹拌を行
う。断熱材11には必要に応じて窒素導入管、触媒添加
孔等の孔を任意に設けることも可能である。
In FIG. 1, a sample solution 1 is placed in a polymerization tank 10 for polymerization, and the upper portion of the polymerization tank 10 is placed inside a jacket tank 12 covered with a heat insulating material 11 and filled with an aqueous medium 2. When the sample solution 1 is stirred and polymerized, the rotating magnet 13 is put in the polymerization tank 10 and the jacket tank 12 is placed on the upper part of the magnetic stirrer 14 and stirred. The heat insulating material 11 can be optionally provided with holes such as a nitrogen introduction pipe and a catalyst addition hole, if necessary.

【0014】ジャケット槽12(および循環ライン1
7)は断熱材15で覆われており、ジャケット槽12の
水位を確認するためにレベル計16を設けている。断熱
材15で被覆された循環ライン17は、ジャケット槽1
2の下部に接続され、送液ポンプ18および高周波加熱
装置20のテーパーをつけたガラス管26が内蔵された
水負荷導波管27、更には冷却装置19を経由してジャ
ケット槽12の上部に接続され水媒体2が循環できるよ
うに構成されている。この場合、循環ライン17の中で
高周波加熱装置20の水負荷導波管27と冷却装置19
の設置位置は特に問題がなく、どちらが先になっても良
い。この送液ポンプ18は、ジャケット槽12の水媒体
2を、水負荷導波管27および冷却装置19を経由して
常に循環させるようになっている。
Jacket tank 12 (and circulation line 1
7) is covered with a heat insulating material 15, and a level meter 16 is provided to confirm the water level in the jacket tank 12. The circulation line 17 covered with the heat insulating material 15 is the jacket tank 1
2 is connected to the lower part of the water feeding pump 18 and the high-frequency heating device 20 and the water-loaded waveguide 27 in which the tapered glass tube 26 is incorporated, and further to the upper part of the jacket tank 12 via the cooling device 19. The water medium 2 is connected and can be circulated. In this case, in the circulation line 17, the water load waveguide 27 of the high frequency heating device 20 and the cooling device 19 are connected.
There is no particular problem with the installation position of, and either one may come first. The liquid feed pump 18 constantly circulates the aqueous medium 2 in the jacket tank 12 via the water load waveguide 27 and the cooling device 19.

【0015】冷却装置19へのラインには電磁弁30、
31を通してバイパス状に接続されており、電磁弁3
0、31の開閉により冷却装置19への循環を制御でき
るようになっている。この冷却装置19は室温以下の温
度から重合反応を行うためである。
In the line to the cooling device 19, a solenoid valve 30,
31 is connected in a bypass shape through the solenoid valve 3
The circulation to the cooling device 19 can be controlled by opening and closing 0 and 31. This cooling device 19 is for carrying out the polymerization reaction from a temperature below room temperature.

【0016】高周波加熱装置20は、制御装置21、高
周波を発振させる高周波発振器22、高周波を発信する
マグネトロンを保護するアイソレーター23、高周波の
進行波電力と反射波電力を検出する電力検出器24と水
負荷導波管27に整合させる整合器25及び高周波電力
を熱に変換するガラス管26が内蔵された水負荷導波管
27から構成されている。
The high frequency heating device 20 includes a control device 21, a high frequency oscillator 22 for oscillating a high frequency, an isolator 23 for protecting a magnetron emitting a high frequency, a power detector 24 for detecting a high frequency traveling wave power and a high frequency reflected wave power, and water. It is composed of a matching device 25 for matching with the load waveguide 27 and a water load waveguide 27 having a glass tube 26 for converting high frequency power into heat.

【0017】40は温度調節器であり、試料溶液1の中
にいれた温度センサー41およびジャケット槽12の水
媒体2の中にいれた温度センサー42が接続されてい
る。更に温度調節器40には高周波加熱装置20の制御
装置21および電磁弁30、31並びに温度調節器40
の操作、試料溶液1の温度変化状態および制御状態をモ
ニターするパソコン50が接続されている。
A temperature controller 40 is connected to a temperature sensor 41 placed in the sample solution 1 and a temperature sensor 42 placed in the aqueous medium 2 in the jacket tank 12. Further, the temperature controller 40 includes a controller 21 of the high-frequency heating device 20, solenoid valves 30 and 31, and a temperature controller 40.
A personal computer 50 is connected to monitor the operation, the temperature change state and control state of the sample solution 1.

【0018】本発明で使用される水媒体2としては、水
が最も好ましいが、0℃以下にて使用する場合にはエチ
レングリコール、エタノール等の不凍剤を任意の割合で
混合して用いてもよい。
As the aqueous medium 2 used in the present invention, water is most preferable, but when it is used at 0 ° C. or lower, an antifreezing agent such as ethylene glycol or ethanol is mixed and used at an arbitrary ratio. Good.

【0019】重合槽10の材質としては、試料溶液の重
合に伴う発熱により熱変形を起こさず重合に影響を及ぼ
すものでなければ特に制限がなく、一般には、ポリエチ
レン、ポリプロピレン、ポリスチレン、ポリメタクリル
酸メチル、ポリエチレンテレフタレート、フェノール系
樹脂、不飽和ポリエステル樹脂、フッ素樹脂等の高分子
系材料、ガラス、珪素、酸化珪素、セラミック等の無機
系材料およびステンレス鋼、炭素鋼、チタンなどの各種
合金等の金属系材料等をあげることができる。これらの
材料を2種以上積層し、あるいはある材料の表面に蒸着
等の方法により他種材料の薄膜を形成した材料も用いる
ことができる。中でも熱電導率の高い材料を使用するこ
とが追随能力向上には好ましい。上記した重合槽の形状
としては、重合させる試料を入れることのできる形状で
あればどのようなものでもよい。
The material of the polymerization tank 10 is not particularly limited as long as it does not cause thermal deformation due to the heat generated by the polymerization of the sample solution and does not affect the polymerization. Generally, polyethylene, polypropylene, polystyrene and polymethacrylic acid are used. Polymer materials such as methyl, polyethylene terephthalate, phenolic resins, unsaturated polyester resins, and fluororesins, inorganic materials such as glass, silicon, silicon oxide, ceramics, and various alloys such as stainless steel, carbon steel, and titanium. Metallic materials can be used. It is also possible to use a material obtained by laminating two or more of these materials or forming a thin film of another material on the surface of a certain material by a method such as vapor deposition. Above all, it is preferable to use a material having a high thermal conductivity to improve the following ability. The shape of the above-mentioned polymerization tank may be any shape as long as it can hold a sample to be polymerized.

【0020】重合槽10の上部の断熱材11の材質は発
泡スチロール、発泡ウレタン、シリコンゴム等の断熱材
をあげることができ、特に試料溶液1の蒸発を抑えるた
めに重合槽10を密栓できるものがよい。また、重合槽
10と同時にジャケット槽12の栓として併用すること
も可能である。この場合、ジャケット槽12の内部圧が
上がらないように空気孔を設けることが好ましい。
The material of the heat insulating material 11 on the upper part of the polymerization tank 10 may be a heat insulating material such as styrofoam, urethane foam, silicone rubber, etc. In particular, one capable of sealing the polymerization tank 10 in order to suppress evaporation of the sample solution 1 is used. Good. It is also possible to use it as a stopper for the jacket tank 12 at the same time as the polymerization tank 10. In this case, it is preferable to provide air holes so that the internal pressure of the jacket tank 12 does not rise.

【0021】ジャケット槽12の材質としては、一般に
は、ポリエチレン、ポリプロピレン、ポリスチレン、ポ
リメタクリル酸メチル、ポリエチレンテレフタレート、
フェノール系樹脂、不飽和ポリエステル樹脂、フッ素樹
脂等の高分子系材料、ガラス、珪素、酸化珪素、セラミ
ック等の無機系材料およびステンレス鋼、炭素鋼、チタ
ンなどの各種合金等の金属系材料等をあげることができ
る。これらの材料を2種以上積層し、あるいはある材料
の表面に蒸着等の方法により他種材料の薄膜を形成した
材料も用いることができる。中でも熱電導率の低い材料
を使用することが追随能力向上には好ましい。また、発
泡スチロール、発泡ウレタン等の断熱材で被覆されてお
り、特にデュワ瓶状のものが断熱性向上の点でより好ま
しい。上記したジャケット槽12は、重合槽10を鞘状
に収納できる大きさ、形状を有し、循環ライン17が接
続されたものであればどのようなものでもよい。
The material of the jacket tank 12 is generally polyethylene, polypropylene, polystyrene, polymethyl methacrylate, polyethylene terephthalate,
Polymeric materials such as phenolic resins, unsaturated polyester resins and fluororesins, inorganic materials such as glass, silicon, silicon oxide, ceramics and metallic materials such as stainless steel, carbon steel and various alloys such as titanium. I can give you. It is also possible to use a material obtained by laminating two or more of these materials or forming a thin film of another material on the surface of a certain material by a method such as vapor deposition. Above all, it is preferable to use a material having a low thermal conductivity to improve the following ability. Further, it is covered with a heat insulating material such as styrofoam or urethane foam, and in particular, a Dewar bottle-shaped one is more preferable from the viewpoint of improving the heat insulating property. The jacket tank 12 may be of any size and shape capable of accommodating the polymerization tank 10 in a sheath shape and connected to the circulation line 17.

【0022】循環ライン17の材質としては特に限定は
なく、一般には、耐熱ゴム、ポリエチレン、ポリプロピ
レン、ポリスチレン、ポリメタクリル酸メチル、ポリエ
チレンテレフタレート、フェノール系樹脂、不飽和ポリ
エステル樹脂、フッ素樹脂等の高分子系材料、ガラス、
珪素、酸化珪素、セラミック等の無機系材料およびステ
ンレス鋼、炭素鋼、チタンなどの各種合金等の金属系材
料等をあげることができる。この循環ライン17は発泡
スチロールまたは発泡ウレタン等の断熱材で被覆させて
おり断熱性を付与させている。
The material of the circulation line 17 is not particularly limited, and generally, a polymer such as heat-resistant rubber, polyethylene, polypropylene, polystyrene, polymethylmethacrylate, polyethylene terephthalate, phenol resin, unsaturated polyester resin, fluororesin, etc. System materials, glass,
Examples thereof include inorganic materials such as silicon, silicon oxide and ceramics, and metallic materials such as various alloys such as stainless steel, carbon steel and titanium. The circulation line 17 is covered with a heat insulating material such as styrofoam or urethane foam to provide heat insulation.

【0023】送液ポンプ18としては遠心式、往復式、
回転式、特殊ポンプ等通常のものが使用できる。遠心式
では、例えばボリュートポンプ、タービンポンプ、プロ
ペラポンプなどが、往復式ではピストンポンプ、プラン
ジャーポンプダイヤフラム式ポンプなどが、回転式では
ギヤーポンプ、スクリューポンプ、仕切り板ポンプなど
が、特殊ポンプではモノーポンプなどがあげられる。特
に、精度良く追随制御させるには脈動が少なく、一定流
量で循環させる方が好ましく、流量としては重合槽1
0、ジャケット槽12のスケール及び加熱能力によって
変化するが一般には0.1〜50l/minの範囲であ
れば良い。
The liquid feed pump 18 is a centrifugal type, a reciprocating type,
Ordinary things such as rotary type and special pump can be used. In centrifugal type, for example, volute pump, turbine pump, propeller pump, etc., in reciprocating type, piston pump, plunger pump diaphragm type pump, etc., in rotary type, gear pump, screw pump, partition plate pump, etc. Can be given. In particular, for accurate follow-up control, pulsation is small and it is preferable to circulate at a constant flow rate.
0, which varies depending on the scale of the jacket tank 12 and the heating capacity, but is generally in the range of 0.1 to 50 l / min.

【0024】冷却装置19としては所望する水温まで冷
却できれば良く、通常の循環式冷凍機が使用でき、冷媒
に特定フロンR−22等を用いた密閉形圧縮方式、サー
モ・モジュールを用いた電子冷熱等による一般の冷却方
式のものがあげられる。冷却能力としては所望する温
度、装置のスケール等によって変化するが、20〜30
00kcal/hの範囲であれば良い。また、再現性良
い重合を行うためには、所望する温度まで冷却した後、
その温度で変動なく維持できる方が好ましく、PID制
御等による精度良く温度調節できるものが良い。
The cooling device 19 is only required to cool to a desired water temperature, an ordinary circulation refrigerator can be used, a hermetic compression system using a specific CFC R-22 or the like as a refrigerant, and an electronic cooling system using a thermo module. A general cooling method such as the one described above can be used. The cooling capacity varies depending on the desired temperature, the scale of the device, etc.
It may be in the range of 00 kcal / h. Further, in order to carry out the polymerization with good reproducibility, after cooling to a desired temperature,
It is preferable that the temperature can be maintained without fluctuation, and it is preferable that the temperature can be accurately adjusted by PID control or the like.

【0025】高周波加熱装置20の高周波の周波数は、
水を加熱することができる周波数であれば良いので特に
制限はないが、一般的に使用されている工業用周波数2
450MHz±50MHzが利用しやすい。高周波出力
としては重合槽10、ジャケット槽12等のスケール及
び循環水量、即ち加熱速度によって変化するが一般には
0.01〜10kWの範囲であれば良い。
The high frequency of the high frequency heating device 20 is
There is no particular limitation as long as it has a frequency capable of heating water, but it is a commonly used industrial frequency 2
450MHz ± 50MHz is easy to use. The high-frequency output varies depending on the scale of the polymerization tank 10, the jacket tank 12 and the like and the amount of circulating water, that is, the heating rate, but is generally in the range of 0.01 to 10 kW.

【0026】断熱重合反応を行う場合には、温度調節器
40では温度センサー41で検出した温度を直流に変換
して入力した値と、温度センサー42で検出した温度を
直流に変換して入力した値との差に基づいて、高周波加
熱装置20の制御装置21へ交流出力を行い、出力に応
じて制御装置21に接続した高周波発振器22から高周
波を発振させて、アイソレーター23、電力検出器2
4、整合器25を経由して水負荷導波管27で循環して
いる水媒体2の加熱を行い、温度センサー41と温度セ
ンサー42で検出される温度が等しくなるように制御を
行っている。
When the adiabatic polymerization reaction is carried out, the temperature controller 40 converts the temperature detected by the temperature sensor 41 into a direct current and inputs it, and the temperature detected by the temperature sensor 42 into a direct current and inputs it. Based on the difference from the value, an alternating current output is performed to the control device 21 of the high frequency heating device 20, and a high frequency is oscillated from the high frequency oscillator 22 connected to the control device 21 according to the output, and the isolator 23 and the power detector 2
4. The water medium 2 circulated in the water load waveguide 27 via the matching device 25 is heated, and control is performed so that the temperatures detected by the temperature sensor 41 and the temperature sensor 42 become equal. .

【0027】反応系内の温度に対して反応系外の温度を
ある一定の温度差をつけて重合反応を行う場合には、温
度調節器40では温度センサー41で検出した温度を直
流に変換して入力した値と、温度センサー42で検出し
た温度を直流に変換して入力した値との差と、任意に設
定した反応系内外の温度差に基づいて高周波加熱装置2
0の制御装置21へ交流出力を行い、出力に応じて制御
装置21に接続した高周波発振器22から高周波を発振
させて、アイソレーター23、電力検出器24、整合器
25を経由して水負荷導波管27で循環している水媒体
2の加熱を行い、温度センサー41で検出される温度と
任意に設定した反応系内外の温度差との和が温度センサ
ー42で検出される温度が等しくなるように制御を行っ
ている。
When carrying out the polymerization reaction with a certain temperature difference between the temperature inside the reaction system and the temperature outside the reaction system, the temperature controller 40 converts the temperature detected by the temperature sensor 41 into direct current. Based on the difference between the value input by the temperature sensor 42 and the value input by converting the temperature detected by the temperature sensor 42 into a direct current, and the temperature difference inside and outside the reaction system that is arbitrarily set.
AC output to the control device 21 of 0, and oscillates a high frequency from the high frequency oscillator 22 connected to the control device 21 according to the output, and passes through the isolator 23, the power detector 24, and the matching device 25 to guide the water load. The water medium 2 circulated in the pipe 27 is heated so that the sum of the temperature detected by the temperature sensor 41 and the temperature difference between the inside and outside of the reaction system that is arbitrarily set becomes equal to the temperature detected by the temperature sensor 42. Control.

【0028】温度調節器40に接続された電磁弁30、
31は温度調節器40に入力された温度センサー41あ
るいは42の温度から任意の温度でイベントを発生させ
開閉制御することができ、水媒体2を冷却するときは電
磁弁30、31を開状態にして水媒体2を冷却装置19
へ循環させ冷却を行い、冷却が必要ないときは電磁弁3
0、31を閉状態にして冷却装置19へ循環させないよ
うに制御されている。特に40℃以上での重合反応を行
う場合には循環水を冷却しないように電磁弁30、31
を閉じて行うことが好ましい。
A solenoid valve 30 connected to the temperature controller 40,
31 can generate an event at an arbitrary temperature from the temperature of the temperature sensor 41 or 42 input to the temperature controller 40 to control opening and closing, and when cooling the water medium 2, open the solenoid valves 30 and 31. Cooling device 19 for water medium 2
When the cooling is not required, the solenoid valve 3
It is controlled so that 0 and 31 are closed and not circulated to the cooling device 19. Especially when carrying out the polymerization reaction at 40 ° C. or higher, the solenoid valves 30 and 31 should be set so as not to cool the circulating water.
Is preferably closed.

【0029】上記構成図では、試料溶液の撹拌を回転磁
子によって行った場合について説明したが、この方法に
限定されるものでなく試料溶液の撹拌には撹拌羽根を使
用した撹拌でもよい。また、試料溶液の撹拌を行わせず
に重合を行ってもよい。
In the above configuration diagram, the case where the sample solution is stirred by the rotating magnet has been described. However, the method is not limited to this method, and the sample solution may be stirred using a stirring blade. Further, the polymerization may be carried out without stirring the sample solution.

【0030】[0030]

【実施例】図2は本発明の重合装置を用いて、アクリル
アミド24.5%、アクリル酸ナトリウム6.5%の組
成の単量体水溶液の断熱重合反応を行った際の重合槽内
およびジャケット槽内の温度変化並びに高周波出力の割
合を示したものである。横軸は重合時間(hr)を示
し、左縦軸は重合槽内及びジャケット槽(反応系内外)
の温度(℃)、右縦軸は高周波出力の割合(%)を示
す。尚、逆三角形で示したマーカーは反応系内の温度が
最高温度になったところ(最高到達温度)を示してい
る。以下、図3〜5についても同様である。
EXAMPLE FIG. 2 shows the inside of a polymerization tank and a jacket when an adiabatic polymerization reaction of an aqueous monomer solution having a composition of 24.5% acrylamide and 6.5% sodium acrylate was carried out using the polymerization apparatus of the present invention. It shows the temperature change in the tank and the ratio of high frequency output. The horizontal axis shows the polymerization time (hr), and the left vertical axis shows the inside of the polymerization tank and the jacket tank (inside and outside the reaction system).
Temperature (° C.), and the right vertical axis shows the ratio (%) of high frequency output. The marker indicated by an inverted triangle indicates the point where the temperature in the reaction system reached the maximum temperature (maximum temperature reached). The same applies to FIGS. 3 to 5 below.

【0031】図2で示されるように重合槽内とジャケッ
ト槽内の温度曲線は重なっており、本発明の重合装置を
用いることにより、重合槽内とジャケット槽内との温度
差が殆どなく、反応系内外での温度差がない極めて良好
な断熱系が形成されていることがわかる。また、重合速
度に対応して瞬時に高周波の出力が変動しており応答性
にも優れた追随制御が行われていることがわかる。
As shown in FIG. 2, the temperature curves in the polymerization tank and the jacket tank are overlapped, and by using the polymerization apparatus of the present invention, there is almost no temperature difference between the polymerization tank and the jacket tank. It can be seen that a very good adiabatic system with no temperature difference inside and outside the reaction system is formed. Further, it can be seen that the output of the high frequency fluctuates instantaneously according to the polymerization rate, and the follow-up control excellent in responsiveness is performed.

【0032】図3は、アクリルアミド24.5%、アク
リル酸ナトリウム6.5%の組成の単量体水溶液の同一
試料について2回断熱重合反応を行ったときの温度変化
について比較した結果を示したものである。ここで、横
軸は重合時間(hr)を示し、縦軸は反応系内の温度
(℃)を示す。この図から明らかなように本重合装置を
使用した場合、極めて再現性の良い結果が得られること
がわかる。
FIG. 3 shows the results of comparing the temperature changes when the adiabatic polymerization reaction was performed twice for the same sample of the monomer aqueous solution having a composition of acrylamide 24.5% and sodium acrylate 6.5%. It is a thing. Here, the horizontal axis represents the polymerization time (hr) and the vertical axis represents the temperature (° C) in the reaction system. As is clear from this figure, when the present polymerization apparatus is used, extremely reproducible results are obtained.

【0033】図4は、アクリルアミド24.5%、アク
リル酸ナトリウム6.5%の組成の単量体水溶液の本発
明の重合装置を使用して断熱重合反応を行ったときと発
泡スチロールへ重合槽を埋め込み断熱重合反応を行った
ときの温度変化についての比較結果を示したものであ
る。ここで横軸は重合時間(hr)を示し、縦軸は反応
系内の温度(℃)を示す。この図から示されるように本
装置を使用した場合、極めて良好な断熱重合が行えるこ
とがわかる。
FIG. 4 shows a case where an adiabatic polymerization reaction of a monomer aqueous solution having a composition of acrylamide 24.5% and sodium acrylate 6.5% was carried out by using the polymerization apparatus of the present invention, and a polymerization tank was installed on the polystyrene foam. It shows the comparison result about the temperature change when the embedded adiabatic polymerization reaction is performed. Here, the horizontal axis represents the polymerization time (hr) and the vertical axis represents the temperature (° C.) in the reaction system. As shown in this figure, when this apparatus is used, extremely good adiabatic polymerization can be performed.

【0034】図5は、アクリルアミド24.5%、アク
リル酸ナトリウム6.5%の組成の単量体水溶液の重合
反応を行ったときに、重合により変化する重合槽内の温
度とジャケット槽内の温度差が全くないよう制御した場
合(±0℃)、重合槽内の温度に対して0.3℃ジャケ
ット槽が高くなるよう制御した場合(+0.3℃)と重
合槽内の温度に対して0.5℃ジャケット槽が低くなる
よう制御した場合(−0.5℃)での重合槽内の温度変
化を比較したものである。横軸は重合時間(hr)を示
し、縦軸は反応系内の温度(℃)を示す。本装置を使用
することで、従来までは行うことのできなかったほんの
僅かな温度差をつけた状態での重合反応を簡単に行うこ
とが可能となった。
FIG. 5 shows the temperature in the polymerization tank and the temperature in the jacket tank which change due to the polymerization when a monomer aqueous solution having a composition of 24.5% acrylamide and 6.5% sodium acrylate is polymerized. When the temperature is controlled so that there is no temperature difference (± 0 ℃), the temperature in the polymerization tank is 0.3 ℃ higher than that in the jacket tank (+ 0.3 ℃), and the temperature in the polymerization tank is This is a comparison of temperature changes in the polymerization tank when the jacket tank is controlled to be low at 0.5 ° C (-0.5 ° C). The horizontal axis represents the polymerization time (hr), and the vertical axis represents the temperature (° C) in the reaction system. By using this device, it became possible to easily carry out the polymerization reaction with a slight temperature difference, which could not be carried out until now.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば反
応系内の温度上昇に追随させて反応系外の温度を上げる
方法として、反応系外に水媒体を満たし、この水媒体の
加熱に最も効率の良い高周波による加熱を利用したこと
により、応答性能が飛躍的に向上し、断熱性能が大幅に
改善されたうえに、重合速度の速い重合反応においても
精度良く断熱反応を行わせることが可能となり、再現性
の良い結果が得られるという効果を有している。
As described above, according to the present invention, as a method of raising the temperature outside the reaction system by following the temperature rise in the reaction system, the reaction system is filled with an aqueous medium and the aqueous medium is heated. By utilizing the most efficient high-frequency heating, the response performance is dramatically improved, the adiabatic performance is greatly improved, and the adiabatic reaction can be performed accurately even in the polymerization reaction with a high polymerization rate. It is possible to obtain results with good reproducibility.

【0036】また、精度良く反応系内の温度に対してあ
る一定の温度差をつけて反応系外の温度を簡単に制御す
ることが可能であることから、外温制御するだけで分子
量等の物性の異なる重合体が再現性良く得られる効果を
有しており、従来まで正確に検討できなかった一定温度
差のついた加熱状態及び放熱状態での重合反応への影響
を精度良く検討できるという効果を有している。
Further, since it is possible to easily control the temperature outside the reaction system by providing a certain temperature difference with respect to the temperature inside the reaction system with high accuracy, it is possible to control the molecular weight and the like simply by controlling the outside temperature. It has the effect that polymers with different physical properties can be obtained with good reproducibility, and that it is possible to accurately study the effect on the polymerization reaction in the heating state and heat radiating state with a constant temperature difference that could not be studied accurately until now. Have an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の一例を示す構成図FIG. 1 is a configuration diagram showing an example of a device of the present invention.

【図2】断熱重合反応での制御状態を確認するための実
測図
[Fig. 2] Actual measurement diagram for confirming the control state in the adiabatic polymerization reaction

【図3】本発明装置での再現性を確認するための実測図FIG. 3 is an actual measurement diagram for confirming reproducibility with the device of the present invention.

【図4】本発明装置での効果を確認するための実測図FIG. 4 is an actual measurement diagram for confirming the effect of the device of the present invention.

【図5】反応系内外の間で任意に温度差をつけて制御し
重合させたときの実測図
FIG. 5: Actual measurement diagram when polymerization is carried out by controlling with an arbitrary temperature difference between inside and outside of the reaction system

【符号の説明】[Explanation of symbols]

1 試料溶液 2 水媒体 10 重合槽 11 断熱材 12 ジャケット槽 13 回転磁子 14 マグネチック・スターラー 15 断熱材 16 レベル計 17 循環ライン 18 送液ポンプ 19 冷却装置 20 高周波加熱装置 21 制御装置 22 高周波発振器 23 アイソレーター 24 電力検出器 25 整合器 26 ガラス管 27 水負荷導波管 30、31 電磁弁 40 温度調節器 41、42 温度センサー 50 パソコン 1 Sample Solution 2 Aqueous Medium 10 Polymerization Tank 11 Insulation Material 12 Jacket Tank 13 Rotating Magnet 14 Magnetic Stirrer 15 Insulation Material 16 Level Meter 17 Circulation Line 18 Liquid Pump 19 Cooling Device 20 High Frequency Heating Device 21 Control Device 22 High Frequency Oscillator 23 Isolator 24 Power Detector 25 Matching Device 26 Glass Tube 27 Water Load Waveguide 30, 31 Solenoid Valve 40 Temperature Controller 41, 42 Temperature Sensor 50 PC

フロントページの続き (72)発明者 森 孝文 神奈川県横浜市栄区笠間町1190番地 三井 東圧化学株式会社内Front page continued (72) Inventor Takafumi Mori 1190 Kasama-cho, Sakae-ku, Yokohama-shi, Kanagawa Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重合槽、重合槽の温度制御を行うジャケ
ット槽、ジャケット槽内の水媒体を抜き取り加熱装置並
びに冷却装置を経てジャケット槽へ循環させる送液ポン
プからなり、該加熱装置は高周波加熱装置であることを
特徴とする重合装置。
1. A polymerization tank, a jacket tank for controlling the temperature of the polymerization tank, a liquid feed pump for extracting an aqueous medium in the jacket tank and circulating it to a jacket tank through a heating device and a cooling device, the heating device being a high frequency heating device. A polymerization device, which is a device.
JP246195A 1995-01-11 1995-01-11 Polymerizer Pending JPH08188603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP246195A JPH08188603A (en) 1995-01-11 1995-01-11 Polymerizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP246195A JPH08188603A (en) 1995-01-11 1995-01-11 Polymerizer

Publications (1)

Publication Number Publication Date
JPH08188603A true JPH08188603A (en) 1996-07-23

Family

ID=11529947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP246195A Pending JPH08188603A (en) 1995-01-11 1995-01-11 Polymerizer

Country Status (1)

Country Link
JP (1) JPH08188603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526714A (en) * 2000-02-24 2003-09-09 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing polyether polyol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003526714A (en) * 2000-02-24 2003-09-09 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing polyether polyol

Similar Documents

Publication Publication Date Title
Kappe How to measure reaction temperature in microwave-heated transformations
CN103130927B (en) Method and system for olefin polymerization temperature control
JP5342097B2 (en) Methods and apparatus for low temperature microwave assisted organic chemical synthesis
EP2219415B1 (en) Microwave heating device and heating method
Datta et al. Mathematical modeling of batch heating of liquids in a microwave cavity
Ostroski et al. Emulsion polymerization with ultrasonic vibration
JPH08188603A (en) Polymerizer
Champ et al. A novel semi-automated apparatus to concentrate aqueous polymer solutions with a thermosensitive hydrogel
CN113375839B (en) Small-flow circulating water load system with accurate temperature control function
US20220314191A1 (en) Microwave reactor
Liu et al. Precipitation polymerisation of vinylidene fluoride in supercritical CO2 and real-time calorimetric monitoring
CN208537997U (en) Microwave chemical thermostatic control system
EP3379221B1 (en) Calibration bath with stir motor closed-loop control and stirring viscosity detection and adjustment
CN114281127B (en) Reagent card incubation system, reagent card incubation method and storage medium
CN103294084B (en) Energy-saving temperature controller applied to thermostat
CN107314406B (en) Control method of induction cooker
CN109701475A (en) A kind of liquid material microwave-ultrasonic coupling processing unit, equipment and application
JPH10296075A (en) Temperature control device and method for batch type reactor, and recording medium having control program recorded
Elton et al. Stabilization of single phase rectangular natural circulation loop of larger diameter using orifice plate
WO2005113133A1 (en) Cooling type microwave chemical reaction apparatus
JPS5914182B2 (en) thermal testing equipment
CN109688653B (en) Microwave pipeline type heating rapid heating device
RU2682173C1 (en) Method for carrying out of exothermal catalytic reaction polymerization in isothermal mode in gas-liquid phase semi-continuous mixture reactor
Horák et al. Temperature control in a chemical reactor through variable area of the heat transfer surface. Experimental verification
CA1332292C (en) Temperature controlling means for a thermostat for use in measuring viscosity